Cross hedging with stochastic correlation

Stefan Ankirchner joint work with Gregor Heyne (Humboldt Universität zu Berlin)

EnBW Trading GmbH

April 17th, 2009 IHP, Paris

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Hedging with futures entails basis risk

Basis = price of the underlying - futures price

More generally: $\mathsf{Basis} = \mathsf{asset}/\mathsf{income}$ to be hedged - price of hedging instrument

Question: With how many TTF futures shall the gas power plant protect itself against increasing prices?

- ΔG_T = gas price change in first area
- ΔH_T = gas price change in second area

물 위 위 물 위 이 물

Optimal static hedging

- $\sigma_G = \text{st. deviation of } \Delta G_T$
- $\sigma_H = \text{st. deviation of } \Delta H_T$
- Correlation

$$\rho = \frac{\operatorname{Cov}(\Delta G_T, \Delta H_T)}{\sigma_G \sigma_H}$$

The variance minimizing hedge is given by

A

$$a = \frac{N_G}{N_H} \times \rho \frac{\sigma_G}{\sigma_H}$$

- 1. factor $\frac{N_G}{N_H}$ adjusts the units
- 2. factor so-called

hedge ratio =
$$\rho \frac{\sigma_G}{\sigma_H}$$

(see John C. Hull 'Options, Futures and other derivatives')

⊒⇒

	Bachelier model	Black-Scholes model
natural gas price change	$\Delta G_T = \sigma_G W_T$	$\Delta G_T = G_0(e^{\sigma_G W_T - \frac{\sigma^2}{2}T} - 1)$
hedge ratio	$ ho rac{\sigma_G}{\sigma_H}$	$\rho \frac{G_0 \sqrt{e^{\sigma_G^2 T} - 1}}{H_0 \sqrt{e^{\sigma_H^2 T} - 1}}$

Convergence

$$\lim_{T \downarrow 0} \rho \frac{G_0 \sqrt{e^{\sigma_G^2 T} - 1}}{H_0 \sqrt{e^{\sigma_H^2 T} - 1}} = \rho \frac{G_0}{H_0} \frac{\sigma_G}{\sigma_H}$$

= 'local variance hedge ratio'

∢ 臣 ▶

э

Basis risk matters

Hedging error in the Bachelier model:

- Hedging error = ΔG_T var minimizing hedge $\times \Delta H_T$
- Std. deviation

$$std(error) = \sqrt{1 - \rho^2} \sqrt{T} \sigma_G$$

• Example: If $\rho = 90\%$ then $\sqrt{1 - \rho^2} \approx 44\%$ of price risk remains!

Hedging of basket options entails basis risk

Two approches of hedging options with basis risk

Two optimality criteria when cross hedging options:

- Minimization of the quadratic hedging error
 - globally: mean variance hedging
 - Iocally: local risk minimization
- Maximization of exponential utility

Related literature

- Henderson, Valuation of claims on nontraded assets using utility maximization, 2002
- Musiela, Zariphopoulou, An example of indifference prices under exponential preferences, 2008
- Davis, Optimal hedging with basis risk, 2006
- A., Imkeller and dos Reis, Pricing and hedging of derivatives based on non-tradable underlyings, 2008
- Monoyios, Performance of utility-based strategies for hedging basis risk, 2004
- Hulley, McWalter, Quadratic hedging of basis risk, 2008

4 E b

- $h(I_T) =$ derivative of index I with pay-off function h
- X correlated traded asset
- $\blacktriangleright \ \rho = {\rm correlation}$

discounted processes:

$$dX_t = X_t((\mu_X - r)dt + \sigma_X dW_t^1)$$

$$dI_t = I_t((\mu_I - r)dt + \sigma_I(\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2))$$

문에 세련에 가운

Local risk minimizing cross hedge

$$dX_t = X_t((\mu_X - r)dt + \sigma_X dW_t^1)$$

$$dI_t = I_t((\mu_I - r)dt + \sigma_I(\rho dW_t^1 + \sqrt{1 - \rho^2} dW_t^2))$$

Theorem

The locally risk minimizing strategy ξ for the derivative $h(I_T)$ is given by

$$\begin{aligned} \xi(t, x, y) &= \rho \frac{y \sigma_I}{x \sigma_X} \frac{d}{dy} \tilde{E}[h(I_T^{t, y})] \\ &= local \ variance \ hedge \ ratio \ \times \ asset \ delta \end{aligned}$$

where \tilde{P} denotes the minimal martingale measure of X. Recall that

$$\frac{d\tilde{P}}{dP} = \mathcal{E}\left(-\frac{\mu_X - r}{\sigma_X} \cdot W^1\right)_T$$

