

Agenda

- 1. Introduction : volume uncertainty
- 2. Test description: a simple option
- 3. Results when the market is complete: price is the only uncertainty
- 4. Results when the market is incomplete: volume is random
- 5. Conclusions

1 – Introduction: volume uncertainty

EDF's activity subject to several risks

- EDF's economic result in France may vary because of :
 - Uncertainty of the demand, depending mainly on temperature
 - ±1℃ in winter ≈ ±1,5 GW
 - Uncertainty of the hydro inflows
 - Hydro ≈ 9 % of EDF production
 - Uncertainty of the availability of power plants
 - One nuclear power plant ≈ 1 GW
 - Uncertainty of market prices
 - Power, coal, fuel, CO₂
- No counterparty exists for the major part of uncertainties which impact EDF's results
 - A big part of the risk is not "hedgeable"

Uncertainty hedging

- The (almost) only available counterparty is the forward market (to handle price uncertainty)
 - Markets of options or climatic derivatives are not mature in France
 - A part of market activity deals with spot market (linked mainly to week ahead forwards and futures)

- What it the best solution to hedge price uncertainty in this situation?
 - Hedging purpose: reduce the influence of price uncertainty on the dispersion of results
 - One possibility: to use the classical delta hedging strategy

Delta hedging: classical theory

- Perfect (no arbitrage) and complete market hypothesis: a hedging portfolio is set to replicate the value of the considered contract
 - **o** Considering an option whose payoff is $H(S_T)$ depending only on the commodity price S_T at time T, the hedging portfolio is then composed at time t by the volume Δ_t of the commodity itself :

$$\Delta_{t} = \frac{\partial V_{t}}{\partial S_{t}}$$
 with $V_{t} = E_{t}^{\mathbf{Q}} [H(S_{T})]$

- The balancing of the hedging portfolio is performed continuously
- **o** Under those conditions: whatever price evolution, the value of the hedging portfolio is always equal to the difference between the payoff and the initial value of the option V_0

$$V_0 + \int_0^T \Delta_t dS_t = H(S_T)$$
 with $V_0 = E_0^{\mathbf{Q}} [H(S_T)]$

Delta hedging in our context

- Theoretical hypothesis are not verified
 - The market is not complete: the hedging strategy will not replicate every uncertainties
 - Continuous hedging is not realistic
 - The cotation of products is not continuous
 - Calculation duration of the value of the portfolio do not allow frequent rebalancing of the hedging portfolio
- What is the efficiency of a delta hedging in incomplete market?
 - When the balancing of the portfolio is done periodically?
 - When « volume » uncertainties are not hedgeable?
- ⇒ Simulations of a simple portfolio (toy example)

2 – Test description: a simple option

Option and price

- We <u>own</u> a European-type option
 - Strike K
 - Underlying spot market, maturity T
 - Volume P sold at T: deterministic (P=P_{max}) or random (P≤P_{max})
- Forward price model : 2 gaussian factors model

$$\frac{dF(t,T)}{F(t,T)} = \sigma_S e^{-a_F(T-t)} dz_S(t) + \sigma_L dz_L(t)$$
Short term volatility

Mean reversion

Long term volatility

- F(0,T) = K
- Spot price S at T: S = F(T,T)
- Martingale probability : F(t,T) = E_t[S]

Volume

- Volume uncertainty
 - We model a random energy P_F which may limit the energy sold at maturity (≈ "availability" of the option)

$$dP_F(t,T) = \sigma_F e^{-a_F(T-t)} dz_F(t)$$

$$\bullet P_F(0,T)=P_{max}$$

$$oP_S = P_F(T,T)$$

• At maturity T, if S > K, the sold energy is $P = \min(P_{max}, P_S)$

Option value and initial delta

 The delta-hedging strategy is first <u>defined</u> as the sensitivity of the expectation of the payoff, under a martingale probability.

$$V_{t} = E_{t} \left[P(S - K)^{+} \right] \qquad \Delta_{t} = \frac{\partial V_{t}}{\partial F(t, T)}$$

- Option without volume uncertainty : $P = P_{max} = 12\,000\,MWh$
 - Expectation of the option payoff at initial time: V₀ = 95 k€
 - **o** Delta value at initial time : $\Delta_0 = 6.768$ MWh
- Option with volume uncertainty : $P = min(P_{max}, P_{S})$
 - Expectation of the option payoff at initial time: V₀ = 85 k€
 - **o** Delta value at initial time : $\Delta_0 = 5$ 962 MWh

