Price Dynamics in Storage Models

Bertrand Villeneuve Université de Tours, CREST, FIME and CESifo

What is stored? Commodities and others

- Agricultural products Soy, coffee, cocoa, palm oil, sugar, wheat, corn, etc.
- Mineral products
 - Oil, natural gas
 - Metals
- Water
- Rights

Basic competitive storage logic

- $p_t > Ep_{t+1}$ implies no storage $S_t = 0$
- Storage $S_t > 0$ implies $p_t = E p_{t+1}$
- Variations

$$p_{t} + c = Ep_{t+1}$$

$$p_{t} = \frac{1}{1+r} Ep_{t+1}$$

$$p_{t} = \frac{1-d}{1-r} Ep_{t+1}$$

Excess supply function $\Delta_{\sigma}[p] = \Delta S$

The equilibrium

- Fundamental data $\Delta_{\sigma}[p]$ where σ follows some exogenous process
- Equilibrium S_0 and $p_t(S, \sigma, X)$
 - Conservation of matter $\Delta_{\sigma_t}[p_t(S_t, \sigma_t, X_t)] = S_{t+1} S_t$
 - Rational expectations
 - No arbitrage = CRS storers
 - No negative storage constraint
- Generally Markov (time is eliminated from *p*(.))
- No bubbles

Prices with and without storage

From Deaton-Laroque RES92

Randomness source σ

- Some combination of fundamental consumption and production functions
- Typical cases
 - iid shocks, stock only state var.
 - correlated shocks
 - Tb explored: with some capital dynamics (goes further with endogeneization)

Statistics

- Stationary nonlinear process
- Pure theory
 - price a function of former shocks
 - iid case: future price a (random) fonction of current price
- If only prices are observed
 - iid case: future price predicted with current only
 - Prices are serially, NL correlated
 - AR shocks: 2 lagged prices
 - etc.

Deaton-Laroque (RES96, JPE96, JAppE97)

- Correlation puzzle: yearly prices are highly correlated
- Does the basic storage model explain well this fact?
 - iid version: not quite
 - AR version: yes but
 - with high *exogenous* correlation
 - does not perform so much better than (linear) AR
- Ways out
 - Information on stocks
 - Capital dynamics
 - Spot and future prices

Routledge-Seppi-Spatt (JF00)

- Discrete time
- Finite set of possible shocks+Markov
- Focus on relationship between spot and future prices
 - Contango
 - Backwardation
- Convenience yield
 - Fully endogenized here (embedded option)
 - Alternative: not so convincing
- Samuelson effect

Natural Gas

Results from

Creti (U Bocconi) and Villeneuve

- Limited diversification in Europe (Russia, Norway, Algeria)
- Precautionary Storage: supply disruptions
 - Exogenous
 - Discrete
 - Reversible

Our approach

- Dynamic model under perfect competition
 Equilibrium = Optimum
 - Notion of target stock
 - Optimal stockpiling and drainage rules
 - Evaluation of "simple" suboptimal policies
 - "Statistical" properties of the equilibrium

Model

- Continuous time
- Exogenous random discrete state variable
 Abundance A
 - Crisis C
- Endogenous continuous state variable
 - S = Stocks, which depends on
 - Stockpiling rule
 - History

Random process

- A \longrightarrow C : Bernoulli process Jump probability between *t* and *t*+*dt* = λ_c dt
- C \longrightarrow A : idem Jump probability between *t* and *t*+*dt* = λ_A dt
- Unconditional Prob. of state C : λ_{c} / (λ_{A} + λ_{c})
- Unconditional Prob. of state A : $\lambda_A / (\lambda_A + \lambda_C)$

A possible history

Supply and demand

- *p* current price
 - Current final consumption and production only depend on p [strong assumption]
- Short term

Supply = Demand meaning Demand = Final consumption + Stockpiled commodities Supply = Production + Released commodities

• Can be summarized with Excess supply functions

 $\Delta_{c}[p]$ = Stock variation if C and price *p* $\Delta_{A}[p]$ = Stock variation if A and price *p*

Equilibrium

- Conservation of matter
- No negative stocks
- Price taking behavior
- Competitive stockholding
- Rational expectations

Markovian equilibrium

- What matters is S and A/C (not time per se)
- Equilibrium is a pair of functions
 p_c[S] and p_A[S]
- Causes stock dynamics $\Delta_{\!\scriptscriptstyle A}[p_{\scriptscriptstyle A}[S]] \text{ and } \Delta_{\!\scriptscriptstyle C}[p_{\scriptscriptstyle C}[S]]$

