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Introduction : stationarity in time series

(Xt)t∈Z a real process.

Définition
(Xt) is strictly stationary if, for all h and all k ≥ 1,

(X1, X2, . . . , Xk) and (X1+h, X2+h, . . . , Xk+h) have the same
distribution.

(Xt) is second-order stationary if EX2
t < ∞, and

i)EXt is independent of t,
ii)Cov(Xt, Xt+h) is independent of t, for all h.

Standard models for stationary processes: ARMA (autoregressive
moving-average)
Extensions ARI(ntegrated)MA, S(easonal)ARIMA
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Volatility models

Introduced for financial time series whose sample paths, after
differenciation, look like that:
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with empirical autocorrelations close to those of a white noise.

But empirical autocorrelations of the squares are often statistically
significant.

+ Volatility clustering, Leptokurticity of the marginal distribution
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Classes of volatility Models

εt = σtηt

where
(ηt) is an iid (0,1) process
(σt) is a process (volatility), σt > 0

the variables σt and ηt are independent
Two main classes of models:

GARCH-type (Generalized Autoregressive Conditional
Heteroskedasticity): σt ∈ σ(εt−1, εt−2, . . .)

Stochastic volatility
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Standard GARCH(1,1) Model


εt = σtηt, (ηt) iid (0, 1)

σ2
t = ω + αε2t−1 + βσ2

t−1, ω > 0, α, β ≥ 0
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The coefficients can be constrained to produce stationary solutions:
- either in both senses,
- or only in the strict sense.
Without these conditions, the model is explosive.
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Electricity spot prices

Trends
Volatility clustering, leptokurticity
Seasonalities (weekly, monthly..)
Dependency with respect to exogenous variables :
temperature..
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A GARCH(1,1) Model driven by an exogenous
process


εt = σtηt, (ηt) iid (0, 1)

σ2
t = ω(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1,

where
- ω(·) > 0, α(·), β(·) ≥ 0
- (st) is a sequence of real numbers st ∈ E = {1, . . . , d}.

For electricity prices, st could be an integer giving information
about : the day in the week (e.g. week-end or not), the level of
temperature or the excess temperature over a curve of average
temperature.
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Example : (st) periodic

Time t
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(a) Simulation of εt=σtηt with (ηt) iid N(0,1)
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Example : (st) realization of a Markov chain
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(c) Simulation of a Markov chain (st): p(1,1)=p(2,2)=0.95 
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Example : (st) realization of a Markov chain
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(c) Simulation of a Markov chain (st): p(1,1)=0.95, p(2,2)=0.65 
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TS models with time-dependent coefficients

Nonstationary processes: Priestley (1965), Whittle (1965),
Hallin (1986)
Locally stationary processes: Dalhaus (1997)
Periodic models: Periodic ARMA (Anderson and Vecchia
(1983), Lund and Basawa (2000)); Periodic GARCH
(Bollerslev and Ghysels (1996))
Time-varying ARMA models: Kwoun and Yajima (1986),
Bibi and Francq (2003), Francq and Gautier (2004), Azrak and
Mélard (2006)
Non-stationary volatility models: Engle and Rangel (2005),
Dalhaus and Subba Rao (2006), Amado and Teräsvirta (2008)
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Existence of non-explosive solutions


εt = σtηt, (ηt) iid (0, 1)

σ2
t = ω(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1

Let a(x, y) = α(x)y2 +β(x). [σ2
t = ω(st)+a(st, ηt−1)σ

2
t−1]

Theorem

For j = 1, . . . d let T (t, j, n) = {τ ∈ {0, . . . , n} | st−τ = j}.
Assume that ∀t, |T (t, j, n)|/n → πj , as n →∞, for some
πj ≥ 0 with

∑d
j=1 πj = 1. Then, if

γ0 :=
d∑

j=1

πjE{log a(j, η0)} < 0,

the model admits a nonanticipative solution (εt).
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Existence of non-explosive solutions

The nonanticipative solution is given by

εt =

{
ω(st) +

+∞∑
n=1

a(st, ηt−1) . . . a(st−n+1, ηt−n)ω(st−n)

}1/2

ηt.

If γ0 > 0, for any starting value h0 we have

σ2
t → +∞, a.s. t →∞.

