HEDGING UNDER LIQUIDITY RISK

Nizar TOUZI

Ecole Polytechnique Paris

Séminaire FIME, Université Paris Dauphine 11 mars 2008

Joint work with

Umut Çetin and Mete Soner

INTRODUCTION: THE BLACK-SCHOLES MODEL

The financial market

• 1 non-risky asset $S^0 \equiv 1$ (change of numéraire)

• 1 risky asset $S: dS_t = S_t \left[\mu \, dt + \sigma \, dW_t \right]$

Option / contingent claim : $g(S_T)$, where

$$g: \mathbb{R}_+ \longrightarrow \mathbb{R}$$

Main problem Valuation of the option $g(S_T)$

ullet Portfolio strategy Y_t : number of shares of S in portfolio

 \implies self-financing condition : $dX_t = Y_t dS_t + (X_t - Y_t S_t) \times 0$

Given an initial capital $X_0 = x$, denote : $X_t^{x,Y} := x + \int_0^t Y_u dS_u$

 \mathcal{A} : set of admissible Strategies

$$\int_0^T |Y_u|^2 du < \infty \text{ and } X^{x,Y} \text{ bounded from below}$$

contrast with discrete-time models...

Super-hedging problem

$$V_0 := \inf \left\{ x : X_T^{x,Y} \ge g(S_T) \text{ a.s. for some } Y \in \mathcal{A} \right\}$$

Explicit solution in complete market

$$V_t = v(t, S_t) := \mathbb{E}^{\mathbb{P}^0} [g(S_T)|S_t]$$

PDE characterization

$$-\mathcal{L}v := -\frac{\partial v}{\partial t} - \frac{1}{2}\sigma^2 s^2 \frac{\partial^2 v}{\partial s^2} = 0 \text{ and } v(T,s) = g(s)$$

Greeks (Risk control variables)

- ullet $\Delta_t := rac{\partial v}{\partial s}(t,S_t)$: optimal hedging portfolio $Y_t^* \equiv$ replicating portfolio
- ullet $\Gamma_t:=rac{\partial^2 v}{\partial s^2}(t,S_t)$: variation of the hedging portfolio in a stress scenario

Itô's lemma

Optimal wealth process $X_t^* := v(t, S_t)$. Then :

$$X_{t}^{*} = X_{0}^{*} + \int_{0}^{t} \mathcal{L}v(u, S_{u})du + \int_{0}^{t} Y_{u}^{*}dS_{u} = X_{0}^{*} + \int_{0}^{t} Y_{u}^{*}dS_{u}$$

where $Y_u^* = v_s(u, S_u)$.

Since v_s is smooth, it follows from another application of Itô's lemma

$$Y_t^* = Y_0^* + \int_0^t \mathcal{L}v_s(u, S_u) du + \int_0^t \Gamma_u dS_u$$

MODELING ILLIQUIDITY

There are two classes of models

- Large trader models: investor affects the dynamics of the stock price by means of its position, total wealth, trade. Permanent impact
 <Frey '98-'02, Platen-Schweizer '98, Schönbucher-Wilmott '05>
- Supply function models are more in the spirit production with increasing technology, or orders book: sellers place orders

Quantity 10 35 20 100 Price 110 112 117 125

so that the price by share is non-increasing. But there is no influence of a large trade on the next moment orders book... < Çetin-Jarrow-Protter '06, Rogers-Singh '05>

Liquidity cost à la Çetin, Jarrow and Protter (2004, 2006)

Risky asset price is defined by a supply curve :

 $\mathbf{S}\left(S_{t},\nu\right)$: price per share of ν risky assets

 $S(S_t,0) = S_t$ is the zero volume price defined by

$$\frac{dS_t}{S_t} = \mu(S_t)dt + \sigma(S_t)dW_t$$

Examples

- 1. infinite liquidity : $S(s, \nu) = s$ for any $\nu \in \mathbb{R}$
- 2. Prop. transaction costs : $S(s, \nu) = (1 + \lambda)s 1_{\{\nu \ge 0\}} + (1 \mu)s 1_{\{\nu < 0\}}$
- 3. Exponential supply function : $S(s, \nu) = se^{\alpha s\nu}$

