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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

We consider the point of view of:

a representative consumer, who self-produces energy by solar
panels and faces relevant installation costs.
How many panels to install to minimize the costs?

a representative energy company, who needs to adapt its
production strategy to the consumer's decisions.
How much energy to produce in order to minimize the costs?

a social planner, who wants to minimize the global costs.
Which strategies would he suggest to the consumer/company?

Our goals. Solution to the three problems above? Do the planner's
suggestions coincide with the consumer/company's choices?
Framework: McKean-Vlasov stochastic control problems.
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Consumer: the model. The consumer satis�es his energy demand by
self-production (solar panels) and centralized production (energy
company). He has to decide how many panels to install in order to
minimize the costs. In detail, our model is as follows.

Let αt be the number of panels the consumer buys/sells in t and let
dXα

t = bαtdt + σXα
t dWt be the energy the panels produce in t.

Buying/selling panels has a cost, quadratic w.r.t. αt : cαt + γα2t .

If D is the consumer's electricity demand (constant), D − Xα
t is the

amount of electricity still needed and bought in the market, at price
Pt (FW 0

-adapted process, W 0 ⊥⊥W ). Important: no model on P.

As the consumer wants a stable production of energy from solar
panels, the variance of the production Var[Xα

t ] is penalized.
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Consumer: the problem. In each t ≥ 0 the costs are:

quadratic installation costs;

purchase of the electricity he still needs;

term to penalise the variance.

So, the consumer has to solve

inf
α
E
[∫ ∞

0

e−ρt
(

cαt + γα2t

+ Pt

(
D − Xα

t ) + ηVar[Xα
t ]

)
dt

]
,
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Consumer: cost function. Recall that αt is the installation rate
in t (how many panels the consumer buys/sells in t). Let c(αt) be
the corresponding installation/dismiss costs. Which model for c(·)?

As the purchase/sale of panels is instantaneous, buying a big
amount of panels is more di�cult (and then expensive) than
buying a small amount. So, we ask c ′′(α) > 0.

For α < 0 small, the consumer is selling (a small amount of)
panels, so he gains, that is c(α) < 0 in [−ᾱ, 0[.

For α < 0 big, the consumer is trying to suddenly sell a large
amount of panels, which is practically impossible, so that he
actually loses money; hence, we ask c(α) > 0 in ]−∞,−ᾱ[.



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Consumer: cost function. Recall that αt is the installation rate
in t (how many panels the consumer buys/sells in t). Let c(αt) be
the corresponding installation/dismiss costs. Which model for c(·)?

As the purchase/sale of panels is instantaneous, buying a big
amount of panels is more di�cult (and then expensive) than
buying a small amount. So, we ask c ′′(α) > 0.

For α < 0 small, the consumer is selling (a small amount of)
panels, so he gains, that is c(α) < 0 in [−ᾱ, 0[.
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To sum up, we want the cost function c to be:

convex;

negative in [−ᾱ, 0];
positive in R \ [−ᾱ, 0].

The simplest function with all these properties is c(α) = cα+ γα2.
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1.3 The social planner

Consumer: SDE. The SDE for Xα
t is dXα

t = bαt + σXα
t dWt .

The noise term is σXα
t dWt and not σαtdWt : why?

Because the noise in the production of a single panel is not
constant, but increases as the production increases: the more you
are producing, the more unstable the production is.

Consumer: Brownian motions. The production depends on W ,
the market price depends on W 0. We assume W ⊥⊥W 0: why?

The production basically depends on the weather. Conversely, as
we consider a big international company, the price is not in�uenced
by local issues (like today's weather) but only by wider elements
(fuels, status of power plants,. . . ). So, the noises are independent.
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Consumer: how to solve the problem. Recall the problem:

V0 = inf
α
E
[∫ ∞

0

e−ρt
(
cαt + γα2t + Pt

(
D − Xα

t ) + ηVar[Xα
t ]

)
dt

]
.

From a mathematical point of view:

linear-quadratic problem;

McKean-Vlasov;

stochastic coe�cients.

How to solve the problem? To characterize the optimal control, we
use the following formulation of the veri�cation theorem.
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Statement. Let {wα
t }α,t be a family of processes in the form

wα
t = wt(X

α
t ,E[Xα

t ]) and such that:

E
[
e−ρTwα

T

]
→ 0 as T →∞, for each α;

t 7→ E
[
e−ρtwα

t +
∫ t
0
e−ρs

(
cαs +γα2s−Ps(D−Xα

s )+ηVar[Xα
s ]
)
ds
]

is increasing for each α and constant for some α = α̂.

