# Electricity time series: stylized facts and model estimation

#### Peter Tankov<sup>1</sup>

<sup>1</sup>Université Paris-Diderot

Séminaire du Laboratoire Finance des Marchés d'Energies Paris, May 14, 2007

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Outline of the talk

- Description of data
- Stylized features of electricity prices
- Literature review
- Spike detection
- Model estimation

< ∃ >

## Data sets: daily or hourly

"Spot" hourly prices are day ahead prices determined simultaneously for all 24 hours of the next day

⇒ No causality relationship between hourly prices of the same day ⇒ No a priori reasons to model spot price as an hourly series It is preferable to model the price  $X_t^h$  for day t and hour h as

$$X_t^h = Y_t f(t,h) + \varepsilon_t^h,$$

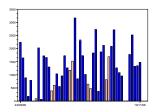
- Y<sub>t</sub> is the common factor (average daily price)
- f(t, h) is a slowly varying daily pattern
- $\varepsilon_t^h$  is a white noise.

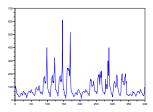
All interesting statistical features are present in average daily price PCA shows that even a constant daily pattern f(t, h) = f(h) explains 70% of variance.

 $\Rightarrow$ In this talk we concentrate on average daily prices

#### The weekend effect

On the weekends, prices and trading volume are low They introduce a lot of seasonality but no interesting statistical features (e.g., no spikes during weekends)  $\Rightarrow$  to make deseasoning easier and concentrate on statistical aspects, weekends are removed.





## Description of data sets

In this work, we study average daily prices excluding weekends for 7 series:

- Dow-Jones California-Oregon border index (COB)
- Dow-Jones Mead/Marketplace index (MEAD)
- European Energy Exchange (EEX)
- Amsterdam Power Exchange (APX)
- United Kingdom Power Exchange (UKPX)
- Nord Pool system price (NP)
- Powernext exchange (PN)

## Seasonality

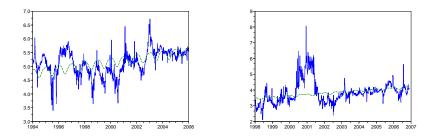
All 6 series exhibit a (strong mostly positive) linear trend and a (weak) seasonality.

 $f(t) = a + bt + c_1 \sin(2\pi t) + c_2 \cos(2\pi t) + d_1 \sin(4\pi t) + d_2 \cos(4\pi t)$ 

| Series | Mean growth rate | Affine trend $R^2$ | Seasonal trend R <sup>2</sup> |
|--------|------------------|--------------------|-------------------------------|
| COB    | 8%               | 0.0990             | 0.1031                        |
| MEAD   | -5%              | 0.0274             | 0.0385                        |
| EEX    | 17%              | 0.5160             | 0.5373                        |
| APX    | 9%               | 0.1378             | 0.1715                        |
| UKPX   | 20%              | 0.5615             | 0.5900                        |
| NP     | 7%               | 0.2504             | 0.3106                        |
| PN     | 15%              | 0.2966             | 0.3327                        |

A B > A B >

# Seasonality



Left: Nord Pool series (strongest seasonal effect). Right: COB series (weakest seasonality).

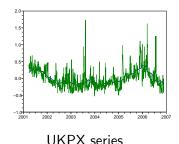
-

#### Stationarity and mean reversion

• For all 7 series the non-stationarity hypothesis is rejected by the DF test at 1% level (test statistics greater than 29.5).

| Series             | APX | СОВ  | EEX | MEAD | NP   | ΡN  | UKPX |
|--------------------|-----|------|-----|------|------|-----|------|
| DF test statistics | 466 | 59.4 | 483 | 43.2 | 66.4 | 294 | 284  |

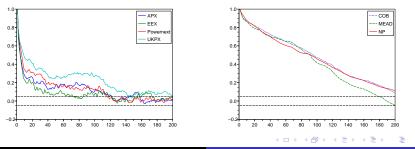
• The prices revert to a slowly varying stochastic mean level.



#### Autocorrelation structure

Two very different autocorrelation patterns:

- UKPX, EEX, APX and Powernext: fast decay to 20-40% followed by slow decay.
- COB, MEAD and Nordpool: very slow decay, almost non-stationary series.
- $\rightarrow$  differences in market organization and generation facilities



Peter Tankov Electricity time series: stylized facts and model estimation

#### Multiscale autocorrelation

• For APX, EEX, Powernext and UKPX series, the autocorrelation structure is described precisely by

$$\rho(h) = w_1 e^{-h/\lambda_1} + w_2 e^{-h/\lambda_2}.$$



#### From left to right: APX, EEX, UKPX

Peter Tankov Electricity time series: stylized facts and model estimation

< 17 ▶

A B + A B +

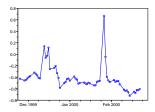
### Multiscale autocorrelation

|             | APX  | EEX  | Powernext | UKPX  |
|-------------|------|------|-----------|-------|
| $\lambda_1$ | 2.9  | 4.3  | 2.9       | 3.7   |
| $\lambda_2$ | 81.5 | 94.3 | 62.1      | 112.6 |

This correlation structure arises in a model where the price is a sum of two independent mean-reverting components, with fast and slow mean reversion.

