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Basic motivations

• Pricing and hedging of an option on hedge funds :

Hedge funds : pooled investment vehicle administered by
professional managers

Illiquid assets in hedge funds : debts, options ...

The hedge fund manager needs time to find a counterpart to
trade these assets

To buy or sell shares of hedge funds, investors must declare
their orders one to three months before they are effectively
executed

Once the order is passed, its execution is mandatory

I Execution delay → liquidity risk
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• Implementation delay in financial decision-making problems

regulatory reasons, heavy preparatory work

e.g. management of a power plant

→ operational risk

• Our goal : provide a general but tractable mathematical
framework for studying quantitatively the impact of execution
delay.

I Impulse control with execution delay
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The control problem

Controlled process

• In absence of control, state system in Rd on (Ω,F , (Ft)t ,P) :

dXs = b(Xs)ds + σ(Xs)dWs

• Impulse control with time lag : a double sequence (τi , ξi )i≥1,

decision times : τi stopping times s.t. τi+1 − τi ≥ h, h > 0
minimal time lag between two interventions

impulse values : ξi valued in E (compact subset) and
Fτi -measurable (based on information available at τi )

• Execution delay on the system : the intervention ξi decided at
τi is executed at time τi + δ, moving the system from

X(τi +δ)− → Xτi +δ = Γ(X(τi +δ)− , ξi ),

In the sequel, we set : δ = mh, with m ∈ N (for simplicity of
notations).
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The control problem

Control objective

• Total profit over a finite horizon T < ∞, associated to an
impulse control α = (τi , ξi )i≥1 ∈ A :

Π(α) =

∫ T

0
f (Xt)dt + g(XT ) +

∑
τi +mh≤T

c(X(τi +mh)− , ξi ),

f running profit function on Rd , g terminal profit function on Rd ,
c executed cost function on Rd × E .

I Control problem :

V0 = sup
α∈A

E
[
Π(α)

]
.
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Financial example

• S asset price (e.g. spot price of a hedge fund) :

dSt = β(St)dt + γ(St)dWt

• Yt cumulated number of shares in asset, Zt amount of cash held
by investor at time t : in absence of trading

dYt = 0, dZt = rZtdt (r interest rate).

• Portfolio strategy : (τi , ξi )i , where ξi represents the number of
shares purchased or selled at time τi , but executed at τi + mh.
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Financial example

• State process X = (S ,Y ,Z )
I when the order (τi , ξi ) is executed at time τi + mh, the system
moves from X(τi +mh)− to Γ(X(τi +mh)− , ξi ) given by :

Sτi +mh = S(τi +mh)− (or P(S(τi +mh)− , ξi ) if large investor)

Yτi +mh = Y(τi +mh)− + ξi

Zτi +mh = Z(τi +mh)− − ξiSτi +mh.

• Optimal investment : maximize the expected utility of terminal
wealth

E
[
U(ZT + YTST )

]
.
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Financial example

• State process X = (S ,Y ,Z )
I when the order (τi , ξi ) is executed at time τi + mh, the system
moves from X(τi +mh)− to Γ(X(τi +mh)− , ξi ) given by :

Sτi +mh = S(τi +mh)− (or P(S(τi +mh)− , ξi ) if large investor)

Yτi +mh = Y(τi +mh)− + ξi

Zτi +mh = Z(τi +mh)− − ξiSτi +mh.

• Optimal investment with option delivery (indifference pricing) :
maximize the expected utility

E
[
U(ZT + YTST − g(ST ))

]
.
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Related literature

Some references : stochastic systems with memory

• Elsanosi, Larssen (01), Gozzi, Marinelli (04),

→ infinite dimensional system : HJB in Hilbert space

→ interesting analysis but abstract theoretical results

→ except in very special cases, it is usually not practical

Huyên PHAM Pricing and hedging under delay constraints



Introduction Model and problem formulation PDE characterization Resolution algorithm Numerical experiments Conclusion

Related literature

Some references : impulse control

• PDE variational formulation of impulse control problems :
Bensoussan-Lions (82) : no delay m = 0

Bar-Ilan, Sulem (95), Oksendal, Sulem (06) : delay but with
particular controlled process (Lévy process for X and additive
intervention operator Γ) on infinite horizon

• Probabilistic calculation for particular threshold strategy :
Bayraktar, Egami (06) : δ = h i.e m = 1, infinite horizon and
impulse value chosen at time of execution, i.e. ξi Fτi +h-measurable

• Financial applications : liquidity risk and execution delay (m = 1)
Subramanian, Jarrow (01), Alvarez, Keppo (02), Keppo, Peura
(06)
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Related literature

New features and contributions in our model

• General diffusion framework on finite horizon

• New orders can be decided between the period of execution
delay, i.e. δ = mh ≥ h (delay larger than time lag intervention)

Main goal

• Obtain a unique PDE characterization of the original control
problem

• Provide an implementable algorithm

• Measure impact of execution delay
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Value functions

Markovian setting

• Extend definition of control problem V0 to general initial
conditions :

I Important issue : the state process X is not Markovian in
itself :

given an impulse control, the state of the system is not only
defined by its current state value at time t but also by the pending
orders : the orders not yet executed, i.e. decided in (t −mh, t].

