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INTRODUCTION : THE BLACK-SCHOLES MODEL

The financial market

e 1 non-risky asset SO = 1 (change of numéraire)

e 1 risky asset S : dSy = St[udt + o dWy]

Option / contingent claim : ¢(St), where
qg . R_I_ — R

Main problem Valuation of the option ¢g(St)



e Portfolio strategy Y; : number of shares of S in portfolio

— self-financing condition : dX; = Y;dS; + (X —Y:S;) x O

t
Given an initial capital Xg = x, denote : Xf’Y = a:—l—/o Yy dSy

A : set of admissible Strategies

T
/o |Yu|2du < oo and X%Y pounded from below

contrast with discrete-time models...

Super-hedging problem

Vo = inf {:z: i X;”Z’Y > g(S7) a.s. for some Y € A}



Explicit solution in complete market

Vi = o(t,8) = EF [g(Sr)|Si]

PDE characterization

—Lv (= — — —o0 = 0 and v(T,s) = g(s)

Greeks (Risk control variables)

0
o /\; = —v(t S¢)  optimal hedging portfolio Y;* = replicating portfolio

82
o[ ;= 52 ——(t, S¢) 1 variation of the hedging portfolio in a stress scenario
S



Ito’'s lemma

Optimal wealth process X} := v(t,S;). Then :

t t t
XF = X5+/O Lo(u, Su)du—|—/o Vi dS, = XS—I—/O Y *dSy

where Y] = vs (u, Sy).

Since vs is smooth, it follows from another application of Itd's lemma

t t
VS o= Yo+ /0 Lvs(u, Su)du + /O udSy



MODELING ILLIQUIDITY

T here are two classes of models

— Large trader models : investor affects the dynamics of the stock
price by means of its position, total wealth, trade. Permanent impact
<Frey '98-'02, Platen-Schweizer '98, Schonbucher-Wilmott '05>

— Supply function models are more in the spirit production with increa-

sing technology, or orders book : sellers place orders

Quantity 10 35 20 100
Price 110 112 117 125

so that the price by share is non-increasing. But there is no influence
of a large trade on the next moment orders book... <Cetin-Jarrow-

Protter '06, Rogers-Singh '05>



Liquidity cost a la Cetin, Jarrow and Protter (2004, 2006)

Risky asset price is defined by a supply curve :

S (St,v) :  price per share of v risky assets

S (5S¢, 0) = S; is the zero volume price defined by

ds,

s, = p(Sy)dt + o (Sp)dW;

Examples
1. infinite liquidity : S(s,v) = s for any v € R
2. Prop. transaction costs : S(s,v) = (1 +>\)s]l{,/20} + (1 —u)sll{,/<o}

3. Exponential supply function : S (s,v) = se®®¥



LIQUIDITY COST : Portfolio dynamics

X; : holdings in cash, Y; : holdings in risky asset (number of shares)

Xitar — Xt + (Yt+dt >S<St7Y},—|—dt Yt) = 0

— X = Xg—)_ (Yt—l—dt ) S (St, Yitdt — Yt)

— XO —I— ZY% (St — St—l—dt) +
Direct computation leads to

Zp = Xp+YpSr = Zo+ )Y Y (St — St—|—dt)

= 2 (Yo = Y2) |8 (St Yirar — Yi) — 8 (51,0
quwdlty cost




LIQUIDITY COST : Continuous-time limit

FROM NOW ON, ASSUME v —— S(s,v) is smooth at v = 0, and

define the Liquidity indicator :

1
l(s) = [4—%%%(3,0)]

THEN :

finite continuous-time liquidity cost iff [Y,Y]r < oo

Under this condition, the continuous-time limit of process Z is

T T HS
Zo+ [ YidSe— [ 2> (S,0)dly,Y]f = 3 AYi[S (S, AYD) - S

t<T

T 1 T
= Zo+ [ YidSi— [ £SOV, Y] = Y AYi[S (S, AY) - S
0 4 )0 (<T

Z



LIQUIDITY COST : the super-hedging problem

ASSUME NO LIQUIDITY COST AT MATURITY T

Super-hedging problem :

Vo = inf {z ; Z;’Y > g(S7) a.s. for some Y € A}
Remarks

1. Jumps in the Y process are allowed, so the problem ‘selects’ the

optimal initial position in the stock

2. Liquidity costs at maturity : static problem!



LIQUIDITY COST : The Cetin-Jdarrow-Protter paradox

Without further restrictions on trading strategies, the problem re-
duces to Black-Scholes! (Cetin, Jarrow and Protter). BUT no exis-

tence of optimal strategy. Reason for this result is the following

<Bank-Baum 04>

Lemma For all predictable W —integrable cadlag process ¢, and € > 0O

t t
Sup '/O aprdWT—/Oqs;%dWT < ¢

0<t<1

t 1
for some a.c. predictable process ¢; = ¢g —I—/O ardr, /o |ar|dr < oo a.s.

