

Measures of Multivariate Risks

Alfred Galichon

Département d'Economie, Ecole polytechnique

Journée « Chaire Finance & Développement Durable »

March 26 2008

This talk

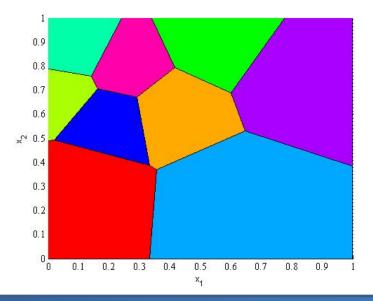
- 1. (Very) brief reminder on optimal transportation
- 2. Generalizing coherent and regular risk measures to the multivariate case
- 3. Generalizing Kusuoka's theorem on coherent regular risk measures

What is optimal transport?

At the start of the XVth century, Paris had 17 public fountains, and 250.000 inhabitant... that is a fountain for every 15.000 inhabitants

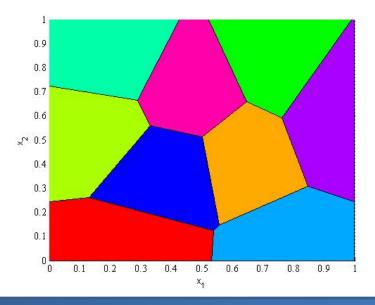
A problem of supply and demand...

- Suppose each fountain has a capacity of 15.000 users
- Inhabitants are uniformly spread on the surface of the city
- Fountains are not uniformly spread...
- ➤ Without a regulating mechanism, people will choose the closest fountain. Some will be overused, others will be underused.



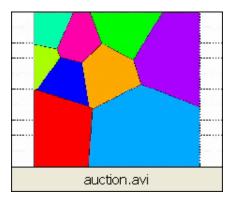
... regulated by prices

- One can use a system of differentiated prices for each fountains: raise the prices of the fontains in excess demand, and decrease the prices of the fountains in excess supply
- there is a system of equilibrium prices which adjusts supply to demand:



... attained by a Walrasian auction

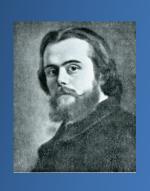
On this animation one can see an example of Walrasian auction process which leads to determination of equilibrium prices.



Some remarks

- The mechanism adjusting prices to regulate demand is nothing else than a Walrasian "tâtonnement" algorithm, which leads to numerical determination of prices, as put forward by Paul Samuelson in 1947.
- The need for differentiated prices to regulate demand is related to the fact that fountain distribution is not uniform. There is actually a strong connection between this problem and the **Gini index**.
- The fact that the distribution of facilities (here, fountains) is discrete is the present case but can be taken **continuous** without conceptual modifications.

Formalisation: Walrasian equilibrium



Let μ be the inhabitants distribution on $[0,1]^2$ (normalized by $\iint_{[0,1]^2} d\mu = 1$);

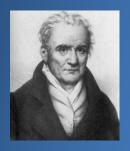
Let P_n be the distribution of the fountains (located in $\{Y_1,...,Y_n\}$, where Y_k has capacity p_k , $\sum_{k=1}^n p_k = 1$);

Then there exists a **price system** $w_1,...,w_n$ such that each inhabitant in $u \in [0,1]^2$ choses the fountain $\varphi(u) \in \{1,...,n\}$ which maximizes his/her utility

 $V^{w}\left(u\right)=\max_{k}\left\{ \left\langle u,Y_{k}\right\rangle -w_{k}\right\}$, and one has $Y_{\varphi\left(u\right)}=\nabla V\left(u\right)$.

 $u \to \nabla V\left(u\right)$ is the **gradient of a convex function**, pushing forward the distribution of the inhabitants μ towards the fountain distribution P_n , which is denoted $\varphi \# \nu = P_n$.

Monge-Kantorovich problem and Brenier theorem



Let μ and P be two probability measures on \mathbb{R}^d with second moments, such that μ is absolutely continuous. Then

$$\sup_{U \sim \mu, X \sim P} E\left[\langle U, X \rangle\right]$$

where the supremum is over all the couplings of μ and P if attained for a coupling such that one has $X = \nabla V(U)$ almost surely, where V is a convex function $\mathbb{R}^d \to \mathbb{R}$ which happens to be the solution of the dual Kantorovich problem

$$\inf_{V} \int V(u) d\mu(u) + \int V^{*}(x) dP(x).$$

Applications of the Monge-Kantorovich problem to Economics

Many existing works:

- Hedonic models (Chiappori, Ekeland, Heckman)
- Mechanism design (Carlier)
- Urban economics (Ekeland, Carlier)
- General equilibrium (Levine)

Many perspectives...