Then, α̂ is the optimal control and w0 := E[w0(X0,E[X0])] is the
value of the problem.

Idea behind. As the expectation above is increasing, we have

w0 ≤ E
[
e−ρtwα

t +
∫ t
0
e−ρs

(
cαs +γα2s−Ps(D−Xα

s )+ηVar[Xα
s ]
)
ds
]
,

which leads (t →∞) to w0 ≤ J(α), and then w0 ≤ V0. Similarly,
for α̂ we get w0 = J(α̂) and then w0 ≥ V0. Finally, w0=V0=J(α̂).
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Strategy. The key-point of this approach is to prove that

t 7→ E
[
e−ρtwα

t +
∫ t
0
e−ρs

(
cαs +γα2s−Ps(D−Xα

s )+ηVar[Xα
s ]
)
ds
]

is increasing/constant. Our strategy is as follows.

Step 1. We guess a suitable form for wα
t and set

Sαt = e−ρtwα
t +

∫ t

0

e−ρs
(
cαs+γα2s−Ps(D−Xα

s )+ηVar[Xα
s ]
)
ds.

Step 2. We compute the Ito decomposition of Sαt , that is

dSαt = e−ρtDαt dt + (terms in dW , dW 0).

Step 3. We impose that E[Dαt ] is positive/zero, since we have

E[Sαt ] is increasing/constant⇐⇒ E[Dαt ] is positive/zero.
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1.3 The social planner

Step 1. As we deal with a LQ problem, we guess a quadratic form
for wα

t = wt(X
α
t ,E[Xα

t ]), with stochastic coe�cients:

wα
t = Kt(X

α
t − E[Xα

t ])2 + ΛtE[Xα
t ]2 + Yt(X

α
t − E[Xα

t ]) + ΓtE[Xα
t ] + Rt ,

where we assume dξt = ξ̇tdt+ξ̂tdW
0
t , for ξ∈{K ,Λ,Y ,Γ,R}.

Notice: centred variable, as this provides easier computations.

Step 2. Ito on e−ρtwα
t +

∫ t

0
e−ρs

(
cαs+γα

2

s−Ps(D−Xα
s )+ηVar[Xα

s ]
)
ds;

the expectation of the dt term is, for explicit functions ηi ,

E[Dαt ] = E
[
γα2t + η0(Xα

t ,Kt ,Λt ,Yt , Γt)αt + η1(Kt)(Xα
t − E[Xα

t ])2

+η2(Λt)E[Xα
t ]2+η3(Yt)(Xα

t − E[Xα
t ])+η4(Γt)E[Xα

t ]+η5(Rt)

]
.

Recall the goal: we want E[Dαt ] to be positive for each α; in this
form, it is complicated... Idea: completing the square.
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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Step 3. By completing the square we get, for explicit functions ξi ,

E[Dα
t ]=E

[
γ
(
αt + ξ0(Xα

t ,Kt ,Λt ,Yt ,Γt)
)2

+ξ1(Kt)(Xα
t − E[Xα

t ])2+ξ2(Kt ,Λt)E[Xα
t ]2

+ξ3(Kt ,Yt , Γt)(Xα
t − E[Xα

t ])+ξ4(Λt , Γt)E[Xα
t ]+ξ5(Yt , Γt ,Rt)

]
.

As we want E[Dαt ] ≥ 0 for each α, we set the coe�cients ξ1, . . . , ξ5
to be identically zero. This corresponds to a system of conditions
which completely characterizes the coe�cients Kt ,Λt ,Yt , Γt ,Rt .

We can now apply the theorem, since we have

E[Dαt ] = E
[
γ
(
αt + ξ0(Xα

t ,Kt ,Λt ,Yt , Γt)
)2]

,

which is always positive and equals zero for the (optimal) control

α̂t = −ξ0
(
X α̂
t ,Kt ,Λt ,Yt , Γt

)
.
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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Consumer: optimal control. After precise computations, the
optimal control α̂ is (K ,Λ > 0 explicit, P̄s := E[Ps ], X̂ := X α̂)

α̂t =− bK

γ
(X̂t − E[X̂t ])

(mean-reverting term)

+
b

2γ

∫ ∞
t

e−(ρ+b2K/γ)(s−t)E[Ps |F0

t ]ds

(stoch. term)

+
b

2γ

∫ ∞
t

(
e−(ρ+b2Λ/γ)(s−t) − e−(ρ+b2K/γ)(s−t)

)
P̄sds

− bΛ

γ
E[X̂t ]−

ρcΛ

2γσ2K
.

