Limits of Limits of Arbitrage Theory and Evidence

Johan Hombert David Thesmar

ENSAE-CREST, HEC&CEPR

May 15, 2009

Johan Hombert, David Thesmar (ENSAE-CREST, HE Limits of Limits of Arbitrage Theory and Evidence

May 15, 2009 1 / 26

motivation 1/2

- basic question: why/when do asset prices deviate from fundamentals?
- economic literature on "limits to arbitrage" (Shleifer&Vishny, Gromb&Vayanos, Brunnermeier&Pedersen)
 - prices deviate
 - arbitrageurs lose capital (equity)
 - they unwind their positions
 - oprices deviate further

→ why not increase positions if arbitrage deviates?

• key assumption: arbitrageurs cannot set-up contingent financing this paper: assumes ex ante optimal contracting / derives testable predictions / tests them

motivation 2/2

hedge funds

- Iock-up periods: 21% of funds have 1 year lock-up
- redemption periods: monthly (50%), quarterly (30%)
- Inotice period: 1 month (30%)
- side pockets, gates

• to some extent: private equity funds, closed end funds

- LTCM: 3 year lock-up, \$1bn credit facility
 - ⇒ not useful to withstand the crisis, but better for short term shocks (rather: the 98 or '04 convertible arb meltdown)

FIGURE 3. PRICE-TO-THEORETICAL-VALUE OF CONVERTIBLE BONDS, AND RETURN OF CONVERTIBLE BOND HEDGE FUNDS (1997/12-1999/12)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

model

Johan Hombert, David Thesmar (ENSAE-CREST, HE Limits of Limits of Arbitrage Theory and Evidence

model

Image: arbitrageurs operate on the same market, which clears

- model
 - Image: arbitrageurs operate on the same market, which clears
 - Itechnology: arbitrageurs make effort to deal with "bad states"

- model
 - Image and the same market, which clears
 - Itechnology: arbitrageurs make effort to deal with "bad states"
 - Contracts: arbitrageur secure (optimal) financing contingent on past performance

- model
 - Image and the same market, which clears
 - Itechnology: arbitrageurs make effort to deal with "bad states"
 - contracts: arbitrageur secure (optimal) financing contingent on past performance
- at equilibrium:
 - contingent financing contract solve the effort-making problem
 - in bad states, assets are underpriced & (past) returns are lower
 - some funds ("illiquid") receive capital in bad states, others ("liquid") don't

- model
 - Imarket: arbitrageurs operate on the same market, which clears
 - Itechnology: arbitrageurs make effort to deal with "bad states"
 - contracts: arbitrageur secure (optimal) financing contingent on past performance
- at equilibrium:
 - contingent financing contract solve the effort-making problem
 - in bad states, assets are underpriced & (past) returns are lower
 - some funds ("illiquid") receive capital in bad states, others ("liquid") don't
- predictions on HF returns
 - returns of "illiquid" funds rebound more when past performance is low
 - \rightarrow test on HF data ("illiquid" = impediments to withdrawal)

related literature 1/2

theory literature on limits to arbitrage

- Shleifer&Vishny, Gromb&Vayanos, Acharya&Viswanathan, Brunnermeier&Pedersen: endogenous prices lead to destabilizing feedback we have optimal capital structure choice => stabilizing feedback in our model
- Stein(05): prices not endogenous: we have endogenous asset prices ⇒ this makes arbitrage easier to sustain
- Stein(09): endogenous capital structure of arbitrageurs we endogenize the cost of contingent financing (getting capital in bad state of nature depends on how you deal with it)
 - + predictions on fund returns, that we test.
- Campbell&Viceira: long term investors should buy mean reverting assets in our model, this is true in equilibrium

related literature 2/2

• empirical literature on (mostly hedge) funds

- Coval&Stafford: fire sales by mutual funds depress prices we look at the impact on performance & avoid 13fs we look at funds that do not have to fire sell
- Agarwal&al, Aragon: impediments to withdrawal ⇒ illiquidity premium for investors

we ask how issuers deliver this premium: they provide liquidity (evidence from convertible arb by Agarwal&al, Choi&al)

