A Case for Affirmative Action in Competition Policy

Bertrand Villeneuve Yanhua Zhang

March 26th 2008

Electricity market in China

- Regional monopolies with (to some extent) region specific technologies
- Inter-connection growing
- Electricity market in Italy
 - Historic monopoly: ENEL
 - Entrants got rotten lots
- Electricity market in France
 - Historic monopoly with large capacity: EDF
 - Basically no entry

Literature: static normative theories or dynamic descriptive theories

- Perry and Porter (1985), Farrell and Shapiro (1991)
- Besanko and Doraszelski (2004), Hanig (1986), Reynolds (1987), Cellini and Lambertini (2003)

The paper is policy oriented

- **O** Simple theory of site allocation (= opportunities)
- 2 Effect in the long-run
- O Effect during the transition

- Status quo (almost) never the best option
- Social optimum: symmetry in initial conditions and investment opportunities
- If symmetry not possible
 - Firms' interest: concentrate all in a single firm
 - Consumers' interest: compensate smaller firm with better opportunities

The case for affirmative action

Problem: commitment by regulators

- A game of capacity accumulation
- Continuous infinite time $t \in [0, +\infty)$
- Duopoly : firm i and firm j
 i for generic firm (j for generic competitor)
- Smooth strategies
- Open-loop strategies (tractability and more)

Introduction	The model	Analysis	Steady state / long run	Dynamics	Conclusion
Investme	ent				

Capacity accumulation

$$\stackrel{\bullet}{k_i(t)} = I_i(t) - \delta_i k_i(t)$$

Investment cost

Quadratic

$$C_i(I_i) = \frac{I_i^2}{2\theta_i}$$

• $(heta_i, heta_j)$ belongs to set $\Omega\subset\mathbb{R}^2_+$

Production cost

- Linear (set at zero here for simplicity)
- Full capacity utilization (relaxed in paper)

- Continuum of available sites parameterized by $\theta \in [\underline{\theta}, \overline{\theta}]$
- Site specific investment represented by function $\boldsymbol{z}(\boldsymbol{\theta})$
- θ site-specific investment cost $\frac{z(\theta)^2}{2\theta}$
- Firm *i* described by sites it owns (indicator $\omega_i(\theta)$)
- Each firm optimizes investment within its sites

This gives a global constraint

$$\theta_i + \theta_j = \Theta = \mathsf{Constant}$$

- Continuum of available sites parameterized by $\theta \in [\underline{\theta}, \overline{\theta}]$
- Site specific investment represented by function $\boldsymbol{z}(\boldsymbol{\theta})$
- θ site-specific investment cost $\frac{z(\theta)^2}{2\theta}$
- Firm i described by sites it owns (indicator $\omega_i(heta)$)
- Each firm optimizes investment within its sites

This gives a global constraint

$$\theta_i + \theta_j = \Theta = \mathsf{Constant}$$

The model Steady state / long run Dynamics Conclusion Introduction Analysis

Figure: A kind of Edgeworth box

- Duopoly : firm i and firm j
- Inverse demand function at date t: $P(t) = A q_i(t) q_j(t)$

Firm i maximizes the present value of the profit flows

$$\max_{I_i(\cdot)} \int_0^{+\infty} \pi_i(t) e^{-\rho t} dt$$

where $\pi_i(t) = P(t)q_i(t) - \frac{I_i(t)^2}{2\theta_i}$

- Control variables: $I_i(t)$ and $I_i(t)$
- State variables: $k_i(t)$ and $k_i(t)$ •

- Control variables: $I_i(t)$ and $I_j(t)$
- State variables: $k_i(t)$ and $k_j(t)$
- Equilibrium when investments are reciprocal best responses
- Open-loop not an inferior concept
 - Information
 - Investment programming
 - Commitment
 - ... tractable!

• Dynamic equation $(\rho + \delta_i)I_i - \overset{\bullet}{I_i} = \theta_i [A - 2k_i - k_i]$

Steady state / long run

Dynamics

Conclusion

• With accumulation equations

The model

Introduction

$$\overset{\bullet\bullet}{k_i} + \delta_i \overset{\bullet}{k_i} - [2\theta_i + (\rho + \delta_i)\delta_i] k_i + \theta_i (A - k_j) = 0$$

• Define functions of time $h_i = \overset{\bullet}{k_i}$ and $h_j = \overset{\bullet}{k_j}$

Analysis

• 2nd-order system of equations solved as a 4-dimensional 1st-order system:

$$\overset{\bullet}{H} = MH - N,$$

where $\boldsymbol{H}=(k_i,k_j,h_i,h_j)^T,\,\boldsymbol{N}=(0,0,A\theta_i,A\theta_j)^T$ and

$$M = \left(\begin{array}{ccccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2\theta_i + (\rho + \delta_i)\delta_i & \theta_i & -\delta_i & 0 \\ \theta_j & 2\theta_j + (\rho + \delta_j)\delta_j & 0 & -\delta_j \end{array} \right)$$