(deterministic term)
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Notice that we can compute E[X̂t ]. Also, the mean-reverting
coe�cient bK

γ is increasing w.r.t. η. Reasonable: big η means big
penalty on the variance, so need to reduce the oscillations.
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The formulas are quite complicated, but we can deduce some
interesting limit results...



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Consumer: limits. If there exists P̄ := limt E[Ps ], then

lim
t→∞

E[α̂t ] = 0, lim
t→∞

E[X̂t ] =
bP̄ − ρc
2bσ2K

=: X̂ .

The average number of panels and production get constant,
i.e. the consumer stops investing and the production stabilizes.

To have a meaningful model, we need X̂ ∈ ]0,D[; indeed,
beside the obvious positivity condition, producing more than D
is not admissible in a limit situation (but may happen locally) .

The limit production belongs to ]0,D[ under weak assumptions
on the coe�cients, namely P̄ ∈ ]ρcb ,

ρc
b + 2σ2KD[.
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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Consumer: simulations. We run some numerical simulations, in
the case where Pt is a scaled Brownian motion:

dPs = ξdWs , Pt = p0 + ξWs .

The optimal control here writes

α̂t = ÃX̂t + B̃Pt + C̃e−
b2Λ
γ

t + D̃,

Ã = −bK

γ
, B̃ =

b

2(ργ + b2K )
,

C̃ =
b(K − Λ)

γ

(
x0−

bp0 − ρc
2bσ2K

)
, D̃ =

bp0 − ρc
2γσ2

− bp0
2(ργ + b2K )

.
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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

We here plot a sample trajectory (blue: α̂t , orange: X̂t , green: Pt).
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We now see the e�ect of penalizing the variance:
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We now see the e�ect of penalizing the variance:η=2,η=4,
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1. Three optimization problems
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3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

We now see the e�ect of penalizing the variance:η=2,η=4,η=8.
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1. Three optimization problems
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3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Finally, the convergence of the average production E[X̂t ] as t→∞.
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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Company: the model. Recall: the company has to adjust its production
strategy according to the consumer's behaviour, so as to minimize the
costs. Notice that the company knowns Xα

t , as the consumer buys an
amount D − Xα

t of energy. Our model is as follows.

Let ut be the production installation rate in t (ut > 0 improves the
production) and let dQu

t = utdt be the energy produced in t.

Modifying the production rate has a cost, quadratic w.r.t. ut : hu
2

t .

For each unity of energy produced at time t, the company has to
pay the amount πα,ut (carbon tax). We assume (details later)

πα,ut =
Xα
t

D π0 +
Qu

t

D π1, where [π0, π1] is a given interval.

The consumer buys an amount D − Xα
t at price Pt : we have a

corresp. gain for the company, at price P̃t , with P̃ = (1− ε)Pt .

As the quantity Qu
t should correspond to D − Xα

t , there is a penalty
in case of overproduction or underproduction.
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Company: the problem. In each t ≥ 0 the costs are:

quadratic installation costs;

gain from the sale of energy;

carbon tax;

term to penalise under/over-production.

So, the company has to solve

inf
u
E
[∫ ∞

0

e−ρt
(

hu2t

−P̃t

(
D−Xα

t

)
+πα,ut

(
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t

)
+λ
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2. Looking for an equilibrium
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1.1 The consumer
1.2 The energy company
1.3 The social planner

Company: carbon tax. Recall: πt is the amount the company
pays for each unity of energy produced in t. Practically, πt ∈ [π0, π1]
(�xed interval) and is increasing w.r.t. the production Qu

t .

A simple but reasonable model is: πt = πα,ut = Xα
t
D π0 + Qu

t
D π1.

Notice: πα,ut =π0 if the company does not work (Qu
t =0,Xα

t =D).
Notice: πα,ut =π1 if the company fully works (Qu

t =D,Xα
t =0).