Remark : Due to the time decision lag h, the number of pending
orders is ≤ m.

I How to make the state process Markovian!
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Value functions

Some notations (I)

• Set of k (k = 0, . . . ,m) pending orders at time t ∈ [0,T ] :

Pt(k) =
{

p = (ti , ei )1≤i≤k ∈ ([0,T ]× E )k :

ti − ti−1 ≥ h, and t −mh < ti ≤ t
}
,

• State domains for k = 0, . . . ,m :

Dk =
{

(t, x , p) : (t, x) ∈ [0,T ]× Rd , p ∈ Pt(k)
}
.

Remark
For k = 0, Pt(0) = ∅, and D0 = [0,T ]× Rd .
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Value functions

Some notations (II)

• Set of admissible controls from a given pending order p =
(ti , ei )1≤i≤k ∈ Pt(k) :

At,p =
{
α = (τi , ξi )i≥1 ∈ A : (τi , ξi ) = (ti , ei ), i = 1, . . . , k

and τk+1 ≥ t
}
,

I Finite dimensional controlled Markov process :
Given (t, x , p) ∈ Dk , k ≤ m, α ∈ At,p, we denote

{X t,x ,p,α
s , t ≤ s ≤ T} the controlled process starting from Xt = x ,

with pending order p, and controlled by α.
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Value functions

Control objective : dynamic version

• Criterion : for (t, x , p) ∈ Dk , k ≤ m, α = (τi , ξi )i ∈ At,p,

Jk(t, x , p, α) = E
[ ∫ T

t
f (X t,x ,p,α

s )ds + g(X t,x ,p,α
T )

+
∑

t<τi +mh≤T

c(X t,x ,p,α
(τi +mh)− , ξi )

]
,

• Corresponding value functions :

vk(t, x , p) = sup
α∈At,p

Jk(t, x , p, α), k ≤ m, (t, x , p) ∈ Dk .

Remark
V0 = v0(0,X0, ∅).
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Value functions

Assumptions

• (H1) f , g , c and Γ are continuous and satisfy a linear
growth condition on x

• (H2) g(x) ≥ g(Γ(x , e)) + c(x , e), for all (x , e) Rd × E .

Remarks

- Economic interpretation of (H2) satisfied in financial examples

- If (H2) is not satisfied, the value functions may be discontinuous

Example : b = σ = f = g = 0, c(x , e) = 1. Then,

v0(t, x) =

{
0, T −mh < t ≤ T
i , T − (m + i)h < t ≤ T − (m + i − 1)h, i ≥ 1.

→ Discontinuities of v0 at t = T − (m + i − 1)h, i ≥ 1.
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Dynamic programming

State domain partition

• Partition the set of pending orders into Pt(k) = P1
t (k) ∪ P2

t (k) :

P1
t (k) =

{
p = (ti , ei )1≤i≤k ∈ Pt(k) : tk > t − h

}
P2

t (k) =
{

p = (ti , ei )1≤i≤k ∈ Pt(k) : tk ≤ t − h
}
.

and define the corresponding state domains Dk = D1
k ∪ D2

k :

D1
k =

{
(t, x , p) : (t, x) ∈ [0,T ]× Rd , p ∈ P1

t (k)
}

D2
k =

{
(t, x , p) : (t, x) ∈ [0,T ]× Rd , p ∈ P2

t (k)
}
.
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Dynamic programming

State domain of no possible order decision

• If (t, x , p) ∈ D1
k , the controller cannot take action in [t, t + dt].

Only the diffusion X operates

I Linear PDE’s on D1
k , k = 1, . . . ,m :

−∂vk

∂t
− Lvk − f = 0 on D1

k

where

Lϕ = b(x).Dxϕ+
1

2
tr(σσ′(x)D2

xϕ)

is the generator of the diffusion X .
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Dynamic programming

State domain of possible order decision

• If (t, x , p) ∈ D2
k , the controller has the choice of :

doing nothing, i.e. let the diffusion X operate on [t, t + dt] →
linear PDE’s

passing immediately an order (t, e), so that the pending
orders switch from p (with cardinal k) to p ∪ (t, e) (with
cardinal k + 1) →

vk(t, x , p) ≥ sup
e∈E

vk+1(t, x , p ∪ (t, e))