Introduction	The model	Analysis	Steady state / long run	Dynamics	Conclusion

Proposition

 ${\cal M}$ has two positive eigenvalues and two negative ones

- Weights given to diverging exponentials must be null
- So capacities, as a function of time, have the form

$$k_i(t) = c_i^0 + c_i^1 e^{\lambda_1 t} + c_i^2 e^{\lambda_2 t}$$

6 parameters identified with

- Initial conditions (2 equations)
- Particular solution of system = steady state (2 equations)
- Eigenvectors (2 equations—1 per vector)

Introduction	I he model	Analysis	Steady state / long run	Dynamics	Conclusion
Proposit	ion				

M has two positive eigenvalues and two negative ones

- Weights given to diverging exponentials must be null
- So capacities, as a function of time, have the form

$$k_i(t) = c_i^0 + c_i^1 e^{\lambda_1 t} + c_i^2 e^{\lambda_2 t}$$

6 parameters identified with

- Initial conditions (2 equations)
- Particular solution of system = steady state (2 equations)
- Eigenvectors (2 equations—1 per vector)

Introduction	The model	Analysis	Steady state / long run	Dynamics	Conclusion
Trajecto	ries				

Introduction The model Analysis Steady state / long run Dynamics Conclusion

Comparative statics of long run

Proposition

Take $\delta_i = \delta_j$. Equalizing investment costs

- Imaximizes long run total capacity, thus consumer surplus
- 2 maximizes total surplus.

More on the dynamics

- Where does it start from? Critical choice

More on the dynamics

Where does it start from? Critical choice

Introduction The model Analysis Steady state / long run Dynamics Conclusion
More on the dynamics

- Where does it start from? Critical choice
- Where does the economy go? Determined by choice above
- How does it make the transition?
 - A useful case $\delta_i = \delta_j = \delta$
 - Eigenvalues and eigenvectors of M calculated explicitly
 - Look at **total** capacity over time = total consumption
 - Consumer surplus (actual value)
 - Profit (actual value)
 - Social surplus

- Where does it start from? Critical choice
- Where does the economy go? Determined by choice above
- How does it make the transition?
 - A useful case $\delta_i = \delta_j = \delta$
 - Eigenvalues and eigenvectors of M calculated explicitly
 - Look at **total** capacity over time = total consumption
 - Consumer surplus (actual value)
 - Profit (actual value)
 - Social surplus

- Where does it start from? Critical choice
- Where does the economy go? Determined by choice above
- How does it make the transition?
 - A useful case $\delta_i = \delta_j = \delta$
 - ${\scriptstyle \bullet }$ Eigenvalues and eigenvectors of M calculated explicitly
 - Look at **total** capacity over time = total consumption
 - Consumer surplus (actual value)
 - Profit (actual value)
 - Social surplus

Introduction	The model	Analysis	Steady state / long run	Dynamics	Conclusion
Trajecto	ries				

- faster growth
- longer durability of initial differences in capacities

Figure: Half-lives: parallel growth and difference reduction

Dynamics

Persistance of initial conditions

Proposition

Fix θ_i and θ_j . Assume wlog that $\theta_i \geq \theta_i$ (best for Firm *i*). Fix total initial capacity K^0 .

 k_i^0 is the portion allocated to Firm i, while $K_0 - k_i^0$ goes to Firm j

- O Total capacities at date 0 and in the long run are independent of initial sharing
- Total capacity increases more slowly at date 0 for higher k_i^0 2
- Total capacity at any date t > 0 is smaller for higher k_i^0

Giving more to less efficient firm increases durably total capacity.

Figure: Consumers surplus

 Introduction
 The model
 Analysis
 Steady state / long run
 Dynamics
 Conclusion

 Asymmetric costs and capacities: an example

- $\delta = 0.05, \, \rho = 0.08, \, A = 1, \, \Theta = 1/10$ and $K_0 = 1/2$
- Two cases
 - Symmetric investment conditions
 - Asymmetric investment conditions

Figure: Total capacities.

Firm specific and total capacities

 Introduction
 The model
 Analysis
 Steady state / long run
 Dynamics
 Conclusion

 Welfare:
 Why it's simple and complicated

Firms

Collectively prefer very asymmetric costs (monopolization)

Consumers

Prefer strong contrasts (high cost/large capacity firm vs. low cost/low capacity firm)

Society

Total expected surplus maximized if reform renders all symmetric

Figure: Consumers surplus

Introduction	The model	Analysis	Steady state / long run	Dynamics	Conclusion

Figure: Social surplus

Introduction	The model	Analysis	Steady state / long run	Dynamics	Conclusion
		k _i			
	$\theta_i \leftarrow$				
	0.0	в			
	0.0				
	0.0	б (
	0.0	5			
	0.0				
	0.0				
	0.0	2			

Figure: Social surplus

0.5 0.6

0.2 0.3 0.4

 $\rightarrow \theta_i$

k,

0.7 0.8

Introduction	The model	Analysis	Steady state / long run	Dynamics	Conclusion
	k _i				
	θ_j		•		
	0.08				
	0.07	$(\bigcirc$			
	0.06				
	0.05		0 XIIII		
	0.04				
	0.03	MARINE			

Figure: Social surplus

 $\rightarrow \theta_i$

k_i

0.02

0.2 0.3 0.4 0.5 0.6 0.7 0.8

- When priority is on long-run objective = symmetry dominates
- Asymmetric may be optimal for transition due to discounting
- Regulatory (in)consistency: symmetrize every so often