Company: optimal control. We solve the problem as above. Let
û be the optimal control; we have (K̃ > 0 explicit, Q̂ = Q û):

ût = − K̃

h
Q̂t +

2λD − π1
2hD

∫ ∞
t

e
−
(
ρ+ K̃

h

)
(s−t)E

[
D − Xα

s

∣∣Ft

]
ds.

Second term: (over)discounted energy expected to be sold in [t,∞[.
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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Consumer: limits. If there exists X̄ := limt E[Xα
t ], then

lim
t→∞

E[ût ] = 0, lim
t→∞

E[Q̂t ] =
(
1− π1

2λD

)
(D − X̄ ).

The average installation rate and production get constant,
i.e. the company stops investing and the production stabilizes.

Interpretation of the second limit: the limit production is the
1− π1

2λD ratio of the quantity actually bought by the consumer.
Notice: ratio increasing w.r.t. λ, decreasing w.r.t. π1.

To have a meaningful model, the limit prod. must be positive.

The limit production is positive under weak assumptions. Also
notice it is always smaller than D − X̄ (reasonable: no interest
in producing more than the quantity bought by the consumer).
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3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Social planner: model and problem. Recall: the social planner
wants to minimize the sum of the two payo�s.

Hence, we have the following problem:

inf
(α,u)

E
[ ∫ ∞

0

e−ρt
(
cαt + γα2t + hu2t + (πα,ut + Pt − P̃t)

(
D − Xα

t

)
+ ηVar[Xα

t ] + λ
(
D − Xα

t − Qu
t

)2)
dt

]
,

dXα
t = bαtdt + σXα

t dWt , dQu
t = utdt, P stochastic.

Notice: optimization with respect to (α, u), two-dimensional
problem. Also recall that P is a generic stochastic process.
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Social planner: optimal control. We can solve this problem by
the same technique as above (attention: two-dimensional problem).

Let β∗ = (α∗, u∗) be the optimal control and Z ∗ = (X ∗,Q∗) be the
corresponding optimal process. After some computations, we �nd

β∗t = −Ξ1(Z∗t − E[Z∗t ])− Ξ2E[Z∗t ]− 1

2
N−1

∫ ∞
t

e−Ξ3(s−t)E[Ms |F0

t ]ds

− 1

2
N−1

∫ ∞
t

(
e−Ξ4(s−t) − e−Ξ3(s−t)

)
M̄sds − ξ1.

Here, N,M are known matrices, whereas Ξi are solution to an
algebraic matrix equation (easy numerical computations). Also,
notice the mean-reverting term.
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Social planner: limits. If there exists P̄ := limt E[Pt ], then

lim
t→∞

E[α∗t ]=0, lim
t→∞

E[X ∗t ]=
2λD2

(
2π1 − π0 + εP̄ − ρc

b

)
− Dπ2

1

4λD
(
π1 − π0 + σ2K 11D

)
− π2

1

=: X̄ ∗,

lim
t→∞

E[u∗t ]=0, lim
t→∞

E[Q∗t ]=
(
1− π1

2λD

)(
D − X̄ ∗

)
=: Q̄∗.

The average control and variable get constant, i.e. the social
planner suggests �nite prod. rates for consumer and company.

Limit for Q∗: similar to the one in the company's problem;
indeed, this is not a coincidence...

To have a meaningful model, we need X̄ ∗ ∈ ]0,D[ and Q̄∗>0,
for the reasons seen in the consumer's case.

These admissibility conditions hold under weak assumptions;
namely, we just need D or π1 big enough.



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Social planner: limits. If there exists P̄ := limt E[Pt ], then

lim
t→∞

E[α∗t ]=0, lim
t→∞

E[X ∗t ]=
2λD2

(
2π1 − π0 + εP̄ − ρc

b

)
− Dπ2

1

4λD
(
π1 − π0 + σ2K 11D

)
− π2

1

=: X̄ ∗,

lim
t→∞

E[u∗t ]=0, lim
t→∞

E[Q∗t ]=
(
1− π1

2λD

)(
D − X̄ ∗

)
=: Q̄∗.

The average control and variable get constant, i.e. the social
planner suggests �nite prod. rates for consumer and company.

Limit for Q∗: similar to the one in the company's problem;
indeed, this is not a coincidence...

