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Hedging with futures entails basis risk
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Basis risk

Basis = price of the underlying - futures price

More generally: Basis = asset/income to be hedged - price of hedging
instrument

Question: With how many TTF futures shall the gas power plant protect
itself against increasing prices?

∆GT = gas price change in first area
∆HT = gas price change in second area
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Optimal static hedging

I σG = st. deviation of ∆GT

I σH = st. deviation of ∆HT

I Correlation

ρ =
Cov(∆GT ,∆HT )

σGσH

The variance minimizing hedge is given by

a =
NG

NH
× ρσG

σH

• 1. factor NG

NH
adjusts the units

• 2. factor so-called
hedge ratio = ρ

σG

σH

(see John C. Hull ’Options, Futures and other derivatives’)
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Local versus global risk minimization

Bachelier model Black-Scholes model

natural gas price change ∆GT = σG WT ∆GT = G0(eσG WT−σ2

2 T − 1)

hedge ratio ρσG

σH
ρ

G0

q
eσ2

G
T−1

H0

q
eσ2

H
T−1

Convergence

lim
T↓0

ρ
G0

√
eσ

2
G T − 1

H0

√
eσ

2
HT − 1

= ρ
G0

H0

σG

σH

= ’local variance hedge ratio’
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Basis risk matters

Hedging error in the Bachelier model:

I Hedging error = ∆GT − var minimizing hedge ×∆HT

I Std. deviation
std(error) =

√
1− ρ2

√
TσG

I Example: If ρ = 90% then
√

1− ρ2 ≈ 44% of price risk remains!
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Hedging of basket options entails basis risk
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Two approches of hedging options with basis risk

Two optimality criteria when cross hedging options:

I Minimization of the quadratic hedging error
I globally: mean variance hedging
I locally: local risk minimization

I Maximization of exponential utility

Related literature
I Henderson, Valuation of claims on nontraded assets using utility maximization,

2002

I Musiela, Zariphopoulou, An example of indifference prices under exponential
preferences, 2008

I Davis, Optimal hedging with basis risk, 2006

I A., Imkeller and dos Reis, Pricing and hedging of derivatives based on
non-tradable underlyings, 2008

I Monoyios, Performance of utility-based strategies for hedging basis risk, 2004

I Hulley, McWalter, Quadratic hedging of basis risk, 2008

Stefan Ankirchner Cross hedging with stochastic correlation



A GBM model

I h(IT ) = derivative of index I with pay-off function h

I X correlated traded asset

I ρ = correlation

discounted processes:

dXt = Xt((µX − r)dt + σX dW 1
t )

dIt = It((µI − r)dt + σI (ρdW 1
t +

√
1− ρ2dW 2

t ))
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Local risk minimizing cross hedge

dXt = Xt((µX − r)dt + σX dW 1
t )

dIt = It((µI − r)dt + σI (ρdW 1
t +

p
1− ρ2dW 2

t ))

Theorem
The locally risk minimizing strategy ξ for the derivative h(IT ) is given by

ξ(t, x , y) = ρ
yσI

xσX

d

dy
Ẽ [h(I t,y

T )]

= local variance hedge ratio × asset delta

where P̃ denotes the minimal martingale measure of X . Recall that

dP̃

dP
= E

(
−µX − r

σX
·W 1

)
T
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Utility-based cross hedge

I U(x) = −e−ηx exponential utility preferences

I π = optimal investment if no derivative in the investor’s portfolio

I π̂ = optimal investment if derivative h(IT ) in the investor’s portfolio

utility-based hedge = π̂ − π

Theorem
The utility-based hedge for the derivative h(IT ) is given by

ξ(t, x , y) = ρ
yσI

xσX

d

dy
p(t, y)

= local variance hedge ratio × indifference price delta

utility-based approach local risk minimization
Pros only downside risk quadratic integrability
Cons exponential integrability up and downside risk
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Correlation is random
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Correlation is mean reverting

Direct modelling as mean reverting process:

dρt = κ(ϑ− ρt)dt + α
√

1− (ρt)2Ŵt , with α, κ > 0, ϑ ∈ (−1, 1)

Indirect modelling as mean reverting process:

I mapping of the correlation onto R via a continuous bijection
b : (−1, 1)→ R

I ρt = b−1(Ut) and U is f.ex. a generalised Ornstein-Uhlenbeck

dUt = a(ϑ− Ut)dt + σUdŴt ,

where a > 0, ϑ ∈ R, σU > 0.
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A GBM model

