
Non-parametric learning algorithm for
approximate dynamic programming

Laboratoire de Finance des Marchés d’énergies

Kengy Barty

EDF Research & Development

April 15, 2008

Outline

I Presentation of the problem and motivations ;

I Value iteration algorithm, a kernel-based approach ;

I Another light on kernel-based algorithms ;

I Numerical results “Mountain car task” ;

I Conclusion.

Outline

I Presentation of the problem and motivations ;

I Value iteration algorithm, a kernel-based approach ;

I Another light on kernel-based algorithms ;

I Numerical results “Mountain car task” ;

I Conclusion.

Outline

I Presentation of the problem and motivations ;

I Value iteration algorithm, a kernel-based approach ;

I Another light on kernel-based algorithms ;

I Numerical results “Mountain car task” ;

I Conclusion.

Outline

I Presentation of the problem and motivations ;

I Value iteration algorithm, a kernel-based approach ;

I Another light on kernel-based algorithms ;

I Numerical results “Mountain car task” ;

I Conclusion.

Outline

I Presentation of the problem and motivations ;

I Value iteration algorithm, a kernel-based approach ;

I Another light on kernel-based algorithms ;

I Numerical results “Mountain car task” ;

I Conclusion.

Introduction

We study non-parametric learning algorithms in order to
numerically approximate the optimal solution of a fixed point
problem. This kind of problem arises in many applications
involving dynamic programming backward induction. Formally we
address this kind of problem :

find v such that H(v) = v (1)

with H mapping the Hilbert space H into itself.

Motivation

Many problems in economics finance or industry involve the
resolution of a dynamic programming equation in different
situations :

I finite horizon problems ;

I infinite horizon problems ;

I continuous-time or not.

The Bellman function is a powerful tool to solve this kind of
problems, nevertheless the computation of that function is often
computationally intensive.

The infinite horizon dynamic programming problem

1. A state space S and an action space A ;

2. A Markov transition density :

p(Xt+1 | Xt ,Ut) ; (2)

3. A discount factor β ∈ [0, 1) ;

4. A cost-to-go function :

∞∑
t=0

βtc(Xt ,Ut) ; (3)

5. A family of constraint sets :

Ut ∈ A(Xt) ; (4)

The infinite horizon dynamic programming problem

The agent’s optimization problem is to find the solution to the
Bellman’s equation :

V (x) = min
u∈A(x)

(
c(x , u) + β

∫
S

V (y)p(dy | x , u)

)
(5)

The optimal decision rule is then given by the formula :

α(x) ∈ arg min
u∈A(x)

(
c(x , u) + β

∫
S

V (y)p(dy | x , u)

)
(6)

Bellman’s equation can be reformulated as a fixed point problem
B(V) = V introducing the Bellman’s operator
B : L∞(S) → L∞(S) where :

B(W) = min
u∈A(x)

(
c(x , u) + β

∫
S

W (y)p(dy | x , u)

)
(7)

The contraction property of B

Under the following regularity assumptions (Denardo 1967) the
contraction property of the Bellman’s operator holds true :

1. S and A are compact metric spaces ;

2. x → A(x) is a continuous correspondence ;

3. c(x , u) is jointly continuous in (x , u) ;

4. β ∈ [0, 1).

Numerical resolution

1. S and A are discrete ;
I analytical or “closed-form”solutions ;
I solve a“nearby”finite-dimensional problem ;
I learning algorithms, Watkins, Mansour,

[Szepesvari and Littman, 1996], [Jaakkola et al., 1994])
I neural networks [Bertsekas and Tsitsiklis, 1996]

[Tsitsiklis and Van Roy, 1999], [Sutton, 1988]) ;
I Approximate Linear Programming

[De Farias and Van Roy, 2004]

2. S is continuous and A is finite ;
I analytical or “closed-form”solutions ;
I neural networks [Szepesvari and Munos, 2007] ;
I randomisation techniques [Rust, 1996] ;
I Kernel-Based algorithms [Ormoneit and Sen, 2002]

[Roy J.-S. et al., 2007].