# Spikes

- Spikes: fast upward movements followed by quick return to initial level.
- Fundamental feature of electricity prices, due to non-storable nature of this commodity.



## Non-gaussian return distribution

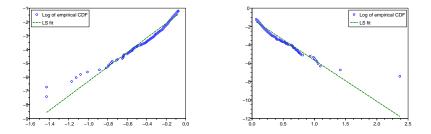
- Spikes cannot arise in the Gaussian framework.
- The return distributions are strongly leptokurtic and positively skewed (spikes are mostly positive).

| Series          | APX  | COB  | EEX  | MEAD | NP   | UKPX |
|-----------------|------|------|------|------|------|------|
| Skewness        |      |      |      |      |      |      |
| Excess kurtosis | 14.8 | 15.4 | 12.7 | 9.5  | 29.0 | 15.0 |

• Excess kurtosis for S&P 500  $\sim$  3.

## Non-gaussian return distribution

• Tails of the return distribution may be fatter than exponential



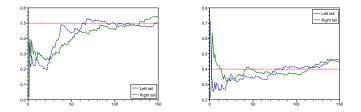
Left graph: log  $F_n(x)$ ; right graph: log $(1 - F_n(x))$ where  $F_n$  is the empirical CDF of EEX returns.

## Non-gaussian return distribution

Testing power law behavior  $1 - F(x) \sim x^{-\alpha}L(x)$ : the Hill plot

$$H_{k,n} := \frac{1}{k} \sum_{i=1}^{k} \log \frac{X_{(i)}}{X_{(k+1)}}$$

can be used to estimate the tail index  $\gamma=\alpha^{-1}$ 



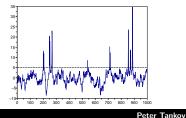
Hill plots for MEAD (left) and UKPX (right). For all 7 series, the Hill plot stabilizes for  $0.3 < \gamma < 0.5$ .

## Structural models

Kanamura, Ohashi (2004)

• Price is obtained by matching stochastic demand with deterministic supply curve.

$$egin{aligned} D_t &= \overline{D_t} + X_t & ( ext{seasonal effect}) \ dX_t &= (\mu - \lambda X_t) dt + \sigma dW_t. & ( ext{stochastic part}) \ P_t &= (a_1 + b_1 D_t) \mathbb{1}_{D_t \leq D_0} + (a_1 + b_1 D_t) \mathbb{1}_{D_t > D_0} & ( ext{hockey stick profile}) \end{aligned}$$



- No stochastic base level
- No multiscale autocorrelation

< ∃ >

Difficult to calibrate

## Markov models

Geman and Roncoroni (2006)

$$dP_t = \theta(\mu_t - P_t) + \sigma dW_t + h(t)dJ_t$$

The jump direction and intensity are level-dependent, "jump-reversion"

No stochastic base level

A B > A B >

# Regime-switching models

#### Deng (1999), Weron (2005)

• An unobservable 2-state Markov chain determines the transition from "base regime" to "spike regime" with greater volatility and faster mean reversion.

$$dP_t = \theta^1(\mu_t - P_t) + \sigma^1 dW_t \quad \text{(base regime)}$$
  
$$dP_t = \theta^2(\mu_t - P_t) + \sigma^2 dW_t \quad \text{(spike regime)}$$

- Nonlinear dynamics makes estimation and pricing difficult
- No stochastic base level (in the spike regime, the process quickly reverts to seasonal mean and not to base level).

## Multifactor models

• Log-price is a sum of independent Ornstein-Uhlenbeck components: Villaplana (2003), Deng, Jiang (2005), Benth, Kallsen, Meyer-Brandis (2006)

$$X(t) = \sum_{i=1}^{n} w_i Y_i(t)$$

where

$$dY_i(t) = -\lambda_i^{-1}Y_i(t)dt + \sigma_i dL_i(t) \quad Y_i(0) = y_i$$

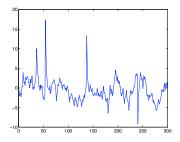
and processes  $L_i(t)$  are independent Lévy processes. In this model, the autocorrelation function is

$$\rho(h) = \frac{\sum_{i=1}^{n} w_i^2 e^{-h/\lambda_i}}{\sum_{i=1}^{n} w_i^2}$$

伺 ト イヨト イヨト

#### Multifactor models

• In practice, one can take n = 2,  $L_1$  a Brownian motion and  $L_2$  a compound Poisson process.