LIQUIDITY COST: Portfolio dynamics

 X_t : holdings in cash, Y_t : holdings in risky asset (number of shares)

$$X_{t+dt} - X_t + \left(Y_{t+dt} - Y_t\right) \mathbf{S}\left(S_t, Y_{t+dt} - Y_t\right) = 0$$

$$\implies X_T = X_0 - \sum (Y_{t+dt} - Y_t) \mathbf{S} (S_t, Y_{t+dt} - Y_t)$$
$$= X_0 + \sum Y_t (S_t - S_{t+dt}) + \dots$$

Direct computation leads to

$$Z_T := X_T + Y_T S_T = Z_0 + \sum Y_t \left(S_t - S_{t+dt} \right)$$

$$- \sum \left(Y_{t+dt} - Y_t \right) \left[\mathbf{S} \left(S_t, Y_{t+dt} - Y_t \right) - \mathbf{S} \left(S_t, 0 \right) \right]$$
Liquidity cost

LIQUIDITY COST: Continuous-time limit

FROM NOW ON, ASSUME $\nu \longmapsto \mathbf{S}(s,\nu)$ is smooth at $\nu=0$, and define the Liquidity indicator :

$$\ell(s) := \left[4 \frac{\partial \mathbf{S}}{\partial \nu}(s, 0)\right]^{-1}$$

THEN:

finite continuous-time liquidity cost iff $[Y,Y]_T<\infty$

Under this condition, the continuous-time limit of process Z is

$$Z_{T} = Z_{0} + \int_{0}^{T} Y_{t} dS_{t} - \int_{0}^{T} \frac{\partial \mathbf{S}}{\partial \nu} (S_{t}, 0) d[Y, Y]_{t}^{c} - \sum_{t \leq T} \Delta Y_{t} [\mathbf{S} (S_{t}, \Delta Y_{t}) - S_{t}]$$

$$= Z_{0} + \int_{0}^{T} Y_{t} dS_{t} - \frac{1}{4} \int_{0}^{T} \ell(S_{t})^{-1} d[Y, Y]_{t}^{c} - \sum_{t \leq T} \Delta Y_{t} [\mathbf{S} (S_{t}, \Delta Y_{t}) - S_{t}]$$

LIQUIDITY COST: the super-hedging problem

ASSUME NO LIQUIDITY COST AT MATURITY T

Super-hedging problem:

$$V_0 := \inf \left\{ z : Z_T^{z,Y} \ge g(S_T) \text{ a.s. for some } Y \in \mathcal{A} \right\}$$

Remarks

- 1. Jumps in the Y process are allowed, so the problem "selects" the optimal initial position in the stock
- 2. Liquidity costs at maturity: static problem!

LIQUIDITY COST: The Çetin-Jarrow-Protter paradox

Without further restrictions on trading strategies, the problem reduces to Black-Scholes! (Çetin, Jarrow and Protter). BUT no existence of optimal strategy. Reason for this result is the following <Bank-Baum 04>

Lemma For all predictable W-integrable càdlàg process ϕ , and $\varepsilon > 0$

$$\sup_{0 < t < 1} \left| \int_0^t \phi_r dW_r - \int_0^t \phi_r^{\varepsilon} dW_r \right| \leq \varepsilon$$

for some a.c. predictable process $\phi_t^{\varepsilon} = \phi_0^{\varepsilon} + \int_0^t \alpha_r dr$, $\int_0^1 |\alpha_r| dr < \infty$ a.s.

$$\implies$$
 Allow for arbitrary a.c. $Y_t = Y_0 + \int_0^t \alpha_u du \implies V = BS$ (with $\Gamma = 0$)