Value iteration

Lets T denote the min operator :

T (Q)(x) = min
u∈A(x)

Q(x , u)

the operator Γ maps L∞(S) to L∞(S × A)

Γ(V)(x , u) = c(x , u) + β

∫
S

V (y)p(dy | x , u)

Equation (5) can be written :

V = T Γ(V) (8)

Value iteration

Γ can be approximated using a random operator Γ̂ based on
historic realization of outcomes. Value iteration update rule :

V̂ i+1 = T Γ̂(V̂ i)

Kernel Based Reinforcement learning

The state takes values in [0, 1]d

Γ̂(V)(x , u) =
∑

(xs ,yu
s)∈Su

k(Su ,b)(xs , x)(cs + βV (yu
s)).

Su = {(xs , y
u
s) | s = 1, . . . ,mu} a collection of historical

transitions. Each elements of Su is an independent draw from the
distribution of (Z ,Y). Here the first component Z is distributed
uniformly on [0, 1]d and the component Y follows the conditional
distribution p(dy | xs , u).

k(Su ,b)(xs , x) = φ

(
‖xs − x‖

b

)
/

∑
(xs ,yu

s)∈Su

φ

(
‖xs − x‖

b

)
.

Kernel Based Reinforcement learning

Theorem ([Ormoneit and Sen, 2002]) Value iteration converges to
the true value function as the sample size grows, although the
bandwidth b must decrease at a suitable rate to balance the
variance and bias.

Another light on Kernel-Based algorithms

We introduce the following framework :

I X is a random variable with values in Rd ;

I We endow L2(Rd , σX) with the inner scalar product denoted
〈·, ·〉

〈f , g〉 = E [f (X)g(X)] .

I H maps L2(Rd , σX) to L2(Rd , σX) and is a contraction
mapping.

I K : S × S → R a measurable function.

Positive definite kernel

A Positive definite kernel is a function K

I K : S × S :→ R is symmetric, K (x , x ′) = K (x ′, x) ;

I ∀N ∈ N, ∀(x1, . . . , xN) ∈ SN and ∀(a1, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK (xi , xj) ≥ 0.

Mercer’s kernel

Assumptions A1

I Let S be a compact metric space.
I We assume that K is a Mercer’s Kernel that means :

1. K (x , x ′) = K (x ′, x) ;
2. if S is compact we assume that K is continuous on S × S ;

Theorem (Mercer, 1909) Under assumptions A1, K is a positive
definite kernel.

Positive definite kernel without compacity

Assumptions A2

I K : S × S → R is translation invariant, that means :

∃φ such that K (x , x ′) = φ(x − x ′)

I the Fourier transform of φ(·) is symmetric and φ(x) goes to
zero when x →∞

Theorem (Bochner) Under assumptions A2, K is a positive definite
kernel.

Example : Gaussian kernel, K (x , x ′) = e
−‖

x−x′‖2

(2σ2) or Laplace kernel
K (x , x ′) = 1

2e−γ‖x−x ′‖ .

Hilbert Schmidt operator

We define TK the following mapping :

TK : L2(Rd , σX) → L2(Rd , σX) (9)

f → (x → E [f (X)K (X , x)]) (10)

such operator in L(L2(Rd , σX)) are called Hilbert Schmidt.
Moreover :

‖TK‖ ≤ ‖K‖L2(S×S)

If K is a positive definite kernel then :

∀f ∈ L2(Rd , σX), 〈f ,TK (f)〉 ≥ 0.

Properties

We assume that K is a Mercer’s kernel, we have the following
properties :

I TK is a bounded linear operator ;

I TK is a compact operator ;

I TK is self-adjoint operator ;

I TK is monotone.