To have a meaningful model, we need X̄ ∗ ∈ ]0,D[ and Q̄∗>0,
for the reasons seen in the consumer's case.

These admissibility conditions hold under weak assumptions;
namely, we just need D or π1 big enough.



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Social planner: limits. If there exists P̄ := limt E[Pt ], then

lim
t→∞

E[α∗t ]=0, lim
t→∞

E[X ∗t ]=
2λD2

(
2π1 − π0 + εP̄ − ρc

b

)
− Dπ2

1

4λD
(
π1 − π0 + σ2K 11D

)
− π2

1

=: X̄ ∗,

lim
t→∞

E[u∗t ]=0, lim
t→∞

E[Q∗t ]=
(
1− π1

2λD

)(
D − X̄ ∗

)
=: Q̄∗.

The average control and variable get constant, i.e. the social
planner suggests �nite prod. rates for consumer and company.

Limit for Q∗: similar to the one in the company's problem;
indeed, this is not a coincidence...

To have a meaningful model, we need X̄ ∗ ∈ ]0,D[ and Q̄∗>0,
for the reasons seen in the consumer's case.

These admissibility conditions hold under weak assumptions;
namely, we just need D or π1 big enough.



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Social planner: limits. If there exists P̄ := limt E[Pt ], then

lim
t→∞

E[α∗t ]=0, lim
t→∞

E[X ∗t ]=
2λD2

(
2π1 − π0 + εP̄ − ρc

b

)
− Dπ2

1

4λD
(
π1 − π0 + σ2K 11D

)
− π2

1

=: X̄ ∗,

lim
t→∞

E[u∗t ]=0, lim
t→∞

E[Q∗t ]=
(
1− π1

2λD

)(
D − X̄ ∗

)
=: Q̄∗.

The average control and variable get constant, i.e. the social
planner suggests �nite prod. rates for consumer and company.

Limit for Q∗: similar to the one in the company's problem;
indeed, this is not a coincidence...

To have a meaningful model, we need X̄ ∗ ∈ ]0,D[ and Q̄∗>0,
for the reasons seen in the consumer's case.

These admissibility conditions hold under weak assumptions;
namely, we just need D or π1 big enough.



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1.1 The consumer
1.2 The energy company
1.3 The social planner

Social planner: limits. If there exists P̄ := limt E[Pt ], then

lim
t→∞

E[α∗t ]=0, lim
t→∞

E[X ∗t ]=
2λD2

(
2π1 − π0 + εP̄ − ρc

b

)
− Dπ2

1

4λD
(
π1 − π0 + σ2K 11D

)
− π2

1

=: X̄ ∗,

lim
t→∞

E[u∗t ]=0, lim
t→∞

E[Q∗t ]=
(
1− π1

2λD

)(
D − X̄ ∗

)
=: Q̄∗.

The average control and variable get constant, i.e. the social
planner suggests �nite prod. rates for consumer and company.

Limit for Q∗: similar to the one in the company's problem;
indeed, this is not a coincidence...

To have a meaningful model, we need X̄ ∗ ∈ ]0,D[ and Q̄∗>0,
for the reasons seen in the consumer's case.

These admissibility conditions hold under weak assumptions;
namely, we just need D or π1 big enough.
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suggestions for the consumer (the company) coincide with the
optimal control of the consumer himself (the company himself).
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A suitable de�nition. Recall the results of the three problems.

Opt. prod. for consumer Opt. prod. for company

Consumer's pb. X̂ (P)

Company's pb. Q̂(α(P))

Soc. planner's pb. X ∗(P) Q∗(P)

We are interested in a price process P such that the social planner's
suggestions for the consumer (the company) coincide with the
optimal control of the consumer himself (the company himself).

De�nition (�rst attempt). A Pareto equilibrium is a price process P
such that X̂t(P) = X ∗t (P) and Q̂t

(
α∗(P)

)
= Q∗t (P), for t ≥ 0.



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

Conditions: X̂t(P) = X ∗t (P) and Q̂t

(
α∗(P)

)
= Q∗t (P). By def.,

the second one is satis�ed for any P . We focus on the �rst one:
very hard to solve. Idea: weaker de�nition, in term of limits.

De�nition (second attempt). An asymptotic Pareto equilibrium is a
real number P̄ such that limt→∞ E[X̂t ](P̄) = limt→∞ E[X ∗t ](P̄).