- ⊒ - ►

Utility-based cross hedge

- $U(x) = -e^{-\eta x}$ exponential utility preferences
- $\pi = \text{optimal investment if no derivative in the investor's portfolio}$
- $\hat{\pi}$ = optimal investment if derivative $h(I_T)$ in the investor's portfolio

utility-based hedge $= \hat{\pi} - \pi$

Theorem

The utility-based hedge for the derivative $h(I_T)$ is given by

$$\xi(t, x, y) = \rho \frac{y \sigma_I}{x \sigma_X} \frac{d}{dy} p(t, y)$$

= local variance hedge ratio × indifference price

	utility-based approach	local risk minimization
Pros	only downside risk	quadratic integrability
Cons	exponential integrability	up and downside risk

delta

Stefan Ankirchner Cross hedging with stochastic correlation

э

Direct modelling as mean reverting process:

$$d
ho_t = \kappa(\vartheta -
ho_t)dt + lpha\sqrt{1 - (
ho_t)^2}\hat{W}_t$$
, with $lpha, \kappa > 0$, $\vartheta \in (-1, 1)$

Indirect modelling as mean reverting process:

- mapping of the correlation onto ℝ via a continuous bijection
 b: (-1,1) → ℝ
- $\rho_t = b^{-1}(U_t)$ and U is f.ex. a generalised Ornstein-Uhlenbeck

$$dU_t = a(\vartheta - U_t)dt + \sigma_U d\hat{W}_t,$$

where a > 0, $\vartheta \in \mathbb{R}$, $\sigma_U > 0$.

★ 프 ▶ - 프

- $h(I_T) =$ derivative of index I with pay-off function h
- ► X correlated traded asset

$$dX_t = X_t((\mu_X - r)dt + \sigma_X dW_t^1)$$

$$dI_t = I_t((\mu_I - r)dt + \sigma_I(\rho_t dW_t^1 + \sqrt{1 - \rho_t^2} dW_t^2))$$

$$d\rho_t = a(\rho_t)dt + g(\rho_t)(\gamma dW_t^1 + \delta dW_t^2 + \sqrt{1 - \gamma^2 - \delta^2} dW_t^3)$$

Optimality criterion: Local risk minimization

문에 수준에 가운

Theorem

Under some conditions, the locally risk minimizing strategy ξ for the derivative $h(I_{T})$ is given by

$$\xi(t, x, y, v) = \rho \frac{y\sigma_I}{x\sigma_X} \frac{d}{dy} \tilde{\mathbb{E}}[h(I_T^{t, y, v})] + \gamma \frac{g(v)}{x\sigma_X} \frac{d}{dv} \tilde{\mathbb{E}}[h(I_T^{t, y, v})]$$

where \tilde{P} denotes the minimal martingale measure of X.

Interpretation:

optimal hedge = local variance hedge ratio \times asset delta + correlation hedge ratio \times correlation delta

Questions:

- How to get the representation?
- Under which conditions may we differentiate under the integral?

★ Ξ → Ξ

FS decomposition via BSDEs

Standard method for deriving the local risk minimizing strategy is based on the **Föllmer-Schweizer decomposition**:

$$h(I_T) = C + \int_0^T \xi_s dX_s + L_T,$$

where

- L is a square-int. martingale w.r.t. P and $L_0 = 0$,
- ▶ $\langle L, W^1 \rangle = 0$, i.e. L is orthogonal w.r.t the martingale driving X

Let Y and Z be the solution of the BSDE

$$Y_t = h(I_T) - \int_t^T Z_s dW_s - \int_t^T Z_s^1 \frac{\mu_X - r}{\sigma_X} ds,$$

for $0 \leq t \leq T$.

Then the FS decomposition of $h(I_T)$ is given by

$$h(I_T) = Y_0 + \int_0^T \frac{Z_s^1}{\sigma_X X_s} dX_s + \int_0^T Z_s^2 dW_s^2 + \int_0^T Z_s^3 dW_s^3.$$

The solution of

$$Y_t = h(I_T) - \int_t^T Z_s dW_s - \int_t^T Z_s^1 \frac{\mu_X - r}{\sigma_X} ds, \qquad (1)$$

is given by

$$Y_t = \widetilde{\mathbb{E}}[h(I_T)|\mathcal{F}_t]$$

We will show that

$$Z_t = \sigma(t, I_t, \rho_t)^* \begin{pmatrix} \partial_y \psi(t, I_t, \rho_t) \\ \partial_v \psi(t, I_t, \rho_t) \end{pmatrix},$$

where

$$\psi(t, y, v) = \widetilde{\mathbb{E}}[h(I_T^{t, y, v})].$$

∢ 臣 ▶

э

$$\psi(t,y,v) = \tilde{\mathbb{E}}[h(I_T^{t,y,v})]$$

- 1. Under which conditions is $\psi(t, y, v)$ differentiable with respect to y and v?
- 2. Under which conditions are $I^{t,y,v}$ and $\rho^{t,v}$ differentiable with respect to y and v?
- 3. Under which conditions may we differentiate under the expectation?