Hedging process

- At initial date
 - We sell the volume Δ_0 of forward
- At time t< T</p>
 - We calculate the delta Δ,
 - We update the hedging portfolio by selling (if $d\Delta_t > 0$) or by buying (if $d\Delta_t < 0$) the volume $d\Delta(t) = \Delta(t) - \Delta(t-1)$ at forward price F(t,T)
- At maturity T
 - The hedging portrollogies of cash-flows corresponding to: $\sum_{t=0}^{T-1} d\Delta(t) F(t)$ • The hedging portfolio is composed of a sold volume of Δ_{T-1} and has generated

$$\sum_{t=0}^{T-1} d\Delta(t) F(t)$$

- If S=F(T,T) > K, the volume Δ_{T-1} is furnished by the exercise of the option for a cost K; remaining power (P- Δ_{T-1})⁺ is sold on the spot market at price S.
- If S < K, the volume Δ_{T-1} must be bought on the market at price S.

Cash-flows at maturity

Cash-flows

$$\Phi = \sum_{t=0}^{T-1} d\Delta_{t} F(t)$$

$$Cash-flows linked to the balancing of the hedging portfolio$$

$$+1_{S>K} \left\{ (P - \Delta_{T-1})(S - K) - \Delta_{T-1} K \right\} \qquad \text{if } S > K$$

$$-1_{S$$

This expression can be rewritten

$$\Phi = \sum_{t=0}^{T-1} d\Delta_t F(t) - \Delta_{T-1} S + P(S-K)^+$$

- We compare the distribution of cash-flows Φ to the expectation of payoff at t=0 $\Phi = V_0 = E_0 \left[P(S K)^+ \right]$
 - If the equality is verified, we have a discrete formulation of the previous equation:

$$V_0 + \int_0^T \Delta_t dS_t = H(S_T)$$

Sim

Simulations

- We simulate 1000 paths of forward prices at hourly granularity
- The deltas are estimated for the corresponding forward prices over 5000 simulations of spot price.
- Result comparisons are performed with similar random variables
- Transaction costs are considered to be null
- We are only interested by the value of the hedging portfolio at the maturity T (we are not considering its value along the existence of the option)

3 – Results when the market is complete: price is random, volume is deterministic

Cash-flows quantiles

Quantiles of the distribution of the cash-flows as a function of the rebalancing period of the hedging portfolio

Cumulative distribution of cash-flows

Cumulative distribution of the cash-flows as a function of the rebalancing period of the hedging portfolio

 The efficiency of the hedging is verified if the hedging is continuously rebalanced (theoretical result in complete market)

Cash-flows standard deviation

Standard deviation of the cash-flows function of the rebalancing period of the hedging portfolio

$$\sigma_{\phi}^{2} \approx \frac{\pi}{4n} \left(\sigma \frac{\partial V_{0}}{\partial \sigma} \right)^{2}$$

n the number of hedging operations

- Theoretical result : standard deviation is proportional to the square of hedging period
 - For an hourly balancing: coefficient of variation is around 3%
 - For a daily balancing: coefficient of variation is around 9%
 - For a weekly balancing: coefficient of variation is around 24%

Risk aversion

Cumulative distribution of the cash-flows as a function of the rebalancing period of the hedging portfolio

 As a seller of the option, if we are not able to hedge more than once a day, we would ask a price depending of our risk aversion β

4 – Results when the market is incomplete: prices and volume are random

Cash-flows quantiles

Quantiles of the distribution of the cash-flows as a function of the rebalancing period of the hedging portfolio

Cumulative distribution of cash-flows

Cumulative distribution of the cash-flows as a function of the rebalancing period of the hedging portfolio

- Frequent balancing of the hedging portfolio is less efficient (influence of volume uncertainty)
- Negative cash-flows are possible (tail of distribution)

Why negative cash-flows?

- Example of a particular scenario
 - ◆ At the beginning of the period: moderate prices, average available power
 → we sell the delta to hedge the cash-flows of our option
 - At the end of the period
 - Prices increase → we should sell more...
 - ...but the forecast available power is decreasing → we buy, at possible higher prices than the prices we sold
 - Due to volume uncertainty, cash-flows linked to the exercise of the option may not compensate the cost of the hedging
 - In other words, this strategy lead us to sell on the forward market more energy than the amount we really have at maturity
 - The volume seen in the delta is the <u>expectation</u> of the volume at maturity