● Aragon, Ding&al, Liang&Park: lock-ups ⇒ smooth HF returns we have opposite results, because we work @ annual frequency

outline of the Talk

motivation

2 model

tests

conclusion

model 1/3

- an asset in supply = 1, which pays off V at the last date
- competitive risk neutral investors
- continuum of fund manager, equity A
- financing contract is optimal
 - organizes capital allocation
 - contingent on date / state of nature / past fund returns

< ロト < 同ト < ヨト < ヨ

model 2/3 t=0: contracting stage

• contract = funds entrusted I (t = 1) and I_U , I_M , I_D (t = 2)

model 2/3

t=0: contracting stage

• contract = funds entrusted I (t = 1) and I_U, I_M, I_D (t = 2)

t=1: info. acquisition + first purchase

- manager's (no) effort \Rightarrow "good" manager with proba. μ $(\mu \Delta \mu)$
- managers buy asset using contractual cash *I*.
- asset market clears at price P

・ロト ・四ト ・ヨト ・ヨト

model 2/3

t=0: contracting stage

• contract = funds entrusted I (t = 1) and I_U, I_M, I_D (t = 2)

t=1: info. acquisition + first purchase

- manager's (no) effort \Rightarrow "good" manager with proba. μ $(\mu \Delta \mu)$
- managers buy asset using contractual cash *I*.
- asset market clears at price P

t=2: state of nature $\in \{U, M, D\}$ revealed + second purchase

- in states M and D: a "wrong" asset with PV 0 appears state M: "right" asset selected with proba µ state D: "right" asset selected by good managers only
- $\bullet\,$ managers trade assets, have contractual cash $I_U,\ I_M,\ {\rm or}\ I_D$
- asset market clears at P_U , P_M , or P_D

イロト 不得下 イヨト イヨト 二日

model 2/3

t=0: contracting stage

ullet contract = funds entrusted I (t = 1) and I_U, I_M, I_D (t = 2)

t=1: info. acquisition + first purchase

- manager's (no) effort \Rightarrow "good" manager with proba. μ $(\mu \Delta \mu)$
- managers buy asset using contractual cash *I*.
- asset market clears at price P

t=2: state of nature $\in \{U, M, D\}$ revealed + second purchase

- in states M and D: a "wrong" asset with PV 0 appears state M: "right" asset selected with proba µ state D: "right" asset selected by good managers only
- $\bullet\,$ managers trade assets, have contractual cash $I_U,\ I_M,\ {\rm or}\ I_D$
- asset market clears at P_U , P_M , or P_D

t=3: "right" asset payoff:

• V

• state M, D: only V - B pledgeable to investor (unmodelled M.H.)

model 3/3

• we solve in 2 steps

Johan Hombert, David Thesmar (ENSAE-CREST, HE Limits of Limits of Arbitrage Theory and Evidence

model 3/3

- we solve in 2 steps
- for given expected prices P, P_U, P_M, P_D, we find the optimal contract I, I_U, I_M, I_D

model 3/3

- we solve in 2 steps
- for given expected prices P, P_U, P_M, P_D, we find the optimal contract I, I_U, I_M, I_D
- Write the market clearing conditions to solve for prices

<ロト </p>

optimal contract 1/2

• maximize fund NPV given prices P, P_U , P_M , P_D :

$$\max_{\text{effort},I,I_{U},I_{M},I_{D}} I \underbrace{\left[\lambda_{U}P_{U} + \lambda_{M}P_{M} + \lambda_{D}P_{D} - P \right]}_{\text{date 1 NPV}} + \lambda_{U}I_{U} \underbrace{\left[V - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{M}I_{M} \underbrace{\left[\mu V - P_{M} \right]}_{\text{date 2/M NPV}} + \lambda_{D}I_{D} \underbrace{\left[\rho V - P_{D} \right]}_{\text{date 2/D NPV}} + \lambda_{U}I_{U} \underbrace{\left[V - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{M}I_{M} \underbrace{\left[\mu V - P_{M} \right]}_{\text{date 2/M NPV}} + \lambda_{D}I_{D} \underbrace{\left[\rho V - P_{D} \right]}_{\text{date 2/D NPV}} + \lambda_{U}I_{U} \underbrace{\left[V - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text{date 2/U NPV}} + \lambda_{U}I_{U} \underbrace{\left[\nu - P_{U} \right]}_{\text$$