Indeed, some admissibility conditions are necessary...

De�nition. An admissible asymp. Pareto equilibrium is a real P̄ s.t.

limt E[X̂t ](P̄) = limt E[X ∗t ](P̄);

limt E[X ∗t ](P̄) ∈ ]0,D[;

limt E[Q∗t ](P̄) ∈ ]0,+∞[;

P̄ ∈ ]0,+∞[.
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1. Three optimization problems
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Conditions and formulas. We now look for admissible asymptotic
Pareto equilibria for our problem. The equation

lim
t→∞

E[X̂t ](P̄) = lim
t→∞

E[X ∗t ](P̄)

corresponds, by the formulas above, to

bP̄ − ρc
2bσ2K

=
2λD2

(
2π1 − π0 + εP̄ − ρc/b

)
− Dπ2

1

4λD
(
π1 − π0 + σ2K 11D

)
− π2

1

.

This �nally leads to

P̄ =
2σ2KD

(
2λD

(
2π1−π0− ρc

b

)
−π21

)
+ ρc

b

(
4λD

(
π1−π0+σ2K 11D

)
−π21

)
4λD

(
π1 − π0 + σ2K 11D

)
− π21 − 4ελσ2KD2

.

We just have to check the (three) admissibility conditions...
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Proposition

A necessary and su�cient condition for the existence of an admissible
asymptotic Pareto equilibrium is that:
2σ2KD

(
2λD

(
2π1−π0− ρc

b

)
−π21

)
+ ρc

b

(
4λD

(
π1−π0+σ2K 11D

)
−π21

)
> 0,

−π0 + 2σ2D(K 11 − εK) + (1− ε) ρc
b
> 0,

2λD
(
2π1 − π0 − ρc

b

)
− π21 + 2ελD(ρc/b) > 0,

π1 < 2λD,
or

2σ2KD
(
2λD

(
2π1−π0− ρc

b

)
−π21

)
+ ρc

b

(
4λD

(
π1−π0+σ2K 11D

)
−π21

)
< 0,

−π0 + 2σ2D(K 11 − εK) + (1− ε) ρc
b
< 0,

2λD
(
2π1 − π0 − ρc

b

)
− π21 + 2ελD ρc

b
< 0,

π1 < 2λD.

In this case, the equilibrium is unique and de�ned as above:

P̄ =
2σ2KD

(
2λD

(
2π1−π0− ρc

b

)
−π21

)
+ ρc

b

(
4λD

(
π1−π0+σ2K 11D

)
−π21

)
4λD

(
π1 − π0 + σ2K 11D

)
− π21 − 4ελσ2KD2

.



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

Notice: if π1, π0 = 0, the conditions are not satis�ed: in our model,
the carbon tax is fundamental to have an equilibrium!

The proposition above provides a complete and explicit solution to
our questions. However, the conditions are a bit complicated. We
then rewrite the statement in a stronger but simpler version.

Proposition

A su�cient condition for the existence of an admissible asymptotic
Pareto equilibrium is that:

2λD
(
2π1 − π0 − ρc/b

)
− π2

1
> 0,

−π0 + 2σ2D(K 11 − εK ) + (1− ε)ρc/b > 0,

π1 < 2λD.

In this case, the equilibrium is unique and de�ned as above.

Notice: conditions easily satis�ed, we just need D big enough!
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1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

New costs. Recall the installation costs for the consumer:

cαt + γα2t .

They only depend on the present choice αt , not on the past. It is
reasonable to add a path-dependence: there should be a discount
linked to the total number of panel bought in the past, i.e.

∫ t
0
αsds

(in the long run: lot of sales, better technologies, cheaper prices).

This suggests the following new de�nition for the installation costs:

cαt + γα2t − µ̃αtE
[ ∫ t

0
αsds

]
.

Problem: a new state variable. But dXα
t = bαtdt + σXα

t dWt , so
that E[

∫ t
0
αsds] = (E[Xα

t ]−x0)/b and we can rewrite as (µ= µ̃/b)

cαt + γα2t − µαtE[Xα
t ].
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1. Three optimization problems
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3. Generalizing the model

Further generalization. We could also consider a similar change
for the company's costs: from hu2t to hu2t − νutE[Qu

t ]. Formulas
are similar, but more complicated. So we here focus on the case
where only the consumer's costs change.