< 注→ 注

Differentiability of I and ho

Denote
$$\bar{\rho}_s^{t,v} = \frac{d}{dv} \rho_s^{t,v}$$
 and $\bar{I}_s^{t,v} = \frac{d}{dv} I_s^{t,y,v}$

Assumption (H1) $\rho_t \in (-1, 1)$, for all $t \leq T$

Then

$$\bar{\rho}_s^{t,v} = 1 + \int_t^s a'(\rho_u^{t,v}) \bar{\rho}_u^{t,v} du + \int_t^s g'(\rho_u^{t,v}) \bar{\rho}_u^{t,v} d\hat{W}_u,$$

$$\begin{split} \bar{I}_{s}^{t,y,v} &= \int_{t}^{s} \bar{I}_{u}^{t,y,v} ((\mu_{l} - r) du + \sigma_{l} (\rho_{u}^{t,v} dW_{u}^{1} + \sqrt{1 - (\rho_{u}^{t,v})^{2}} dW_{u}^{2})) \\ &+ \int_{t}^{s} I_{u}^{t,y,v} \sigma_{l} (\bar{\rho}_{u}^{t,v} dW_{u}^{1} - \frac{\rho_{u}^{t,v}}{\sqrt{1 - (\rho_{u}^{t,v})^{2}}} \bar{\rho}_{u}^{t,v} dW_{u}^{2}). \end{split}$$

돌▶ ★ 돌▶ -

æ

Differentiability of I and ρ

$$\begin{split} \bar{I}_{s}^{t,y,v} &= \int_{t}^{s} \bar{I}_{u}^{t,y,v} ((\mu_{l} - r) du + \sigma_{l} (\rho_{u}^{t,v} dW_{u}^{1} + \sqrt{1 - (\rho_{u}^{t,v})^{2}} dW_{u}^{2})) \\ &+ \int_{t}^{s} I_{u}^{t,y,v} \sigma_{l} (\bar{\rho}_{u}^{t,v} dW_{u}^{1} - \frac{\rho_{u}^{t,v}}{\sqrt{1 - (\rho_{u}^{t,v})^{2}}} \bar{\rho}_{u}^{t,v} dW_{u}^{2}). \end{split}$$

It must hold:

$$\int_t^T \frac{(\bar{\rho}_s^{t,v})^2}{1-(\rho_s^{t,v})^2} du < \infty, \qquad P-a.s.$$

∢ 臣 ▶

æ

Differentiability of $\psi(t, y, v) = \tilde{\mathbb{E}}[h(I_T^{t,y,v})]$

(H2) There exists p > 1 such that for every $v_0 \in (-1, 1)$ there exists an open intervall $U \subset (-1, 1)$ of v_0 such that

$$\sup_{v\in U} \mathbb{E}\left[\int_t^T \left|\frac{(\bar{\rho}_s^{t,v})^2}{1-(\rho_s^{t,v})^2}\right|^p ds\right] < \infty.$$

Lemma

Let h be Lipschitz such that the weak derivative h' is Lebesgue-almost everywhere continuous. Under the Conditions (H1) and (H2) the partial derivative $\partial_v \psi(t, y, v)$ exists and is given by

$$\partial_{\mathbf{v}}\psi(t,\mathbf{y},\mathbf{v})=\tilde{\mathbb{E}}[h'(I_T^{t,\mathbf{y},\mathbf{v}})\overline{I}_T^{t,\mathbf{y},\mathbf{v}}].$$

< ∃ >

Representation of Z

We want to justify

$$Z_s^{t,y,v} = \sigma(s, I_s^{t,y,v}, \rho_s^{t,v})^* \begin{pmatrix} \partial_y \psi(s, I_s^{t,y,v}, \rho_s^{t,v}) \\ \partial_v \psi(s, I_s^{t,y,v}, \rho_s^{t,v}) \end{pmatrix}.$$

Problem: $\psi(s, x, v) = \tilde{\mathbb{E}}[h(I_T^{t,x,v})]$ is only locally Lipschitz continuous \implies no appeal to the chain rule of Malliavin calculus

Lemma

Assume that (H1) and (H2) hold, and that a and g are continuously differentiable on (-1, 1). Let h be Lipschitz such that the weak derivative h' is Lebesgue-almost everywhere continuous. Then

$$Z_{s}^{t,y,v} = \sigma(s, I_{s}^{t,y,v}, \rho_{s}^{t,v})^{*} \begin{pmatrix} \partial_{y}\psi(s, I_{s}^{t,y,v}, \rho_{s}^{t,v}) \\ \partial_{v}\psi(s, I_{s}^{t,y,v}, \rho_{s}^{t,v}) \end{pmatrix}.$$
 (2)

By an argument of Imkeller, Reveillac, Richter (2009) one can show (2) without the use of Malliavin calculus!