Discrete version of the model

$$egin{aligned} X(t) &= Y_1(t) + Y_2(t) \ Y_1(t) &= e^{-1/\lambda_1}Y_1(t-1) + arepsilon_1(t) \ Y_2(t) &= e^{-1/\lambda_2}Y_2(t-1) + arepsilon_2(t) \end{aligned}$$

# Spike detection

Estimation becomes easy if the two components are separated

- Threshold methods: detecting jumps, not spikes
- Nonlinear filtering methods
- Methods from non-parametric statistics

· < E > < E >

# Nonlinear filtering

Filtering problem: estimate the spike component via

 $E[f(Y_2(t))|X_1,\ldots,X_t]$ 

In the non-Gaussian framework explicit Kallman filter cannot be used and must use Monte Carlo methods (particle filters). However

- Filters are easy to design when parameters are known;
- Rare events such as spikes lead to sample impoverishment;
- Sequential filtering makes less sense when complete series is available.

・ロト ・得ト ・ヨト ・ヨト

# Methods from nonparametric statistics

Idea: treat the spike part  $Y_2(t)$  as deterministic data and the base part  $Y_2(t)$  as random (autoregressive) noise.

$$X(t) = Y_1(t) + f(t).$$
  
$$f(t) = \sum_{i=1}^{M} \alpha_i \mathbf{1}_{t \ge \tau_i} e^{-(t-\tau_i)/\lambda_2}$$

The ML estimator of  $(\alpha_i, \tau_i)$  is

$$(\alpha_i, \tau_i) = \operatorname{arg\,inf} \sum_{t=1}^{N} (\Delta X(t) - \Delta f(t))^2$$
  
$$\Delta X(t) = X(t) - e^{-1/\lambda_1} X(t-1), \qquad \Delta f(t) = f(t) - e^{-1/\lambda_1} f(t-1).$$

 $\Rightarrow$  complexity  $N^M$ .

#### How to place one spike?

If  $\lambda_1$  and  $\lambda_2$  are known (from autocorrelation function)

$$f(t) = 1_{t \geq \tau} e^{-(t-\tau)/\lambda_2}.$$

The ML estimator of  $\alpha$  and  $\tau$  is

$$\begin{aligned} &(\alpha^*, \tau^*) = \arg \inf \sum (\Delta X(t) - \alpha \Delta f(t))^2 \\ &\alpha^* = \frac{\sum \Delta X(t) \Delta f(t)}{\Delta f(t)^2}, \qquad \tau^* = \arg \sup \frac{\left(\sum \Delta X(t) \Delta f(t)\right)^2}{\Delta f(t)^2}, \end{aligned}$$

A B > A B >

#### Hard thresholding

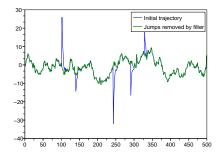
• Place *M* spikes one by one

$$X^{(0)} = X, \qquad X^{(n+1)} = X^{(n)} - f^{(n)}, \qquad f^{(n)}(t) = \alpha^n \mathbb{1}_{t \ge \tau^n} e^{-(t - \tau^n)/\lambda_2},$$
$$\alpha^n = \frac{\sum \Delta X^{(n)}(t) \Delta f(t)}{\Delta f(t)^2}, \qquad \tau^n = \arg \sup \frac{\left(\sum \Delta X^{(n)}(t) \Delta f(t)\right)^2}{\Delta f(t)^2},$$

- Complexity MN
- The procedure stops when spike size becomes small
- The method works well for rare non-intersecting spikes

3 N 4 3 N

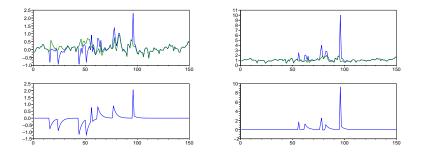
#### Hard thresholding



Performance on simulated data.

э

## Hard thresholding



• Performance on Powernext data Left: log-price: both positive and negative spikes are present. Right: price: mostly positive spikes are present.