I h(IT ) = derivative of index I with pay-off function h

I X correlated traded asset

dXt = Xt((µX − r)dt + σX dW 1
t )

dIt = It((µI − r)dt + σI (ρtdW 1
t +

√
1− ρ2

t dW 2
t ))

dρt = a(ρt)dt + g(ρt)(γdW 1
t + δdW 2

t +
√

1− γ2 − δ2dW 3
t )

Optimality criterion: Local risk minimization
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Local risk minimizing cross hedge

Theorem
Under some conditions, the locally risk minimizing strategy ξ for the
derivative h(IT ) is given by

ξ(t, x , y , v) = ρ
yσI

xσX

d

dy
ĨE[h(I t,y ,v

T )] + γ
g(v)

xσX

d

dv
ĨE[h(I t,y ,v

T )]

where P̃ denotes the minimal martingale measure of X .

Interpretation:

optimal hedge = local variance hedge ratio × asset delta
+ correlation hedge ratio× correlation delta

Questions:
I How to get the representation?

I Under which conditions may we differentiate under the integral?
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FS decomposition via BSDEs

Standard method for deriving the local risk minimizing strategy is based
on the Föllmer-Schweizer decomposition:

h(IT ) = C +

∫ T

0

ξsdXs + LT ,

where
I L is a square-int. martingale w.r.t. P and L0 = 0,
I 〈L,W 1〉 = 0, i.e. L is orthogonal w.r.t the martingale driving X

Let Y and Z be the solution of the BSDE

Yt = h(IT )−
∫ T

t

ZsdWs −
∫ T

t

Z 1
s

µX − r

σX
ds,

for 0 ≤ t ≤ T .

Then the FS decomposition of h(IT ) is given by

h(IT ) = Y0 +

∫ T

0

Z 1
s

σX Xs
dXs +

∫ T

0

Z 2
s dW 2

s +

∫ T

0

Z 3
s dW 3

s .
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Explicit solution of linear BSDE

The solution of

Yt = h(IT )−
∫ T

t

ZsdWs −
∫ T

t

Z 1
s

µX − r

σX
ds, (1)

is given by
Yt = ĨE[h(IT )|Ft ]

We will show that

Zt = σ(t, It , ρt)∗
(
∂yψ(t, It , ρt)
∂vψ(t, It , ρt)

)
,

where
ψ(t, y , v) = ĨE[h(I t,y ,v

T )].
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Technical details

ψ(t, y , v) = ĨE[h(I t,y ,v
T )]

1. Under which conditions is ψ(t, y , v) differentiable with respect to y
and v?

2. Under which conditions are I t,y ,v and ρt,v differentiable with respect
to y and v?

3. Under which conditions may we differentiate under the expectation?
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Differentiability of I and ρ

Denote ρ̄t,v
s = d

dv ρ
t,v
s and Ī t,v

s = d
dv I t,y ,v

s

Assumption (H1) ρt ∈ (−1, 1), for all t ≤ T

Then

ρ̄t,v
s = 1 +

∫ s

t

a′(ρt,v
u )ρ̄t,v

u du +

∫ s

t

g ′(ρt,v
u )ρ̄t,v

u dŴu,

Ī t,y ,v
s =

∫ s

t

Ī t,y ,v
u ((µI − r)du + σI (ρ

t,v
u dW 1

u +

√
1− (ρt,v

u )2dW 2
u ))

+

∫ s

t

I t,y ,v
u σI (ρ̄

t,v
u dW 1

u −
ρt,v

u√
1− (ρt,v

u )2

ρ̄t,v
u dW 2

u ).
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Differentiability of I and ρ

Ī t,y ,v
s =

∫ s

t

Ī t,y ,v
u ((µI − r)du + σI (ρ

t,v
u dW 1

u +

√
1− (ρt,v

u )2dW 2
u ))

+

∫ s

t

I t,y ,v
u σI (ρ̄

t,v
u dW 1

u −
ρt,v

u√
1− (ρt,v

u )2

ρ̄t,v
u dW 2

u ).