Differential equations

Risk neutral storers bet on expected gains and losses

 $p_{A}[S] + cdt = (1 - rdt) [(1 - \lambda_{C}dt)p_{A}[S + dS] + (\lambda_{C}dt)p_{C}[S + dS]]$ with

 $dS = \Delta_A[p_A]dt$

+ similar equation for crisis price. We eliminate time and we get:

$$\begin{cases} \Delta_{A}[p_{A}] \cdot \frac{dp_{A}}{dS} = (r + \lambda_{C})p_{A} - \lambda_{C}p_{C} + c \\ \Delta_{C}[p_{C}] \cdot \frac{dp_{C}}{dS} = (r + \lambda_{A})p_{C} - \lambda_{A}p_{C} + c \end{cases}$$

A nonlinear system + pC[0]=p*C pA[S*]=p*A S* is the target stock

- No explicit solution
 - non linear system
 - Bounded Value Problem
 - boundary conditions at singular points
 - target stock is implicit
- Propositions
 - existence
 - uniqueness
 - algorithm for resolution
 - comparative statics

Parameters

Table 1: Parameter values				
Financial and physical costs	r = .1	c = .1		
Linear excess supply	$\beta_C = 1$	$p_{C}^{*} = 5$	$\beta_C = 5$	$p_{A}^{*} = 1$
Rates of jumps	$\lambda_C = 1$	$\lambda_A = 1$		

- Stocks variations
 - $\Delta_{\rm C}[p]={\rm p}-5<0$

$$\Delta_{\!\scriptscriptstyle A}[p]=5(p-1)\,>0$$

=> Price between 1 and 5

=> S*=9.5

Prices as a function of the stock

State densities as a function of the stock

Solving the equations

Change of variables: integrate LHS in ODE

$$p_A(S) \rightarrow x_A = \int \Delta_A[p_A(S)] \cdot \frac{dp_A(S)}{dS}, \quad x_A(S^*) = 0$$
$$p_C(S) \rightarrow x_C = \int \Delta_C[p_C(S)] \cdot \frac{dp_C(S)}{dS}, \quad x_C(0) = 0$$

System with additively separable variables

$$\begin{cases} \frac{dx_A}{dS} = a_{11} \cdot g_A(x_A) + a_{12} \cdot g_C(x_C) + a_{13} \\ \frac{dx_C}{dS} = a_{21} \cdot g_A(x_A) + a_{22} \cdot g_C(x_C) + a_{23} \end{cases}$$

Phase diagram (S the underlying variable)

Linear excess supply functions

$$\Delta_{A}[p] = \beta_{A}(p - p_{A}^{*})$$
$$\Delta_{C}[p] = \beta_{C}(p - p_{C}^{*})$$

$$p_{c}^{*} > p_{A}^{*}$$

Most qualitative results are valid for more general excess supply functions

Phase diagram

- S* increases
 - If crisis probability increases
 - If abundance probability decreases
 - If costs decrease (c or r)
 - Effects of Δ_A [.] and Δ_C [.] ambiguous
 - Level effects (e.g. depth of crisis)
 - Slope effects (e.g. flexibility during crisis)

States distribution

- Densities for states A or C
- Probabilities of S = 0 and $S = S^*$
- Density and probability dynamics
 Evolution between *t* and *t+dt*
- Stationary distribution

$$\frac{d \Pr[S \in [0,S]]}{dt} = f_C(S,t) \Delta_C[p_C(S)] - f_A(S,t) \Delta_A[p_A(S)]$$

States distribution

$$\frac{d \Pr[C]}{dt} = -\lambda_A \Pr[C] + \lambda_C \Pr[A]$$

- Gives ODE satisfied by densities
- => stationary distribution
- Explicit conditions on the shape of distribution around S = 0 and S = S*

Extensions

- Injection and release costs
 - Nodal prices theory: different prices inside and outside the storage
 - Prices follow similar laws of motion
- Limited storage capacity
 - Changes boundary condition (upper limit on *S*)
 - Capacity constraint binds in finite time
 - Rents associated with scarcity of storage capacity (effect on value of storage capacity)
- Nonlinear excess demand

Extensions

• Price stabilization, e.g. constant price

$$p^*: \lambda_A \Delta_A[p^*] + \lambda_C \Delta_C[p^*]$$

If > 0 : stocks converge to infinity and price stabilized with Prob 1

- If < 0 : stabilization fails (S = 0 with positive probability)
- If = 0 : stocks follow a symmetric random walk
- Expropriation risk
- Market power on storage services