- Partial identification in econometrics (with I. Ekeland et M. Henry)
- Specification tests (with V. Chernozhukov)
- 3. Risk measures (with M. Henry)
- 4. New matching algorithms (with G. Carlier et F. Santambrogio)

Today

COMONOTONIC MEASURES OF MULTIVARIATE RISKS

(joint work with Marc Henry, Université de Montréal)

paper available at

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1115729

Motivation

why risk measures?

- current events...
- incomplete markets

2 uses:

- measurement: provide management with indicators of the level of risk
- management: determine capital budgeting rules (Basle II etc.)

problem with current literature:

- divergence practice/theory
- axioms are sometimes difficult to justify (and teach)
- does not extend well to natural situations (eg. multivariate risk)

This paper

- recall recent literature on risk measures and reinterpret the axioms
- propose multivariate extension
- propose a re-interpretation in terms of collective surplus on an Arrow-Debreu market
- provide a computational algorithm

The Value-at-Risk (VaR)

Aim: measure & manage risk of portfolio's contingent loss Y.

- $VaR_{\alpha}(Y)$ = smallest capital amount to cover losses in α % cases...
- is robust to tail behaviour (eg. more than variance)
- has become a market standard for market risk measurement (Basle II 1st pillar)
- is however criticized among both practitioners and academics

Problem. VaR can fail to be subadditive: $VaR_{\alpha}(Y_1 + Y_2)$ can be greater than $VaR_{\alpha}(Y_1) + VaR_{\alpha}(Y_2)...$

Why is this a problem?... "creative accounting", "financial shennanigans" etc.

Desirable axioms for a risk measure

Definition. A functional $\varrho:L_d^\infty\to\mathbb{R}$ is called a *coherent risk measure* if it satisfies the following properties:

- Monotonicity (MON): $X \leq Y \Rightarrow \varrho(X) \leq \varrho(Y)$
- Translation invariance (TI): $\varrho(X+m)=\varrho(X)+m\varrho(1)$
- Convexity (CO): $\varrho(\lambda X + (1-\lambda)Y) \leq \lambda \varrho(X) + (1-\lambda)\varrho(Y)$ for all $\lambda \in (0,1)$.
- Positive homogeneity (PH): $\varrho(\lambda X) = \lambda \varrho(X)$ for all $\lambda \geq 0$.

Definition. $\varrho:L^{\infty}\to\mathbb{R}$ is called a *regular risk measure* if it satisfies:

- Law invariance (LI): $\varrho(X) = \varrho(\tilde{X})$ when $X \sim \tilde{X}$.
- Comonotonic additivity (CA): $\varrho(X+Y)=\varrho(X)+\varrho(Y)$ when X,Y are comonotonic, i.e. weakly increasing transformation of each other.

Maximal correlation risk measure

Result (Kusuoka, 2001). A coherent risk measure ϱ is regular if and only if for some increasing and nonnegative function ϕ on [0,1], we have

$$\varrho(X) := \int_0^1 \phi(t) F_X^{-1}(t) dt,$$

where F_X denotes the cumulative distribution functions of the random variable X (thus $Q_X(t) = F_X^{-1}(t)$ is the associated quantile).

ο is called a *Maximal correlation risk measure*. Examples include:

- Expected shortfall: $\phi(t) = 1_{\{t \geq \alpha\}}$
- Exponential risk measure: $\phi(t) = 1 e^{-\alpha t}$.

Other classes of risk measures exist, without comonotonic additivity.

The problem

- Problem: what can be said for risks which are multidimensional?
- Interest? risk usually has several dimension (price/liquidity; multicurrency portfolio; environmental/financial risk, etc.)
- Literature on multivariate risk measure: Jouini, Meddeb, & Touzi (2004); Rüschendorf (2006) focus on **coherent measures**. We look to generalize **regular measures** as well.

Higher dimension extension

What are the difficulties in extending risk measures to the multivariate case?

- COHERENCE
 - Monotonicity Not obvious
 - Translation invariance OK
 - Convexity OK
 - Positive homogeneity OK
- REGULARITY
 - > Law invariance OK
 - Comonotonic additivity Not obvious

How to extend comonotonicity?