It must hold: ∫ T

t

(ρ̄t,v
s )2

1− (ρt,v
s )2

du <∞, P − a.s.
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Differentiability of ψ(t, y , v) = ĨE[h(I t,y ,v
T )]

(H2) There exists p > 1 such that for every v0 ∈ (−1, 1) there exists an
open intervall U ⊂ (−1, 1) of v0 such that

sup
v∈U

IE[

∫ T

t

∣∣∣∣ (ρ̄t,v
s )2

1− (ρt,v
s )2

∣∣∣∣p ds] <∞.

Lemma
Let h be Lipschitz such that the weak derivative h′ is Lebesgue-almost
everywhere continuous. Under the Conditions (H1) and (H2) the partial
derivative ∂vψ(t, y , v) exists and is given by

∂vψ(t, y , v) = ĨE[h′(I t,y ,v
T )Ī t,y ,v

T ].
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Representation of Z

We want to justify

Z t,y ,v
s = σ(s, I t,y ,v

s , ρt,v
s )∗

(
∂yψ(s, I t,y ,v

s , ρt,v
s )

∂vψ(s, I t,y ,v
s , ρt,v

s )

)
.

Problem: ψ(s, x , v) = ĨE[h(I t,x,v
T )] is only locally Lipschitz continuous

=⇒ no appeal to the chain rule of Malliavin calculus

Lemma
Assume that (H1) and (H2) hold, and that a and g are continuously
differentiable on (−1, 1). Let h be Lipschitz such that the weak
derivative h′ is Lebesgue-almost everywhere continuous. Then

Z t,y ,v
s = σ(s, I t,y ,v

s , ρt,v
s )∗

(
∂yψ(s, I t,y ,v

s , ρt,v
s )

∂vψ(s, I t,y ,v
s , ρt,v

s )

)
. (2)

By an argument of Imkeller, Reveillac, Richter (2009) one can show (2)
without the use of Malliavin calculus!
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Main results

Theorem
Assume (H1) and (H2). Suppose that the coefficients a and g in the
dynamics of ρ are continuously differentiable on (−1, 1). Let h be
Lipschitz with a.e. continuous weak derivative h′. Then, there exists a
locally risk minimizing strategy ξ for the derivative h(IT ), and

ξ(t, x , y , v) = v
yσI

xσX
ĨE[h′(I t,y ,v

T )I t,1,v
T ] +

g(v)γ

xσX
ĨE[h′(I t,y ,v

T )Ī t,y ,v
T ],

with P̃ denoting the minimal martingale measure of X .

Remark: Implementation via Monte-Carlo!
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Main results

How strong is condition (H2)?
(H2) There exists p > 1 such that for every v0 ∈ (−1, 1) there exists an
open intervall U ⊂ (−1, 1) of v0 such that

sup
v∈U

IE[

∫ T

t

∣∣∣∣ (ρ̄t,v
s )2

1− (ρt,v
s )2

∣∣∣∣p ds] <∞.

Theorem
Let a and g be bounded with bounded derivatives. We assume that
g(−1) = g(1) = 0, and that g does not have any roots in (−1, 1). If

lim sup
x↑1

2a(x)(1− x)

g 2(x)
< 0 and lim inf

x↓−1

2a(x)(1 + x)

g 2(x)
> 0,

then both Conditions (H1) and (H2) are satisfied.
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Examples

I dρt = κ(ϑ− ρt)dt + α(1− ρ2
t )Ŵt , with α, κ > 0, ϑ ∈ (−1, 1)

I Set ρt = b−1(Ut), with

dUt = a(ϑ− Ut)dt + σUdŴt ,

where a > 0, ϑ ∈ R, σU > 0 and b(x) = x√
1−x2

.

I dρt = κ(ϑ− ρt)dt + α
√

1− ρ2
t Ŵt , with

κ ≥ α2

1± ϑ
and − 1 <

ϑ

2
±
√
ϑ2

4
+
α2

2κ
< 1,

also fulfills Conditions (H1) and (H2)!
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Conclusions

I Correlation is random.

I Explicit hedge formula under the assumption

(H2) There exists p > 1 such that for every v0 ∈ (−1, 1) there
exists an open intervall U ⊂ (−1, 1) of v0 such that

sup
v∈U

IE[

∫ T

t

∣∣∣∣ (ρ̄t,v
s )2

1− (ρt,v
s )2

∣∣∣∣p ds] <∞.

I (H2) is fulfilled by a large class of models for correlation dynamics.
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Thank you for your attention!
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