Consumer. We have a new problem for the consumer.

The payo� is

inf
α
E
[∫ ∞

0

e−ρt
(
cαt +γα2t−µαtE[Xα

t ]+Pt

(
Dt−Xα

t )+ηVar[Xα
t ]
)
dt

]
.

The limit for the optimal control is

lim
t→∞

E[X̂t ] =
bP̄ − ρc

2bσ2K−ρµ
.
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Social planner. We have a new problem for the social planner.

The payo� is

inf
α,u

E
[ ∫ ∞

0

e−ρt
(
cαt + γα2t−µαtE[Xα

t ] + hu2t

+(πα,ut +Pt−P̃t)
(
Dt−Xα

t

)
+ηVar[Xα

t ]+λ
(
Dt−Xα

t −Qu
t

)2)
dt

]
.

The limits for the optimal controls are

lim
t→∞

E[X ∗t ]=
2λD2

(
2π1 − π0 + εP̄ − ρc

b

)
− Dπ2

1

4λD
(
π1 − π0 + σ2K 11D−ρµD

2b

)
− π2

1

=: X̄ ∗,

lim
t→∞

E[Q∗t ]=
(
1− π1

2λD

)(
D − X̄ ∗

)
.
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Pareto equilibria. We have new formulas for the equilibria.

The su�cient conditions for the existence/uniqueness of an
admissible asymptotic Pareto equilibrium are

2λD
(
2π1 − π0 − ρc

b

)
− π21 > 0,

2σ2K− ρµ
b
> 0,

−π0 + 2σ2D(K 11 − εK) + (1− ε) ρc
b

+ε ρµD
b

> 0,

π1 < 2λD.

The formula for the equilibrium is

P̄ =
D
(
2σ2K− ρµ

b

)(
2λD

(
2π1−π0− ρc

b

)
−π21

)
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21−2ελD2

(
2σ2K− ρµ

b

)
+

ρc
b

(
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21

)
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21−2ελD2

(
2σ2K− ρµ

b

) .

Conclusion. All the results still hold!



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

Pareto equilibria. We have new formulas for the equilibria.

The su�cient conditions for the existence/uniqueness of an
admissible asymptotic Pareto equilibrium are

2λD
(
2π1 − π0 − ρc

b

)
− π21 > 0,

2σ2K− ρµ
b
> 0,

−π0 + 2σ2D(K 11 − εK) + (1− ε) ρc
b

+ε ρµD
b

> 0,

π1 < 2λD.

The formula for the equilibrium is

P̄ =
D
(
2σ2K− ρµ

b

)(
2λD

(
2π1−π0− ρc

b

)
−π21

)
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21−2ελD2

(
2σ2K− ρµ

b

)
+

ρc
b

(
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21

)
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21−2ελD2

(
2σ2K− ρµ

b

) .

Conclusion. All the results still hold!



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

Pareto equilibria. We have new formulas for the equilibria.

The su�cient conditions for the existence/uniqueness of an
admissible asymptotic Pareto equilibrium are

2λD
(
2π1 − π0 − ρc

b

)
− π21 > 0,

2σ2K− ρµ
b
> 0,

−π0 + 2σ2D(K 11 − εK) + (1− ε) ρc
b

+ε ρµD
b

> 0,

π1 < 2λD.

The formula for the equilibrium is

P̄ =
D
(
2σ2K− ρµ

b

)(
2λD

(
2π1−π0− ρc

b

)
−π21

)
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21−2ελD2

(
2σ2K− ρµ

b

)
+

ρc
b

(
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21

)
4λD

(
π1−π0+σ2K 11D− ρµD

2b

)
−π21−2ελD2

(
2σ2K− ρµ

b

) .

Conclusion. All the results still hold!



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model



1. Three optimization problems
2. Looking for an equilibrium

3. Generalizing the model

1. Three optimization problems

- Consumer's demand satis�ed by self-production and market
- Point of view of a consumer, a company, a social planner
- Framework: McKean-Vlasov stochastic optimal control
- Explicit formula for the optimal controls

2. Looking for an equilibrium

- De�nition of admissible asymptotic Pareto equilibrium
- Necessary and su�cient conditions for existence and uniqueness
- Explicit formulas for the equilibrium

3. Generalizing the model

- A more general model with path-dependence in the installation costs
- All the results still hold
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