Introducing a volumetric risk aversion in the delta

- Assuming a big aversion to negative cash-flows, we may use a heuristic rule to limit the risks of such scenarios :
 - **o** Instead of defining the delta as the sensitivity of the expected cash-flows for any available energy P at maturity, we define it as the sensitivity of the expected cash-flows for a given quantile α of P : P_{α} .

$$\Delta_{t} = \frac{\partial E_{t} \left[\frac{P_{a} \left(S - K \right)^{+} \right]}{\partial F \left(t, T \right)}$$

- **o** If α is small enough, we limit the risk of "selling more than we have"
- Same kind of approach developed in "pricing volumetric risk", Kolos & Mardanov, Energy risk, october 2008, pp 54-60

Comparison of strategies for weekly hedging

Comparison of usual delta and volumetric risk aversion deltas

- As expected, the delta with volumetric risk aversion can limit the negative cash-flows (see following zoom on the tail)
- As a consequence, all the distribution of final cash-flows is changed

Zoom on the tail of the distributions

Comparison of usual delta and volumetric risk aversion deltas

Zoom on the tail

 \odot The lower α , the lower probability of negative cash-flows

Compromise between « extreme » risk and « normal » risk (30% quantile)

30% and 2 % quantiles of cash-flows for volumetric risk aversion deltas

 As the expected cash-flows remains the same, the cost for decreasing the extreme risks (negative cash-flows) is a reduction of gain in more likely scenarios

Pushing the extreme risk aversion to the limit

Extreme risk aversion deltas

With such an option, the only way of avoiding negative cash-flows
 (P=0) is not to hedge

5 – Conclusions

Main conclusions

- Even in complete market hypothesis, a realistic (non continuous) delta hedging strategy leads to residual risks that must be taken into account in pricing options
- With volume uncertainties, to shorten the rebalancing period of a delta hedging strategy reduces the variation of the cash-flows until a non compressible value due to the non-hedgeable volume uncertainty
- The hedging can be counter-productive (cash-flows can be negative because of conjunction of adverse prices/volume scenarios)
- These extreme risks can be limited (but not suppressed) while introducing a simple volumetric risk aversion heuristic rule in the delta calculation
 - It shows that a compromise between the reduction of extreme and more likely risks is needed
 - There is a big issue in the expression of risk aversion

For future studies (1/3): 2 categories of optimisation methods

- Optimisation under explicit risk constraints
 - Hedging strategy π such that :

$$\max_{\pi} E[CashFlows] \quad \text{under constraints} \quad \varphi[CashFlows] \leq \beta$$

- where φ gives the risk constraints
- Methods exist to take into account global constraints like EEaR (Extreme Earnings at Risk) or CVaR (Conditional Value at Risk), but
 - Local constraints or probability constraints are difficult to include in the problem
 - Solving this type of problems is generally time consuming (iterative methods)
- Maximisation of a utility function
 - **o** Hedging strategy π such that :

$$\max_{\pi} E[g(CashFlows)]$$

- Where g is a utility function which gives the risk aversion (typically : exponential functions which give penalties to adverse cash-flows)
 - The utility function is often complex is to define

For future studies (2/3)

- Simulation of hedging strategies
 - Simulation is a way to understand underlying mechanisms
 - Different hedging strategies which may take into account
 - Transaction costs
 - Liquidity issue market depth issue
 - Market Operational constraints which reduce the balancing frequency...
 - Back-testing over real data

For future studies (3/3)

- Use the link between risk factors: example in 1 dimension, correlation between forward price F and volume Q uncertainty
 - One portfolio with value V(F,Q), hedge C(F)

$$dV(F,Q) + dC(F) = \frac{\partial V}{\partial F} dF + \frac{\partial C}{\partial F} dF + \frac{\partial V}{\partial Q} dQ$$

- Gaussian log ratio for F and Q with volatility σ_F and σ_Q , correlation ρ
- dV + dC variance $\sigma_{dV+dC}^{2} = \left(\underbrace{\Delta_{F+C}}_{\Delta_{Q}+\Delta_{G}} \sigma_{F} F \right)^{2} + \left(\Delta_{Q} \sigma_{Q} Q \right)^{2} + 2\rho \Delta_{F+C} \Delta_{Q} \sigma_{F} \sigma_{Q} F Q$
- Position which minimises the variance of the evolution of the value of the hedged portfolio

$$\Delta_{F+C}^* = \underset{\Delta_{F+C}}{\operatorname{arg\,min}} \left(\sigma_{dV+dC}^2 \right) = -\rho \, \Delta_Q \, \frac{\sigma_Q Q}{\sigma_F F}$$