If, in addition, E| log η2
0| < ∞ then

ε2t → +∞, a.s. t →∞.
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Remarks

The local stationarity condition,

E{log a(j, η0)} < 0, j = 1, . . . , d

implies the existence of a solution.
Simple necessary condition for the existence of a solution:

d∏
j=1

βπj (j) < 1.

In the ARCH(1) case, a more explicit condition is:

d∏
j=1

απj (j) < e−E log η2
0 .
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Example of stability region : ARCH(1), 2 regimes
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Remarks

If for one regime α(j) = β(j) = 0 and πj > 0, a non explosive
solution always exists.
The condition coincides with the strict stationarity condition of
a Markov Switching GARCH.
Both the conditional and unconditional variances are
time-varying: under appropriate conditions

var(εt) = ω(st) +
∞∑

n=1

(
n−1∏
i=0

(α + β)(st−i)

)
ω(st−n).
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Existence of moments

Theorem

Let m a strictly positive integer such that Eη2m
t < ∞. If

γm :=
d∏

j=1

{Ea(j, η0)
m}πj < 1,

the model has a non anticipative solution (εt) with Eε2m
t < ∞. If

γm > 1 there is no nonanticipative solution (εt) such that
Eε2m

t < ∞.

Remark:
The condition does not coincide with the moment condition of
a Markov Switching GARCH.
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Comparison with Markov-Switching models


εt = σtηt, (ηt) iid (0, 1)

σ2
t = ω(St) + α(St)ε

2
t−1 + β(St)σ

2
t−1

where (St) is an irreducible, aperiodic and stationary Markov chain
on {1, . . . , d}.

- Existence of a strictly stationary solution under the same
condition γ0 < 0
- But the moment conditions are different (depend on the transition
probabilities)

From a statistical point of view, (St) is non observed (hidden)
which makes the likelihood intractable (path dependence).
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Optimal prediction of squares

Time-varying ARMA(1,1) representation for ε2t :

ε2t = ω(st) + (α + β)(st)ε
2
t−1 + ut − β(st)ut−1.

The optimal prediction of ε2t at horizon 1 is

ε̂2t = ω(st) + (α + β)(st)ε
2
t−1 −

∑
k≥0

β(st) . . . β(st−k)vt−k−1

where vt = ε2t − ω(st)− (α + β)(st)ε
2
t−1.
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Estimation

Data generating mechanism:

εt =
√

htηt, ht = ω0(st) + α0(st)ε
2
t−1 + β0(st)ht−1.

Vector of parameters:

θ = (ω(1), . . . , ω(d), α(1), . . . , α(d), β(1), . . . , β(d))′

assumed to belong to a parameter space Θ ⊂]0,+∞[d×[0,∞[2d.

The sequence (st) is known.
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Gaussian Quasi-likelihood

Observations: (ε1, . . . , εn) [and also (s1, . . . , sn)].

Ln(θ) = Ln(θ; ε1, . . . , εn) =
n∏

t=1

1√
2πσ̃2

t

exp

(
− ε2t

2σ̃2
t

)
,

where for t ≥ 2,

σ̃2
t = σ̃2

t (θ) = ω(st) + α(st)ε
2
t−1 + β(st)σ̃

2
t−1.

with σ̃2
1 = ω(s1) + α(s1)ε̃

2
0 + β(s1)σ̃

2
0. A QMLE of θ is defined as

any measurable solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln(θ) = arg min
θ∈Θ

l̃n(θ),

where

l̃n(θ) = n−1
n∑

t=1

˜̀
t, and ˜̀

t = ˜̀
t(θ) =

ε2t
σ̃2

t

+ log σ̃2
t .
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Use of the unconditional model

A0: (st) is a realization of a process (St) which is stationary,
ergodic, and independent of (ηt).

Thus πj = P [St = j].
If

γ0 =
d∑

j=1

πjE{log a(j, η0)} = E{log a(St, η0)} < 0,

there exists a unique nonanticipative and strictly stationary solution
(εS,t) to the model

εS,t = σS,tηt, σ2
S,t = ω0(St) + α0(St)ε

2
S,t−1 + β0(St)σ

2
S,t−1.
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Assumptions

A1: θ0 ∈ Θ and Θ is compact

A2:
∑d

j=1 πjE{log a0(j, η0)} < 0 (a0(j, η0) = α0(j)η
2
0 + β0(j))

∀θ ∈ Θ,
∏d

j=1 βπj (j) < 1.