where $\rho = \mu$ if high effort or $\mu - \Delta \mu$ if low effort

optimal contract 1/2

۲

• maximize fund NPV given prices P, P_U , P_M , P_D :

$$\underset{\text{effort,}I,I_{U},I_{M},I_{D}}{\max} I \underbrace{ [\lambda_{U}P_{U} + \lambda_{M}P_{M} + \lambda_{D}P_{D} - P]}_{\text{date 1 NPV}} \\ + \lambda_{U}I_{U} \underbrace{ [V - P_{U}]}_{\text{date 2/U NPV}} + \lambda_{M}I_{M} \underbrace{ [\mu V - P_{M}]}_{\text{date 2/M NPV}} + \lambda_{D}I_{D} \underbrace{ [\rho V - P_{D}]}_{\text{date 2/D NPV}} \\ \text{where } \rho = \mu \text{ if high effort or } \mu - \Delta\mu \text{ if low effort} \\ \text{s.t. (IR) income pledgeable to investors} \geq 0:$$

$$\begin{aligned} A + I \left[\lambda_U P_U + \lambda_M P_M + \lambda_D P_D - P \right] \\ + \lambda_U I_U \left[V - P_U \right] + \lambda_M I_M \left[\mu(V - B) - P_M \right] + \lambda_D I_D \left[\rho(V - B) - P_D \right] \geq 0 \end{aligned}$$

optimal contract 1/2

۲

• maximize fund NPV given prices P, P_U , P_M , P_D :

$$\max_{\text{effort}, l, l_U, l_M, l_D} I \underbrace{\left[\lambda_U P_U + \lambda_M P_M + \lambda_D P_D - P \right]}_{\text{date 1 NPV}} + \lambda_U l_U \underbrace{\left[V - P_U \right]}_{\text{date 2/U NPV}} + \lambda_M I_M \underbrace{\left[\mu V - P_M \right]}_{\text{date 2/M NPV}} + \lambda_D I_D \underbrace{\left[\rho V - P_D \right]}_{\text{date 2/D NPV}}$$
where $\rho = \mu$ if high effort or $\mu - \Delta \mu$ if low effort
s.t. (IR) income pledgeable to investors ≥ 0 :
 $A + I [\lambda_U P_U + \lambda_M P_M + \lambda_D P_D - P]$

$$+\lambda_U I_U [V - P_U] + \lambda_M I_M [\mu(V - B) - P_M] + \lambda_D I_D [\rho(V - B) - P_D] \ge 0$$

• and (IC) managers supposed to exert effort do so:

$$\lambda_D(\Delta \mu) BI_D \ge C$$
 if effort = C

optimal contract 1/2

۲

6

• maximize fund NPV given prices P, P_U , P_M , P_D :

$$\max_{\text{effort}, I, I_U, I_M, I_D} I \underbrace{[\lambda_U P_U + \lambda_M P_M + \lambda_D P_D - P]}_{\text{date 1 NPV}} \\ + \lambda_U I_U \underbrace{[V - P_U]}_{\text{date 2/U NPV}} + \lambda_M I_M \underbrace{[\mu V - P_M]}_{\text{date 2/M NPV}} + \lambda_D I_D \underbrace{[\rho V - P_D]}_{\text{date 2/D NPV}} \\ \text{where } \rho = \mu \text{ if high effort or } \mu - \Delta\mu \text{ if low effort} \\ \text{s.t. (IR) income pledgeable to investors} \geq 0:$$

$$\begin{aligned} A + I \left[\lambda_U P_U + \lambda_M P_M + \lambda_D P_D - P \right] \\ + \lambda_U I_U \left[V - P_U \right] + \lambda_M I_M \left[\mu(V - B) - P_M \right] + \lambda_D I_D \left[\rho(V - B) - P_D \right] \geq 0 \end{aligned}$$

• and (IC) managers supposed to exert effort do so:

$$\lambda_D(\Delta \mu) BI_D \ge C$$
 if effort = C

$$\begin{array}{ll} \text{at equilibrium:} \\ P = \lambda_U P_U + \lambda_M P_M + \lambda_D P_D \\ P_U = V \\ P_M, \ P_D \in (\mu(V-B), \mu V] \end{array} \begin{array}{ll} \text{otherwise } I = \pm \infty \\ \text{otherwise } I_U = \pm \infty \\ \text{otherwise } I_D, \ I_M = \pm \infty \end{array}$$

optimal contract 2/2

- fund managers want to raise infinite funds, but pledgeable income is scarce
 mot for I or I_U: no agency problem
 - \implies but allocate it between state *M* and state *D*:

