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1 — Introduction : volume uncertainty
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- EDF’s activity subject to several risks
® EDF’s economic result in France may vary because of :
o Uncertainty of the demand, depending mainly on temperature
e +1TC in winter = 1,5 GW
o Uncertainty of the hydro inflows
e Hydro = 9 % of EDF production

o Uncertainty of the availability of power plants

® One nuclear power plant =1 GW

o Uncertainty of market prices

® Power, coal, fuel, CO,

@ No counterparty exists for the major part of uncertainties which impact
EDF’s results

o A big part of the risk is not “hedgeable” g
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® The (almost) only available counterparty is the forward market (to
handle price uncertainty)

o Markets of options or climatic derivatives are not mature in France

o A part of market activity deals with spot market (linked mainly to week
ahead forwards and futures)

@ What it the best solution to hedge price uncertainty in this situation?

o Hedging purpose: reduce the influence of price uncertainty on the
dispersion of results

o One possibility : to use the classical delta hedging strategy
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Delta hedging : classical theory

.
.......

® Perfect (no arbitrage) and complete market hypothesis : a hedging
portfolio is set to replicate the value of the considered contract

o Considering an option whose payoff is H(S;) depending only on the
commodity price S; at time T, the hedging portfolio is then composed at
time t by the volume 4, of the commodity itself :

v, .
A =—% with V, =E°|H
=g Wth M=ER[H(S))]
o The balancing of the hedging portfolio is performed continuously
o Under those conditions: whatever price evolution, the value of the hedging

portfolio is always equal to the difference between the payoff and the
initial value of the option V,

Vo+ [ AGS =H(S) with V,=ER[H(S)]
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_ Delta hedging in our context
® Theoretical hypothesis are not verified

o The market is not complete: the hedging strategy will not replicate every
uncertainties

o Continuous hedging is not realistic
e The cotation of products is not continuous

e Calculation duration of the value of the portfolio do not allow frequent
rebalancing of the hedging portfolio

® What is the efficiency of a delta hedging in incomplete market?
o When the balancing of the portfolio is done periodically?

o When « volume » uncertainties are not hedgeable?

= Simulations of a simple portfolio (toy example)
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2 — Test description : a simple option
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Option and price

e Strike K
e Underlying spot market, maturity T

¢ Volume P sold at T : deterministic (P=P,,,,) or random (P<P,.,)

® Forward price model : 2 gaussian factors model

dF(t,T (T
F(i,T)) =g " Vdzy(t) + 0, dz (1)

Short term volatility 4T T— Long term volatility

Mean reversion
e F(0,T) =K

e Spotprice SatT: S=F(T,T)

e Martingale probability : F(t,T) =E[ S ] P
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__ Volume

.
.......

o We model a random energy P which may limit the energy sold at maturity
(= “availability” of the option)
dP. (t,T) =o.e*"dz_(t)
o P:(0,T)=P,, .,
oPg =P(T,T)

o At maturity T, if S > K, the sold energy is P = min(P,_.,Ps)
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__ Option value and initial delta

® The delta-hedging strategy is first defined as the sensitivity of the
expectation of the payoff, under a martingale probability.

% =E[P(S-K)] AtzaFa(\t/fT)

® Option without volume uncertainty : P = P, = 12 000 MWh

o Expectation of the option payoff at initial time : V, = 95 k€

o Delta value at initial time : A, = 6 768 MWh
® Option with volume uncertainty : P = min(P,,,,,,Ps)
o Expectation of the option payoff at initial time : V, = 85 k€

o Delta value at initial time : Ay = 5 962 MWh
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~ Hedging process

® At Initial date

¢ \We sell the volume A, of forward

© Attime t< T
¢ \We calculate the delta A,

¢ \We update the hedging portfolio by selling (if dA>0) or by buying (if dA, <0) the
volume dA(t) = A(t) — A(t-1) at forward price F(t,T)

® At maturity T

® The hedging portfolio is composed of a sold volume of A ;_; and has generated

cash-flows corresponding to: _ |

D dA(t)F(t)
t=
o If S=F(T,T) > K, the volume A ;_; is furnished by the exercise of the option for a
cost K; remaining power (P- A ;)" is sold on the spot market at price S.

¢ If S <K, the volume A _; must be bought on the market at price S.
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~ Cash-flows at maturity

® Cash-flows

b= Tid A F(t) < Cash-flows linked to the balancing of
= the hedging portfolio

+1S>K{(P_AT—1)(S_K)_AT—lK} < IrS>K

1B S < If S< K

® This expression can be rewritten

—
(==Y

® =Y dAF({t)-A,,S+P(S-K)

t

1
o

® We compare the distribution of cash-flows ® to the expectation of
payoff at t=0 qaivo:Eo[P(s—K)*}

e |f the equality is verified, we have a discrete formulation of the previous

equation: .
V0+J-o AdS =H(S;)
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.......
...........

® We simulate 1000 paths of forward prices at hourly granularity

® The deltas are estimated for the corresponding forward prices over
5000 simulations of spot price.