LIQUIDITY COST: importance of admissible strategies

We show that liquidity cost does affect V_0 , perfect replication is possible, and hedging strategy can be described (formally)

Definition $Y \in \mathcal{A}$ if it is of the form

$$Y_t = \sum_{n=0}^{N-1} y_n \mathbb{1}_{\{t < \tau_{n+1}\}} + \int_0^t \alpha_u du + \int_0^t \Gamma_u dS_u$$

- (τ_n) is an \nearrow seq. of stop. times, y_n are \mathcal{F}_{τ_n} —measurable, $||N||_{\infty} < \infty$
- ullet Y and Γ are $\mathbb{L}^\infty-$ bounded up to some polynomial of S
- $\Gamma_t = \Gamma_0 + \int_0^t a_u du + \int_0^t \xi_u dW_u$, $0 \le t \le T$, and

$$\|\alpha\|_{B,b} + \|a\|_{B,b} + \|\xi\|_{B,2} < \infty \quad \text{where} \quad \|\phi\|_{B,b} := \left\|\sup_{0 \le t \le T} \frac{|\phi_r|}{1 + S_t^B}\right\|_{\mathbb{L}^b}$$

MAIN RESULT 1: Optimality of continuous portfolios

Let $\mathcal{A}^{\text{cont}} := \{Y \in \mathcal{A} : Y \text{ is continuous}\}\$ and

$$V_0^{\text{cont}} := \inf \left\{ z : Z_T^{z,Y} \ge g(S_T) \text{ a.s. for some } Y \in \mathcal{A}^{\text{cont}} \right\}$$

Theorem
$$V = V_0^{cont}$$

Under liquidity costs, it is better to perform consecutive small trades instead of a large one

Process Z can be interpreted as the *short-time* liquidation value of the portfolio

MAIN RESULT 2: PDE characterization

Theorem Let $-C \le g(.) \le C(1 + .)$ for some C > 0. Then V(t,s) is the unique continuous viscosity solution of the dynamic programming equation

$$-V_t(t,s) + \frac{1}{4}s^2\sigma(t,s)^2\ell(s) \left[1 - \left(\frac{V_{ss}(t,s)}{\ell(s)} + 1 \right)^{+2} \right] = 0$$

with V(T,s) = g(s) and $-C \le V(t,s) \le C(1+s)$ for every (t,s).

- Main technical tool : small time behavior of double stochastic integrals
- Notice that there is no boundary layer i.e. face-lifting

MAIN RESULT 3: When do liquidity costs matter?

Recall that Çetin, Jarrow and Protter showed that, under their larger set of strategies, the minimal super-hedging cost coincides with the Black-Scholes price. With our set of strategies A, we have :

Corollary $V_0 = \mathbb{E}^{\mathbb{P}^0}[g(S_T)]$ if and only if g is an affine function

FORMAL DESCRIPTION OF HEDGING STRATEGY:

concavity versus convexity

- For a convex payoff: only possibility to super-hedge is the Black-Scholes perfect replication strategy
- For a concave payoff: two possibilities to super-hedge
- 1. Black-Scholes perfect replication $\Longrightarrow \Gamma \neq 0$ so pay liquidity cost
- 2. Buy-and-hold $\Longrightarrow \Gamma = 0$ no liquidity cost, but hedge might be too expensive \Longrightarrow

 $v_{ss}<-\ell(s)$: buy-and-hold strategy is more interesting because liquidity cost is too expensive

 $v_{ss} \geq -\ell(s)$: perfect replication

OPTIMAL HEDGING STRATEGY: example of an exponential liquidity function

Let
$$S(s,\nu):=s\ e^{(\alpha s\nu/4)}$$
. Then $\ell(s)=\frac{1}{\alpha s^2}$
Define $\phi(t,s):=\frac{1}{4\alpha}(\sigma^2t+4\ln s)$ so that $\phi_{ss}=-\ell(s)$ and $\phi_t=\frac{1}{4}s^2\sigma^2\ell(s)$