A3: ∃r, ρ ∈ (0, 1), C > 0,

∀i > 0, E {ar
0(St, ηt−1) . . . ar

0(St−i, ηt−i−1)} < Cρi+1.

A4: η2
t has a nondegenerate distribution with Eη2

t = 1.
A5: For all j, α0(j) + β0(j) 6= 0 and πj > 0.

∃` ∈ {1, . . . , d}, α0(`) > 0.

Remark: A3 holds automatically if (St) is iid or if the local
stationarity conditions hold.
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Consistency and Asymptotic Normality

Theorem

Under A0-A5, for PS-almost all sequence (st), θ̂n → θ0, a.s.
as n →∞.

A6: θ0 belongs to the interior of Θ (α0(·) > 0, β0(·) > 0)
A7: κη = Eη4

t < ∞

Theorem

Under A0-A7, for PS-almost all sequence (st),√
n(θ̂n − θ)

d
; N (0, (κη − 1)J−1), where

J = ES,η

(
1

σ4
S,t(θ0)

∂σ2
S,t(θ0)

∂θ

∂σ2
S,t(θ0)

∂θ′

)

σ2
S,t = ω(St) + α(St)ε

2
t−1 + β(St)σ

2
S,t−1.
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Remarks

No moment assumption on the observed process
A consistent estimator of J is

1

n

n∑
t=1

1

σ̃4
t (θ̂n)

∂σ̃2
t (θ̂n)

∂θ

∂σ̃2
t (θ̂n)

∂θ′
,

where

σ̃2
t (θ̂n) = ω̂n(st) + α̂n(st)ε

2
t−1 + β̂n(st)σ̃

2
t−1(θ̂n).

(no need to specify a process (St))
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Examples of asymptotic variance matrices

εt =


(1 + 0.1ε2t−1)

1/2ηt if st = 1

(3 + 0.1ε2t−1)
1/2ηt if st = 2

(St) Markov chain

(ηt) iid N (0, 1)

p(1, 1) = p(2, 2) = 0.5

Varas(
√

n(θ̂n − θ)) =


7.41 0 −1.62 0

0 56.78 0 −8.96
−1.62 0 1.30 0

0 −8.96 0 5.28
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Examples of asymptotic variance matrices

εt =


(1 + 0.1ε2t−1)

1/2ηt if st = 1

(3 + 0.1ε2t−1)
1/2ηt if st = 2

(St) Markov chain

(ηt) iid N (0, 1)

p(1, 1) = p(2, 2) = 0.95

Varas(
√

n(θ̂n − θ)) =


3.83 0 −1.33 0

0 300.51 0 −53.24
−1.33 0 1.58 0

0 −53.24 0 32.39
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Examples of asymptotic variance matrices

εt =


(1 + 0.1ε2t−1)

1/2ηt if st = 1

(3 + 0.1ε2t−1)
1/2ηt if st = 2

(St) Markov chain

(ηt) iid, mixture of normal distributions (κη ≈ 9)

p(1, 1) = p(2, 2) = 0.95

Varas(
√

n(θ̂n − θ)) =


11.39 0 −1.92 0

0 918.26 0 −77.02
−1.92 0 4.21 0

0 −77.02 0 87.99
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Useful Lemma

Main technical difficulty (for the proofs): absence of standard
ergodic and CLT theorems.

Lemma (Francq and Gautier, 2004)

Let f be a measurable function, f : {1, . . . , d}∞ × R∞ → R, such
that Ef(St, St−1, . . . , ηt, ηt−1, . . .) exists in R ∪ {−∞,+∞}.
Then, for PS-almost all sequence (st),

1

n

n∑
t=1

f(st, st−1, . . . , ηt, ηt−1, . . .) → Ef(St, St−1, . . . , ηt, ηt−1, . . .),

Pη − a.s.
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Summary and conclusions

Standard GARCH and volatility models are inappropriate for
series displaying nonstationarities
The proposed model is conditional on the realizations of an
exogenous discrete process
It follows that, when existing, its solutions are non stationary.
The conditions of existence, and of existence of moments,
depend on the asymptotic frequencies of the states of the
exogenous process, and on the model coefficients.
QML estimation requires additional assumptions on the
underlying sequence. The asympotic distribution of the QMLE
depends on the whole distribution of the underlying process.
Numerical implementation is not more difficult than in
standard GARCH.
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