® Result comparisons are performed with similar random variables
@ Transaction costs are considered to be null
® We are only interested by the value of the hedging portfolio at the

maturity T (we are not considering its value along the existence of the
option)
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3 — Results when the market is
complete: price Is random, volume
IS deterministic
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Cash-flows quantiles

------

Quantiles of the distribution of the cash-flows
as a function of the rebalancing period of the hedg ing portfolio
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Cumulative distribution of cash-flows

Cumulative distribution of the cash-flows as a fun

period of the hedging portfolio

ction of the rebalancing
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® The efficiency of the hedging is verified if the hedging is continuously

cash-flows (€)

rebalanced (theoretical result in complete market)
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. Cash-flows standard deviation
i Standard deviation of the cash-flows function of th e rebalancing
period of the hedging portfolio

D

2
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g, = o
// 4n 0o
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® Theoretical result : standard deviation is proportional to the square of
hedging period
e For an hourly balancing: coefficient of variation is around 3%
¢ For a daily balancing : coefficient of variation is around 9%
e For a weekly balancing : coefficient of variation is around 24% g
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Risk aversion

Cumulative distribution of the cash-flows as a fun ction of the rebalancing
period of the hedging portfolio
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® As a seller of the option, if we are not able to hedge more than once a day,
we would ask a price depending of our risk aversion 3 ¢
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4 — Results when the market Is
iIncomplete :
prices and volume are random
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_______

L

------

Cash-flows quantiles

Quantiles of the distribution of the cash-flows
as a function of the rebalancing period of the hedg ing portfolio
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Cumulative distribution of cash-flows

Cumulative distribution of the cash-flows
as a function of the rebalancing period of the hedg ing portfolio
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® Frequent balancing of the hedging portfolio is less efficient (influence of

volume uncertainty)

® Negative cash-flows are possible (tail of distribution)
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Why negative cash-flows?

o At the beginning of the period: moderate prices, average available power
- we sell the delta to hedge the cash-flows of our option

o At the end of the period
® Prices increase = we should sell more...

e _..but the forecast available power is decreasing - we buy, at possible higher
prices than the prices we sold

o Due to volume uncertainty, cash-flows linked to the exercise of the option
may not compensate the cost of the hedging

o In other words, this strategy lead us to sell on the forward market more
energy than the amount we really have at maturity

¢ The volume seen in the delta is the expectation of the volume at maturity

23 COPI'08, Clamart 26-28 November 2008 eDF



Introducing a volumetric risk aversion in
....... * the delta

@ Assumlng a big aversion to negative cash-flows, we may use a
heuristic rule to limit the risks of such scenarios :

o Instead of defining the delta as the sensitivity of the expected cash-flows
for any available energy P at maturity, we define it as the sensitivity of the
expected cash-flows for a given quantile a of P : P,.

_E[P.(S-K)']

‘o OF(t,T)

olf a is small enough, we limit the risk of “selling more than we have”

o Same kind of approach developed in “pricing volumetric risk”, Kolos &
Mardanov, Energy risk, october 2008, pp 54-60

24 COPI'08, Clamart 26-28 November 2008 eDF



#7 Comparison of strategies for weekly
- hedging

Comparison of usual delta and volumetric risk avers ion deltas
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® As expected, the delta with volumetric risk aversion can limit the negative
cash-flows (see following zoom on the tail)

® As a consequence, all the distribution of final cash-flows is changed s
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Cumulative distribution

Zoom on the tail of the distributions

Comparison of usual delta and volumetric risk avers ion deltas
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@ The lower a, the lower probability of negative cash-flows
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® As the expected cash-flows remains the same, the cost for decreasing the
extreme risks (negative cash-flows) is a reduction of gain in more likely
scenarios
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Compromise between « extreme » risk and
« normal » risk (30% quantile)

30% and 2 % quantiles of cash-flows
for volumetric risk aversion deltas
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Pushing the extreme risk aversion to the limit

Extreme risk aversion deltas
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@ With such an option, the only way of avoiding negative cash-flows

(P=0) is not to hedge
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5 — Conclusions
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@ Even in complete market hypothesis, a realistic (non continuous) delta
hedging strategy leads to residual risks that must be taken into
account in pricing options

@ With volume uncertainties, to shorten the rebalancing period of a delta
hedging strategy reduces the variation of the cash-flows until a non
compressible value due to the non-hedgeable volume uncertainty

® The hedging can be counter-productive (cash-flows can be negative
because of conjunction of adverse prices/volume scenarios)

@ These extreme risks can be limited (but not suppressed) while
iIntroducing a simple volumetric risk aversion heuristic rule in the delta
calculation

o It shows that a compromise between the reduction of extreme and more
likely risks is needed

o There is a big issue in the expression of risk aversion
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~ For future studies (1/3):
,,,,,, - 2 categories of optimisation methods
@ Optlmlsatlon under explicit risk constraints
o Hedging strategy mtsuch that :
max E[CashFlows| under constraints ¢[CashFlows| < 3
owhere ¢ gives the risk constraints

o Methods exist to take into account global constraints like EEaR (Extreme
Earnings at Risk) or CVaR (Conditional Value at Risk), but

e | ocal constraints or probability constraints are difficult to include in the problem

e Solving this type of problems is generally time consuming (iterative methods)
® Maximisation of a utility function
o Hedging strategy msuch that :
max E[ g(CashFlows) |

o Where g is a utility function which gives the risk aversion (typically :
exponential functions which give penalties to adverse cash-flows)

e The utility function is often complex is to define > -
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For future studies (2/3)

.
.......

@ Simulation of hedging strategies
o Simulation is a way to understand underlying mechanisms

o Different hedging strategies which may take into account
e Transaction costs
e Liquidity issue market depth issue

e Market Operational constraints which reduce the balancing frequency...

o Back-testing over real data
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~ For future studies (3/3)

oUse the link between risk factors: example in 1 dimension,
correlation between forward price F and volume Q uncertainty

e One portfolio with value V(F,Q), hedge C(F)

dV (F,Q)+dC(F) :g—\F/dF +g—|c::dF +g—\(ng
s e T

® Gaussian log ratio for F and Q with volatility o and o, correlation p

2
adV +dC

e dV + dC variance 2
2
[Am a-FFJ +(80,Q) +20 A, A0 0,FQ

e Position which minimises the variance of the evolution of the value of
the hedged portfolio

o.,Q

o.F

Ailk:+C = arg min(U§v+dc) = _10 AQ

Aric
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