• Let (t,s) be such that $V_{ss}(t,s)<-\ell(s)$, set

$$\theta := \inf\{u > t : V_{ss}(u, S_u) \ge -\ell(S_u)\}$$

and observe that

- $\bullet \ -\frac{1}{4}s^2\sigma^2\phi_{ss}^2(t,s)\ell(s) = \mathcal{L}\phi(t,s)$
- $(V \phi)$ concave V
- and $(V \phi)_t(u, S_u) = 0$ for $t \le u \le \theta$

OPTIMAL HEDGING STRATEGY : "Hedge perfectly ϕ and Buy-and-hold the difference $(V - \phi)$ "

Set
$$Z_0 := V(t,s)$$
, $Y_0 := V_s(t,s)$, $\Gamma_t := \phi_{ss}(u,S_u)$, and $\alpha_t := \mathcal{L}\phi_s(u,S_u)$

$$\implies Z_\theta = V(t,s) + \int_t^\theta Y_u dS_u - \frac{1}{4} \int_t^\theta \ell(s)^{-1} \Gamma_t^2 \sigma^2 S_t^2 dt$$

$$= V(t,s) + + \int_t^\theta \left(V_s(t,s) + \int_t^u \mathcal{L}\phi_s(r,S_r) dr + \phi_{ss}(r,S_r) dS_r \right) dS_u$$

$$+ \int_t^\theta \mathcal{L}\phi(u,S_u) du$$

$$= (V - \phi)(t,s) + (V - \phi)_s(t,s) \left[S_\theta - s \right] + \phi(t,s) + \int_t^\theta \mathcal{L}\phi(u,S_u) du$$

$$+ \int_t^\theta \left(\phi_s(t,s) + \int_t^u \mathcal{L}\phi_s(r,S_r) dr + \phi_{ss}(r,S_r) dS_r \right) dS_u$$

$$= (V - \phi)(t,s) + (V - \phi)_s(t,s) \left[S_\theta - s \right] + \phi(t,s) + \int_t^\theta \mathcal{L}\phi(u,S_u) du$$

$$+ \int_t^\theta \phi_s(u,S_u) dS_u$$

Hence

$$Z_{\theta} = (V - \phi)(t, s) + (V - \phi)_{s}(t, s) [S_{\theta} - s] + \phi(\theta, S_{\theta})$$

$$\geq (V - \phi)(t, S_{\theta}) + \phi(\theta, S_{\theta})$$
 by concavity of $(V - \phi)(t, .)$

= $V(\theta, S_{\theta})$ by the fact that $(V - \phi)_t(u, S_u) = 0$ for $t \le u \le \theta$

LARGE LIQUIDITY EXPANSION

Let $S^{\varepsilon}(s,\nu) := S(s,\varepsilon\nu), \ \varepsilon > 0$

Then $\ell^{\varepsilon}(s) = \varepsilon^{-1}\ell(s)$ and V^{ε} is the unique vis. sol. of

$$-V_t^{\varepsilon}(t,s) + \frac{1}{4\varepsilon}s^2\sigma(t,s)^2\ell(s) \left[1 - \left(\frac{\varepsilon V_{ss}^{\varepsilon}(t,s)}{\ell(s)} + 1\right)^{+2} \right] = 0$$

with $V^{\varepsilon}(T,s) = g(s)$

Proposition With $V^0(t,s) = \mathbb{E}_{t,s}[g(S_T)]$, we have

$$V^{\varepsilon}(t,s) = V^{0}(t,s) + \mathbb{E}^{\mathbb{P}^{0}} \left[\int_{t}^{T} \frac{V_{ss}^{0^{2}}}{4\ell}(u,S_{u}) S_{u}^{2} \sigma_{u}^{2} du \right] + o(\varepsilon)$$