Since TK is self-adjoint and monotone then :

〈f ,TK (g)〉2 ≤ 〈TK (f), f 〉〈TK (g), g〉

We denote 〈·, ·〉K that semi-scalar product. Moreover TK satisfies
a Dunn property :

‖TK (f)‖ ≤ ‖TK‖1/2 〈TK (f), f 〉1/2

Recursive kernel iterations

We propose to perform the following deterministic iterations :

v i+1 = v i + ηiTK (H(v i)− v i) (11)

We already assume that :

∞∑
i=1

ηi = +∞,
∞∑
i=1

(ηi)2 < +∞.

The expectation TK (H(v i)− v i) can be estimated along iteration.
Let T̂K (f) denote an unbiased estimator of TK (f). The
randomized algorithm is performed using T̂K instead of TK in
iterations (11).

Randomization example

Let (X ,Y) denote a random variable, pX |Y (dy , ·) the conditional
probability and σX the marginal distribution. We suppose that H
takes the following form :

H(v)(x) =

∫
S

h(v(y), x)pY |X (dy | x)

TK (H(v))(x) =

∫
h(v(y), x ′)pY |X (dy | x ′)K (x ′, x)σX (dx ′)

= E [h(v(Y),X)K (X , x)]

v i+1 = v i + ηi (h(v i (Y i),X i)− v i (X i))K (X i , ·)

Assumptions

Assumption B

We assume there exists v# such that :

∀v ∈ L2(Rd , σX), 〈H(v#)− v#, v〉K = 0 (12)

We assume H satisfies a Lipschitz-continuous property :

∃α ∈ [0, 1), ∀v ∈ L2(Rd , σX),
∥∥∥H(v)− v#

∥∥∥
K
≤ α

∥∥∥v − v#
∥∥∥

K

Result

Under assumptions B we have :

I the sequence generated by iterations is bounded with the
norm ‖·‖, moreover every cluster point for the weak topology
satisfies (12).

I if PImTK denotes the projection over the linear space ImTK,
the sequence converges weakly to PImTK(v#).

I moreover :
lim

i→∞

∥∥∥TK (v i)− TK (v#)
∥∥∥ = 0

Mollifier

We assume that S = [0, 1]d and that K i (x , x ′) = Φi (‖x − x ′‖),
with φi : [0, 1/i] → R+, satisfying

∫ 1
0 φi (z)dz = 1, Φi (z) ≥ 0, we

assume also that X is distributed uniformly on [0, 1]d .

TK i (f) = φi ∗ f .

In that special case :

lim
i→∞

∥∥∥TK i (v i)− v#
∥∥∥ = 0.

Q-function

Q-function measures the expected return for taking action u under
state x and thereafter following the optimal policy.

Q(x , u) = c(x , u) + β

∫
S

V (y)p(dy | x , u) (13)

Q satisfies the following relation :

Q(x , u) = c(x , u) + β

∫
S

min
v∈A(y)

Q(y , v)p(dy | x , u) (14)

Kernel-based Q-learning algorithm

A kernel based algorithm has been developed in order to
approximate the solution of the Q-equation
[Girardeau et al., 2007].

Input Initialize Q0

Update i → N

Q i+1 = Q i + ηi
(
c(X i ,U i) + . . .

. . . β min
u∈A(X i)

Q i (Y i , u)− Q i (X i ,U i)

)
K i (X i ,U i , ·, ·)

Output QN

Mountain car task (Andrew Moore,PhD dissertation 1990)

“In the Mountain Car problem, an agent must drive an underpowered car up a steep mountain road. Since gravity is
stronger than the car’s engine, even at full throttle the car cannot simply accelerate up the steep slope. The car’s
movement is described by two continuous output variables, position and velocity, and one discrete input
representing the acceleration of the car.