I Variational inequalities on D2
k , k = 0, . . . ,m − 1 :

min
[
− ∂vk

∂t
− Lvk − f ,

vk(t, x , p)− sup
e∈E

vk+1(t, x , p ∪ (t, e))
]

= 0 on D2
k
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Dynamic programming

Dynamic programming system

• PDE system for the value functions vk , k = 0, . . . ,m :

−∂vk

∂t
− Lvk − f = 0 on D1

k , k ≥ 1,

min
[
− ∂vk

∂t
− Lvk − f ,

vk(t, x , p)− sup
e∈E

vk+1(t, x , p ∪ (t, e))
]

= 0 on D2
k , k ≤ m − 1.
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Boundary conditions

Time-boundary conditions

• (Standard) terminal condition at T :

vk(T−, x , p) = g(x), x ∈ Rd , p ∈ PT (k), k = 1, . . . ,m.

• Non standard condition on the time-boundary of Dk ↔
execution of the first pending order (t1, e1) of p = (ti , ei )1≤i≤k :

vk((t1 + mh)−, x , p) = c(x , e1) + vk−1(t1 + mh, Γ(x , e1), p−),

where p− = p \ (t1, e1) = (ti , ei )2≤i≤k .

(Technical difficulty due to continuity issue for vk−1).
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An original PDE problem

Non standard features

• Form of the domain Dk = D1
k ∪ D2

k =
{(t, x , p) : (t, x) ∈ [0,T ]× Rd , p ∈ Pt(k)}

• Coupled system both on the PDE and on the boundary
conditions :

vk depends on vk+1 on the variational inequality

vk+1 depends on vk via a time-boundary condition

• Discontinuity of the differential operator for vk

linear PDE on D1
k

free-boundary problem on D2
k
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Viscosity characterization

Main theoretical result

Theorem

The family of value functions vk , k = 0, . . . ,m, is the unique
viscosity solution to the PDE system, satisfying the time-boundary
conditions, a linear growth condition on x, and

vk(t, x , p) ≥ sup
e∈E

vk+1(t, x , p ∪ (t, e)), (t, x , p) ∈ Dk , t = tk + h.

Moreover, vk is continuous on Dk .

Huyên PHAM Pricing and hedging under delay constraints



Introduction Model and problem formulation PDE characterization Resolution algorithm Numerical experiments Conclusion

Viscosity characterization

(Short) Elements of Proof

• Viscosity properties : as usual, consequences of a suitable version
of dynamic programming principle

• Uniqueness and comparison principles : more delicate!
In addition to usual dedoubling variables techniques and Ishii’s
lemma, arguments in the proofs involve backward and forward
iterations on the domains and value functions due to the
coupling.
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Initialization phase

First step of the algorithm based on the following remark :

• An order decided after T −mh is executed after T , and so does
not influence the state process Xt for t ≤ T .

I Therefore, if (t, x , p) ∈ Dk is s.t. the pending order p =
(ti , ei )1≤i≤k ∈ Θk × E k satisfies : t1 > T −mh, i.e. all the
pending orders are executed after T , then

vk(t, x , p) = E
[ ∫ T

t
f (X t,x ,0

s )ds + g(X t,x ,0
T )

]
,

which is easily computable.
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Step n

• For k = 1, . . . ,m, we introduce the increasing sequence of sets :

Dk(n) =
{

(t, x , p) ∈ Dk : t1 > T − nh
}
,

N = inf{n ≥ 1 : T − nh < 0}.

I From the initialization phase, we know the value of vk on Dk(m)

I Dk(N) = Dk

I We shall compute vk on Dk(n) by forward induction on n =
m, . . . ,N.
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From step n to n + 1

• Induction hypothesis at step n : we know the values of vk , k =
0, . . . ,m, on Dk(n)

I Step n → n + 1 : Computation of vk , k = 0, . . . ,m, on
Dk(n + 1)

by backward recursion on k!
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From step n to n + 1 : k = m

• Computation of vm on Dm(n + 1) :
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From step n to n + 1 : k = m

• Computation of vm on Dm(n + 1) :

vm satisfies the linear PDE

−∂vm

∂t
− Lvm − f = 0, on Dm(n + 1)

together with the boundary data of Dm(n + 1)

vm((t1 + mh)−, x , p) = c(x , e1) + vm−1(t1 + mh, Γ(x , e1), p−).
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From step n to n + 1 : k = m

• Computation of vm on Dm(n + 1) :

vm satisfies the linear PDE

−∂vm

∂t
− Lvm − f = 0, on Dm(n + 1)

together with the boundary data of Dm(n + 1)

vm((t1 + mh)−, x , p) = c(x , e1) + vm−1(t1 + mh, Γ(x , e1), p−).