t
—— Allow for arbitrary a.c. Y; = YO—I—/O aydu = V = BS (with [ = 0)



LIQUIDITY COST : importance of admissible strategies

We show that liquidity cost does affect V, perfect replication is

possible, and hedging strategy can be described (formally)

Definition Y € A if it is of the form

N-—1 ¢ ¢

e (7p,) is an / seq. of stop. times, y, are Fr,—measurable, ||N||lco < o
eY and I are L°®°®—bounded up to some polynomial of S

oy =To+ [avdu+ [{€udWy, 0 <t < T, and

. or
lellBp + llallpp + [I€llB,2 < 0o where i¢llpp = sup B
0<t<T 1 + 5}

1o



MAIN RESULT 1 : Optimality of continuous portfolios

Let A" :={Y € A: Y is continuous} and

V5Ot = inf {z ; Zé’y > g(S7) a.s. for some Y € Acont}

Theorem VvV = ygont

Under liquidity costs, it is better to perform consecutive small trades

instead of a large one

Process Z can be interpreted as the short-time liquidation value of the

portfolio



MAIN RESULT 2 : PDE characterization

Theorem Let —C<g(.)<C(1+4 .) forsome C > 0. Then V(t,s) is
the unique continuous viscosity solution of the dynamic programming

equation

_I_
V(L s) + %s%(t, $)20(s) | 1 — (Ve((z)s) n 1) — 0

with V(T,s) = g(s) and —C <V (t,s) < C(1 4 s) for every (t,s).

e Main technical tool : small time behavior of double stochastic integrals

e Notice that there is no boundary layer i.e. face-lifting



MAIN RESULT 3 : When do liquidity costs matter ?

Recall that Cetin, Jarrow and Protter showed that, under their larger
set of strategies, the minimal super-hedging cost coincides witth the

Black-Scholes price. With our set of strategies A, we have :

Corollary Vp = EP° [¢(S7)] if and only if g is an affine function



FORMAL DESCRIPTION OF HEDGING STRATEGY :

concavity versus convexity

e For a convex payoff : only possibility to super-hedge is the Black-
Scholes perfect replication strategy

e For a concave payoff : two possibilities to super-hedge

1. Black-Scholes perfect replication == [ = 0 so pay liquidity cost

2. Buy-and-hold = ' = 0 no liquidity cost, but hedge might be too
expensive —

vss < —€(s) : buy-and-hold strategy is more interesting because liquidity
cost is too expensive

vss > —f(s) . perfect replication



OPTIMAL HEDGING STRATEGY : example of an exponential

liquidity function

1
Let S(s,v) :=s elasv/4) Then 0(s) = —
Qs

1
Define &(t,s) := 4—(02t—|—4 Ins) so that ¢ss = —£(s) and ¢; =
(@8

e Let (t,s) be such that Vis(t,s) < —£(s), set

0 = inf{u>t ) Vss(u,Su)Z—E(Su)}

and observe that

o —%3 22, (t,8)0(s) = Lp(t,s)

e (V —¢) concave V

e and (V —¢)i(u,Sy) =0fort<u<§b

1 oo
= /
43 o<l(s)



OPTIMAL HEDGING STRATEGY : ‘“Hedge perfectly ¢ and

Buy-and-hold the difference (V — ¢)”

Set ZO e V(t,S), YO e ‘/S(t, S), I_t — ¢33(u, Su), and o .= £¢3(u, Su)

> Z@

V(t,s) + /9 Yy dSy, — %/95(5)—1#0253&
t 7 ! u
V(t,s) + +/t (Vs(t, s) +/t Los(r, Sy )dr + dss(r, Sr)dST) Sy
+ /t Y Lé(u, Sy)du
0
(V—=0)(,s) + (V—9)s(t,s) [Sg—s] + o(t,s) + /t Lo(u, Syu)du
0 U
+/t (gbs(t, s) + /t Los(r, Sr)dr + ¢ss(r, ST)dST) dSy
0
(V = 6)(t,8) + (V = #)a(t:) 1S9 — s+ 6(t,) + [ Lo(u, Su)du
+ /t  be(, S)dS



Hence

Zg = (V=0)(,s)+ (V—0)s(t,s) [Sy— s]+ o(0,Sp)

> (V—0)(,Sp) +¢(0,Sy) by concavity of (V —¢)(t,.)

= V (0,S9) Dby the fact that (V — ¢)¢(u,Sy) =0 for t <u <0



LARGE LIQUIDITY EXPANSION
Let S¢(s,v) := S(s,ev), e >0
Then ¢¢(s) = e~ 14(s) and V¢ is the unique vis. sol. of

[ 2

£ +
—Vf(t, 8) + 4i8820-(t7 S>2€(8) 1 <€‘/88(t7 8) 4 1> _

l(s)

with VE(T,s) = g(s)

Proposition With VO(t,s) = E; 4 [g(S7)], we have

Ve(t,s) = VOt s) +EE

TV@Q
/t ZZ (u, Su)Siaﬁdu] + o(e)