Mountain Car is interesting because the car’s position on the hill and its velocity are real-valued. Therefore, a
learning algorithm must use a function approximator to learn a good policy. Mountain car is also interesting
because a successful control policy must drive the car backwards, up the other side of the valley, to gain enough
momentum to drive forwards up the hill. This means the learning algorithm must move away from the goal,
incurring additional negative reward, to discover the solution. Finally, actions do not have immediately measurable
effects on the state of the system. Thus, learning algorithms must assign credit to actions taken several time steps
in the past.” Adam White (Alberta)

Mountain car

Figure: Mountain car

The mountain car task

Formally the problem is :

min
T ,at

T

xt+1 = xt + ẋt+1

ẋt+1 = ẋt + 0.001at − 0.0025cos(3xt)
−1.2 ≤ xt ≤ 0.5
−0.07 ≤ ẋt ≤ 0.07
xT = 0.5
at ∈ {−1, 0, 1}
T ∈ N

-1.2
-0.9

-0.6
-0.3

 0
 0.3

Position

 -0.06
 -0.03

 0
 0.03

 0.06

Velocity

 0

 20

 40

 60

 80

 100

 120

-1.2
-0.9

-0.6
-0.3

 0
 0.3

Position

 -0.06
 -0.03

 0
 0.03

 0.06

Velocity

 0

 20

 40

 60

 80

 100

 120

Value after 500 episodes Value after 5000 episodes

-1.2
-0.9

-0.6
-0.3

 0
 0.3

Position

 -0.06
 -0.03

 0
 0.03

 0.06

Velocity

-40
-30
-20
-10

 0
 10
 20
 30

-1.2
-0.9

-0.6
-0.3

 0
 0.3

Position

 -0.06
 -0.03

 0
 0.03

 0.06

Velocity

-40
-30
-20
-10

 0
 10
 20
 30

Error after 500 episodes Error after 5000 episodes

Figure: Approximate Bellman value and error for Mountain Car

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

Ste
ps

 pe
r e

pis
od

e

Episodes

Average over 50 episodes

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

Ste
ps

 pe
r e

pis
od

e

Episodes

Average over 50 independent trials

Figure: Learning curves for Mountain Car

Conclusion

Although the assumptions (B) need to be improved, we show that
combining the strength of the Hilbert Schmidt operator and
convolution operation properties can allow to obtain a global
convergence result.

Bertsekas, D. and Tsitsiklis, J. (1996).
Neuro-Dynamic Programming.
Athena Scientific.

De Farias, D. and Van Roy, B. (2004).
A cost shaping linear program for average-cost approximate
dynamic programming network of agents.
submitted.

Girardeau, P., Barty, K., Roy, J.-S., and Strugarek, C. (2007).
A Q-learning algorithm with continuous state space and finite
decision set.
Proceedings of the IEEE Symposium Series on computational
intelligence (ADPRL), pages 346–351.

Jaakkola, T., Jordan, M. I., and Singh, S. (1994).
On the convergence of iterative dynamic programming
algorithms.
Neural Computation, 6(6):1185–1201.

Ormoneit, D. and Sen, S. (2002).
Kernel-based reinforcement learning.
Machine Learning.

Roy J.-S., Barty, K., and Strugarek, C. (2007).
A stochastic gradient type algorithm for closed loop problems.
to appear in Mathematical Programming.

Rust, J. (1996).
Using randomisation to break the curse of dimensionality.
Technical report, Department of Economics, University of
Wisconsin.

Sutton, R. (1988).
Learning to predict by the method of temporal difference.
IEEE Trans. Autom. Control, 37:332–341.

Szepesvari, C. and Littman, M. (1996).
A generalized markov decision processes:
Dynamic-programming and reinforcement-learning.
Technical Report CS-96-11, Brown University, Department of
Computer Science Providence, RI.

Szepesvari, C. and Munos, R. (2007).
Finite time bounds for sampling based fitted value iteration.
submitted to : Journal of Machine learning.

Tsitsiklis, J. and Van Roy, B. (1999).
Optimal stopping for markov processes: Hilbert space theory,
approximation algorithm and an application to pricing
high-dimensional financial derivatives.
IEEE Trans. Autom. Control, pages 1840–1851.

Thank you very much

