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What is stored?
Commodities and others

• Agricultural products
Soy, coffee, cocoa, palm oil, sugar, wheat, corn, 

etc. 
• Mineral products

– Oil, natural gas
– Metals

• Water
• Rights



  

Basic competitive storage logic

•                       implies no storage

• Storage             implies

• Variations
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The equilibrium
● Fundamental data          where    follows 

some exogenous process
● Equilibrium     and

• Conservation of matter 
• Rational expectations
• No arbitrage = CRS storers
• No negative storage constraint

● Generally Markov (time is eliminated from p(.)) 
● No bubbles
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Randomness source

• Some combination of fundamental 
consumption and production functions

• Typical cases
– iid shocks, stock only state var.
– correlated shocks
– Tb explored: with some capital dynamics (goes 

further with endogeneization)
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Statistics

• Stationary nonlinear process
• Pure theory 

– price a function of former shocks
– iid case: future price a (random) fonction of 

current price
• If only prices are observed 

– iid case: future price predicted with current only
• Prices are serially, NL correlated

– AR shocks: 2 lagged prices
– etc.



  

Deaton-Laroque (RES96, JPE96, JAppE97)

• Correlation puzzle: yearly prices are highly 
correlated

• Does the basic storage model explain well 
this fact?
– iid version: not quite
– AR version: yes but

• with high exogenous correlation 
• does not perform so much better than (linear) AR 

• Ways out
– Information on stocks
– Capital dynamics
– Spot and future prices
–



  

Routledge-Seppi-Spatt (JF00)

• Discrete time
• Finite set of possible shocks+Markov
• Focus on relationship between spot and 

future prices
– Contango
– Backwardation

• Convenience yield
– Fully endogenized here (embedded option)
– Alternative: not so convincing 

• Samuelson effect



  

Natural Gas
• Results from 
Creti (U Bocconi) and Villeneuve

• Limited diversification in Europe 
(Russia, Norway, Algeria)

• Precautionary Storage: supply disruptions 
– Exogenous
– Discrete
– Reversible



  

Our approach

• Dynamic model under perfect competition
– Equilibrium = Optimum
– Notion of target stock
– Optimal stockpiling and drainage rules
– Evaluation of “simple” suboptimal policies
– “Statistical” properties of the equilibrium



  

Model

• Continuous time 
• Exogenous random discrete state variable 

– Abundance A
– Crisis C

• Endogenous continuous state variable
S = Stocks, which depends on
– Stockpiling rule
– History



  

Random process

• A C : Bernoulli process
Jump probability between t and t+dt = λC dt

• C A : idem
Jump probability between t and t+dt = λA dt

• Unconditional Prob. of state C : λC / (λA + λC )

• Unconditional Prob. of state A : λA / (λA + λC ) 
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Supply and demand
• p current price

– Current final consumption and production only depend on p 
[strong assumption]

• Short term 
Supply = Demand
meaning
Demand = Final consumption + Stockpiled commodities
Supply   = Production + Released commodities

• Can be summarized with Excess supply functions 

ΔC[p] = Stock variation if C and price p
ΔA[p] = Stock variation if A and price p
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Excess supply: Crisis
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Equilibrium
• Conservation of matter
• No negative stocks
• Price taking behavior
• Competitive stockholding
• Rational expectations

Markovian equilibrium
• What matters is S and A/C (not time per se)
• Equilibrium is a pair of functions

pC[S] and pA[S]
• Causes stock dynamics 

ΔA[pA[S]] and ΔC[pC[S] ] 
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Differential equations

[ ]. ( )

[ ]. ( )

A
A A C A C C

C
C C A C A C

dpp r p p c
dS
dpp r p p c
dS

λ λ

λ λ

 ∆ = + − +

 ∆ = + − +

[ ][ ] (1 ) (1 ) [ ] ( ) [ ]

[ ]

A C A C C

A A

p S cdt rdt dt p S dS dt p S dS
with
dS p dt

λ λ+ = − − + + +

= ∆

+ similar equation for crisis price. 
We eliminate time and we get:

A nonlinear system +
pC[0]=p*C
pA[S*]=p*A
S* is the target stock

• Risk neutral storers bet on expected gains and 
losses



  

• No explicit solution
– non linear system
– Bounded Value Problem
– boundary conditions at singular points
– target stock is implicit

• Propositions
– existence
– uniqueness
– algorithm for resolution
– comparative statics



  

Parameters

• Stocks variations
∆C[p] = p – 5 < 0
∆A[p] = 5(p – 1)  > 0

=> Price between 1 and 5
=> S*=9.5



  

Prices as 
a function of the stock

State densities as 
a function of the stock
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Solving the equations
• Change of variables: integrate LHS in ODE 

• System with additively separable variables
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Linear excess supply functions
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Phase diagram



  

Limit condition for S* at singular point
But saddle point (numerically stable)
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• S* increases
– If crisis probability increases
– If abundance probability decreases
– If costs decrease (c or r)
– Effects of ΔA[.] and ΔC[.] ambiguous

• Level effects (e.g. depth of crisis)
• Slope effects (e.g. flexibility during crisis)



  

States distribution

• Densities for states A or C
• Probabilities of S = 0 and S = S*

• Density and probability dynamics
Evolution between t and t+dt 

• Stationary distribution



  

States distribution
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States distribution
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• Gives ODE satisfied by densities 
=> stationary distribution
• Explicit conditions on the shape of 

distribution around S = 0 and S = S*

S* S*S*
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Extensions
• Injection and release costs

– Nodal prices theory: different prices inside and 
outside the storage

– Prices follow similar laws of motion
• Limited storage capacity

– Changes boundary condition (upper limit on S)
– Capacity constraint binds in finite time
– Rents associated with scarcity of storage capacity

(effect on value of storage capacity)
• Nonlinear excess demand



  

Extensions
• Price stabilization, e.g. constant price

– If > 0 : stocks converge to infinity and price stabilized with Prob 1
– If < 0 : stabilization fails (S = 0 with positive probability)
– If = 0 : stocks follow a symmetric random walk

• Expropriation risk
• Market power on storage services

* * *: [ ] [ ]A A C Cp p pλ λ∆ + ∆