# Hard thresholding

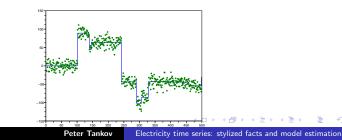
- The hard thresholding algorithm requires  $\lambda_1$  (base decay time) and  $\lambda_2$  (spike decay time) as inputs. From autocorrelation function,  $\lambda_1 \sim 50 100$  and  $\lambda_2 \sim 2.5 4$ .
- The results are not sensitive to  $\lambda_1$  in the range 10 100.
- Taking  $\lambda_2 \sim 1-2$  leads to better performance:
  - Spikes decay faster than predicted by the autocorrelation function.
  - The hard thresholding algorithm works better for non-interacting spikes.
- To improve performance for interacting spikes:
  - Global optimization using genetic algorithms.
  - Dynamic programming approach: the Potts filter.

- 4 同 6 4 日 6 4 日 6 - 日

#### The Potts filter

The Potts filter (Winkler and Liebscher '02): estimation of a piecewise-constant signal x from noisy data y by penalized least squares:

$$x = \arg \inf \left( \gamma | \{t : x_{t-1} \neq x_t\}| + \sum_t (y_t - x_t)^2 \right)$$



## The Potts filter

Solution in  $O(N^2)$  via dynamic programming:

$$B(n) = \min_{1 \le r \le n-1} \left( B(r) + \min_{\mu \in \mathbb{R}} H_{[r+1,n]}(\mu) \right),$$

where

$$H_{[a,b]}(\mu) = \gamma + \sum_{a \leq t \leq b} (y_t - \mu)^2.$$

is the cost of adding an interval to the partition and

$$B(n) = \min\left(\gamma|\{t \le n : x_{t-1} \ne x_t\}| + \sum_{t \le n} (y_t - x_t)^2\right)$$

is the solution on [1, n].

# Modified Potts filter for spike detection

Idea: replace the cost of adding an interval with the cost of adding a spike:

$$\min_{\mu} H_{[a,b]}(\mu) \mapsto \gamma + \inf_{\alpha} \sum_{t=a+1}^{b} (\Delta y_t - \alpha \Delta e^{-(t-a)/\lambda_2})^2$$

with

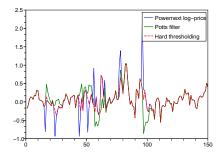
$$\Delta z_t = z_t - e^{-1/\lambda_1} z_{t-1}.$$

• The filter is designed for detecting discontinuities so it detects jumps as well as spikes.

A 10

. . . . . . .

#### Modified Potts filter for spike detection



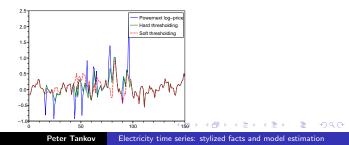
э

# Soft thresholding

• Penalization by the *L*<sup>1</sup> norm of spike sizes

$$\inf \sum_{t=1}^{N} (\Delta X(t) - \Delta f(t))^2 + \gamma \sum_{i=1}^{n} |\alpha_i|$$

- Can be approximated with a linear programming program
- Better treatment of adjacent spikes  $\Rightarrow$  more spikes can be identified



# Model estimation

Once the two components have been separated, model estimation can be performed separately on each component.

- The base signal is described by an AR(1) model with gaussian or NIG returns, estimation by maximum likelihood.
- The spike sizes are fitted by a one-parameter family (Pareto or exponential).
- The spike intensity is  $\lambda = \frac{\text{number of spike detected}}{\text{time period}}$ .
- The threshold is fixed by comparing the spike amplitude with the overall noise level.

- 4 周 b - 4 B b - 4 B b -

# Case study: EEX series

- Jumps are removed by hard thresholding from deseasonalized price series.
- The threshold level is set to one standard deviation of price increments  $(0.38) \rightarrow 65$  spikes are detected in 6.5 years of data.
- After removing spikes, the increments of the base series have standard deviation of 0.15, skewness of 0.07 (down from 2.6) and kurtosis of 0.65 (down from 113).

 $\Rightarrow$  base signal can be described by AR(1) with Gaussian increments.

Estimation gives  $\rho = 0.86$  and  $\sigma = 0.142$ .

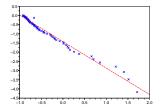
・ロト ・得ト ・ヨト ・ヨト

#### Case study: EEX series

The spike size distribution is well described by the Pareto law

$$P(X > x) = \left(\frac{x}{x_0}\right)^{-\alpha}$$

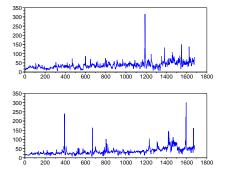
with  $x_0 = 0.37$  and  $\alpha = 1.44$ .



Empirical CDF of spike size in log-log scale

∃ → < ∃ →</p>

#### Case study: EEX series



Comparaison of the real EEX series and the simulated series with estimated parameters. Which is which?