By the rearrangement inequality of Hardy and Littlewood, we have:

Two random vectors X and Y in L^{∞} are comonotonic if for some random vector $U \sim \mu$, we have

$$U \in argmax_{\tilde{U}}\left\{\mathbb{E}[X\tilde{U}], \ \tilde{U} \sim \mu\right\}$$
, and $U \in argmax_{\tilde{U}}\left\{\mathbb{E}[Y\tilde{U}], \ \tilde{U} \sim \mu\right\}$

which is equivalent to the existence of φ_1 and φ_2 nondecreasing and a random variable U such that $X = \varphi_1(U)$ and $Y = \varphi_2(U)$ almost surely.

- Financial interpretation: X and Y are comonotonic if they share a common maximal risk exposure.
- ➢ Geometric interpretation: X and Y are comonotonic if they have the same L2 projection on the equidistribution class of U.

Extending comonotonicity

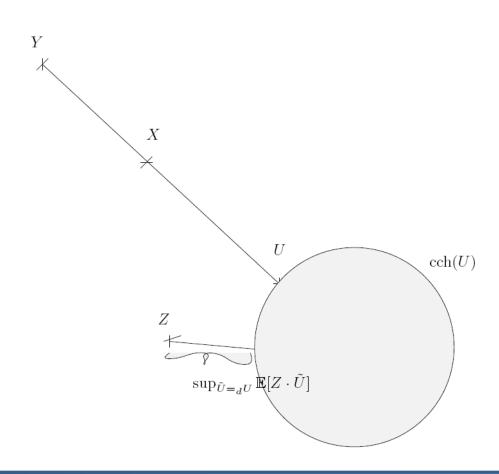
A variational characterization will be the basis for our generalized notion of comonotonicity.

Definition (μ -comonotonicity). Let μ be an atomless probability measure on \mathbb{R}^d . Two random vectors X and Y in L_d^∞ are called μ -comonotonic if for some random vector $U \sim \mu$, we have

$$U \in argmax_{\tilde{U}}\left\{\mathbb{E}[X\cdot \tilde{U}],\; \tilde{U}\sim \mu\right\}$$
 , and $U \in argmax_{\tilde{U}}\left\{\mathbb{E}[Y\cdot \tilde{U}],\; \tilde{U}\sim \mu\right\}$

equivalentely, X and Y are μ -comonotonic if there exists two convex functions V_1 and V_2 and a random variable U such that $X = \varphi_1(U)$ and $Y = \varphi_2(U)$, where $\varphi_1 = \nabla V_1$ and $\varphi_2 = \nabla V_2$.

Illustrating comonotonicity



The subtleties of higher-dimensional comonotonicity

In dimension one, one recovers the classical notion of comotonicity regardless of the choice of μ . However, in dimension greater than one, the comonotonicity relation crucially depends on the baseline distribution μ , unlike in dimension one. The following lemma makes this precise:

Lemma 1 Let μ and ν be atomless probability measures on \mathbb{R}^d . Then:

- In dimension d=1, μ -comonotonicity always implies ν -comonotonicity.
- In dimension $d \geq 2$, μ -comonotonicity implies ν -comonotonicity if and only if $\nu = T \# \mu$ for some location-scale transform $T(u) = \lambda u + u_0$ where $\lambda > 0$ and $u_0 \in \mathbb{R}^d$. In other words, comonotonicity is an invariant of the location-scale family classes.

Extending maximal correlation risk measures

By the rearrangement inequality of Hardy and Littlewood, we can write:

$$\int_0^1 \phi(t) F_X^{-1}(t) dt = \max \left\{ \mathbb{E}[X\tilde{U}] : \ \tilde{U} \sim \mu \right\}.$$

where μ if the probability distribution of ϕ , and the maximum is taken over all the random variables with distribution μ .

interest of this variational formulation? admits a natural generalization in higher dimension.

A representation result

The following result is a multivariate extension of Kusuoka's theorem.

Theorem. Let ϱ be a measure with the subadditivity, law invariance, μ -comonotonic additivity and positive homogeneity properties. Then there exists a measure $\hat{\mu}$

$$\varrho(X) = \max \{ \mathbb{E}[X.U] : U \sim \hat{\mu} \}$$

thus ϱ is a maximal correlation risk measure. Further the distribution of $U\sim\hat\mu$ is a obtained from μ by a location scale transform, that is there exist $\lambda>0$ and $u_0\in\mathbb{R}^d$ such that

$$\lambda (U - u_0) \sim \mu$$
.

Conclusion

- Examples of application: measures of risks which have several components which are not perfect substitutes for each other
 - environmental/financial risk
 - price/liquidity risk
 - multi-currency portfolio
 - > etc.
- Link with Non-Expected-Utility theory (Schmeidler, Yaari...): risk measures can be interpreted as (the opposite of) utility functionals over lotteries.

Thank you!

alfred.galichon @polytechnique.edu