Theorem

Assume (H1) and (H2). Suppose that the coefficients a and g in the dynamics of ρ are continuously differentiable on (-1,1). Let h be Lipschitz with a.e. continuous weak derivative h'. Then, there exists a locally risk minimizing strategy ξ for the derivative $h(I_T)$, and

$$\xi(t, x, y, v) = v \frac{y\sigma_I}{x\sigma_X} \tilde{\mathbb{E}}[h'(I_T^{t, y, v})I_T^{t, 1, v}] + \frac{g(v)\gamma}{x\sigma_X} \tilde{\mathbb{E}}[h'(I_T^{t, y, v})\overline{I}_T^{t, y, v}],$$

with \tilde{P} denoting the minimal martingale measure of X.

Remark: Implementation via Monte-Carlo!

< ∃ >

How strong is condition (H2)?

(H2) There exists p > 1 such that for every $v_0 \in (-1,1)$ there exists an open intervall $U \subset (-1,1)$ of v_0 such that

$$\sup_{v\in U} \mathbb{E}\left[\int_t^T \left|\frac{(\bar{\rho}_s^{t,v})^2}{1-(\rho_s^{t,v})^2}\right|^p ds\right] < \infty.$$

Theorem

Let a and g be bounded with bounded derivatives. We assume that g(-1) = g(1) = 0, and that g does not have any roots in (-1, 1). If

$$\limsup_{x \uparrow 1} \frac{2a(x)(1-x)}{g^2(x)} < 0 \ and \ \liminf_{x \downarrow -1} \frac{2a(x)(1+x)}{g^2(x)} > 0,$$

then both Conditions (H1) and (H2) are satisfied.

< ∃ >

•
$$d\rho_t = \kappa(\vartheta - \rho_t)dt + \alpha(1 - \rho_t^2)\hat{W}_t$$
, with $\alpha, \kappa > 0, \ \vartheta \in (-1, 1)$

<ロ> <個> <ヨ> <ヨ>

Examples

•
$$d\rho_t = \kappa(\vartheta - \rho_t)dt + \alpha(1 - \rho_t^2)\hat{W}_t$$
, with $\alpha, \kappa > 0, \ \vartheta \in (-1, 1)$
• Set $\rho_t = b^{-1}(U_t)$, with

$$dU_t = a(\vartheta - U_t)dt + \sigma_U d\hat{W}_t,$$

where a > 0, $\vartheta \in \mathbb{R}$, $\sigma_U > 0$ and $b(x) = \frac{x}{\sqrt{1-x^2}}$.

·문▶ ★ 문▶ · · 문

Examples

•
$$d\rho_t = \kappa(\vartheta - \rho_t)dt + \alpha(1 - \rho_t^2)\hat{W}_t$$
, with $\alpha, \kappa > 0, \ \vartheta \in (-1, 1)$
• Set $\rho_t = b^{-1}(U_t)$, with

$$dU_t = a(\vartheta - U_t)dt + \sigma_U d\hat{W}_t,$$

where a > 0, $\vartheta \in \mathbb{R}$, $\sigma_U > 0$ and $b(x) = \frac{x}{\sqrt{1-x^2}}$.

•
$$d\rho_t = \kappa(\vartheta - \rho_t)dt + \alpha\sqrt{1 - \rho_t^2}\hat{W}_t$$
, with
 $\kappa \ge \frac{\alpha^2}{1 \pm \vartheta} \text{ and } -1 < \frac{\vartheta}{2} \pm \sqrt{\frac{\vartheta^2}{4} + \frac{\alpha^2}{2\kappa}} < 1,$

also fulfills Conditions (H1) and (H2)!

▲臣▶ ▲臣▶ 臣 のへ⊙

• Correlation is random.

Explicit hedge formula under the assumption
 (H2) There exists p > 1 such that for every v₀ ∈ (-1, 1) there exists an open intervall U ⊂ (-1, 1) of v₀ such that

$$\sup_{v\in U} \mathbb{E}[\int_t^T \left|\frac{(\bar{\rho}_s^{t,v})^2}{1-(\rho_s^{t,v})^2}\right|^p ds] < \infty.$$

▶ (H2) is fulfilled by a large class of models for correlation dynamics.

★ 프 ▶ - 프

Thank you for your attention!

∢ 臣 ▶

æ