I Notice that since t1 > T − (n + 1)h, then t2 > T − nh, and so
p− = (ti , ei )2≤i≤m is s.t. (t1 + mh, Γ(x , e1), p−) ∈ Dm−1(n)

−→ vm−1(t1 + mh, Γ(x , e1), p−) is known from step n
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From step n to n + 1 : k = m

• Computation of vm on Dm(n + 1) :

I Linear Feynman-Kac (F-K) representation

vm(t, x , p) = E
[ ∫ t1+mh

t
f (X t,x ,0

s )ds + c(X t,x ,0
t1+mh, e1)

+ vm−1(t1 + mh, Γ(X t,x ,0
t1+mh, e1), p−)

]
.
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From step n to n + 1 : k + 1 → k

• Recursion hypothesis at order k + 1 : we know the values of
vk+1 on Dk+1(n + 1).

I Computation of vk on Dk(n + 1) :

Known boundary data of Dk(n + 1) from step n

vk((t1 + mh)−, x , p) = c(x , e1) + vk−1(t1 + mh, Γ(x , e1), p−).

Depending on whether (t, x , p) ∈ D1
k or D2

k , the PDE for vk is
either linear or a variational inequality with obstacle

sup
e∈E

vk+1(t, x , p ∪ (t, e)),

which is known from recursion hypothesis at order k + 1.
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Summary

• Computation of the family {vk , k = 0, . . . ,m} on Dk :

I Initialization : Linear F-K computation of {vk , k = 0, . . . ,m}
on Dk(m)

I Step n → n + 1 (from n = m to n = N) :

Computation of {vk , k = 0, . . . ,m} on Dk(n + 1) by backward
recursion from k = m to 0 :

Initialization : Linear F-K computation of vm on Dm(n + 1)
from step n

k + 1 → k : Computation of vk on Dk(n + 1) by linear F-K or
optimal stopping problems involving data of vk−1 on Dk−1(n)
and vk+1 on Dk+1(n + 1)
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Impact of execution delay on option pricing

• Indifference price π of a call option g(ST ) = (ST − K )+ :

v0(S0,Y0,Z0) : value function of the optimal investment
problem without option

vg (S0,Y0,Z0) : value function of the optimal investment
problem with option delivery

π = π(S0,Y0,Z0) s.t. vg (S0,Y0,Z0 + π) = v0(S0,Y0,Z0)

• Numerical illustrations with :

BS model : r = 0, σ = 10%, K = S0 (At The Money)

CARA utility : U(x) = 1− e−ηx with η = 20. → π =
π(S0,Y0)

I Dependence of π on delay mh and maturity T
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Indifference price for a T = 3 years ATM call option for
different values of h, in percentage of the initial spot price

h BS price discrete hedging, m = 0 delayed hedging, m = 1 discrete hedging delayed hedging
(years) Y0 = 0 Y0 = 0 optimal Y0 optimal Y0

0.01 6.90 6.94 6.94 6.85 6.86
0.025 6.90 6.94 7.03 6.87 6.91
0.05 6.90 6.97 7.19 6.89 6.97

0.075 6.90 6.99 7.34 6.92 7.05
0.1 6.90 7.03 7.48 6.94 7.11

0.15 6.90 7.08 7.79 6.98 7.23
0.2 6.90 7.16 8.16 7.03 7.35
0.3 6.90 7.26 8.75 7.11 7.59
0.4 6.90 7.42 9.58 7.19 7.81
0.5 6.90 7.53 10.32 7.27 8.02
0.6 6.90 7.66 10.98 7.35 8.22
0.7 6.90 7.80 11.84 7.42 8.41
0.8 6.90 7.93 12.86 7.49 8.58
0.9 6.90 8.12 13.97 7.56 8.75
1 6.90 8.48 15.60 7.62 8.90

1.5 6.90 8.97 23.49 7.89 9.47
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Indifference price for a T = 3 years ATM call option, with no initial endowment Y0

= 0 in stock, for discrete and delayed hedging in function of h (m = 1).
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Indifference price for a T = 3 years ATM call option, with optimal initial

endowment in stock, for discrete and delayed hedging in function of h (m = 1).
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Indifference price for discrete and delayed hedging with h = 2 months (m = 1),

with optimal initial endowment Y0 in stock, in function of the maturity.
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Difference of the Indifference price w.r.t. BS price for discrete and delayed hedging

with h = 2 months (m = 1), with optimal initial endowment Y0 in stock, in

function of the maturity.
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Conclusion

• General and tractable mathematical formulation of control
problem with execution delay

• Other applications in corporate finance

• Probabilistic numerical methods :

→ Work in progress with I. Kharoubbi, J. Ma and J. Zhang.
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