P_M < P_D
$$\rightarrow$$
 all funds invest in *M* only: $I_D = 0$
 $\frac{\mu}{\mu - \Delta \mu} P_D < P_M \rightarrow$ all funds invest in *D* only: $I_M = 0$
 P_D < P_M < $\frac{\mu}{\mu - \Delta \mu} P_D \rightarrow$ high effort funds have $I_D > 0$; low effort have $I_M > 0$
 \Rightarrow high (low) effort funds have comparative advantage in state *D* (*M*)
 \Rightarrow only case 3 can be an equilibrium
 \Rightarrow two types of funds exist at equilibrium

asset market equilibrium 1/3

• α = fraction high effort funds

asset market equilibrium 1/3

- α = fraction high effort funds
- write down asset market equilibrium in all states:

$$P = \lambda_U . P_U + \lambda_M . P_M + \lambda_D . P_D$$
$$P_U = V$$
$$P_M = \mu (V - B) + \frac{\mu (1 - \alpha) A}{\lambda}$$
$$P_D = \mu (V - B) + \frac{\mu \alpha A}{\varepsilon}$$

asset market equilibrium 1/3

- α = fraction high effort funds
- write down asset market equilibrium in all states:

$$P = \lambda_U . P_U + \lambda_M . P_M + \lambda_D . P_D$$

$$P_U = V$$

$$P_M = \mu (V - B) + \frac{\mu (1 - \alpha) A}{\lambda}$$

$$P_D = \mu (V - B) + \frac{\mu \alpha A}{\varepsilon}$$

• $\alpha \iff$ indifferent (high effort + $I_D > 0$) & (low effort + $I_M > 0$):

$$\frac{\varepsilon}{\alpha} - \frac{C}{B} = \frac{\lambda}{1 - \alpha}$$

asset market equilibrium 2/3

• underpricing in state D: $P_D < P_M$ even though same expected payoff = μV else, no manager acquires information both prices are lower than P_U

asset market equilibrium 2/3

• underpricing in state D: $P_D < P_M$ even though same expected payoff = μV else, no manager acquires information both prices are lower than P_U

● at equilibrium, two types of funds coexist low effort funds with $I_M > 0$ high effort funds with $I_D > 0$ → high effort = receiving funds when past performance $P_D - P$ is very low

= impediment to withdrawals

 \longrightarrow in the model: ex ante & ex post optimal

< ロ > < 同 > < 回 > < 回 >

asset market equilibrium 3/3

testable implication

• mean reversion stronger in high effort funds
$$\begin{split} & E(R_3|R_2 \text{ is low, } I_D > 0) > E(R_3|R_2 \text{ is low, } I_D = 0 \\ & E(R_3|R_2 \text{ is high, } I_D > 0) = E(R_3|R_2 \text{ is high, } I_D = 0) \\ & \Rightarrow \Delta MR \text{ is asymmetric (only is past returns are low)} \\ & \Rightarrow \text{ does not depend on } \mu < 1 \text{, also true for } \mu = 1 \\ & (\text{because } P_D < P_M) \end{split}$$

< ロ > < 同 > < 回 > < 回 >

 EurekaHedge: ~6,000 funds, 1993-2007 annual net-of-fee returns annual net-of-fee AUMs lock-up period (Yes=1), Redemption+notice period (≥3months=1)

 EurekaHedge: ~6,000 funds, 1993-2007 annual net-of-fee returns annual net-of-fee AUMs lock-up period (Yes=1), Redemption+notice period (≥3months=1)

• compute net inflows:

net flows_{*it*} =
$$\frac{AUM_{it} - AUM_{it-1}}{AUM_{it-1}}$$
 - returns_{*it*}

for fund i at data t.

 EurekaHedge: ~6,000 funds, 1993-2007 annual net-of-fee returns annual net-of-fee AUMs lock-up period (Yes=1), Redemption+notice period (≥3months=1)

• compute net inflows:

net flows_{*it*} =
$$\frac{AUM_{it} - AUM_{it-1}}{AUM_{it-1}}$$
 - returns_{*it*}

for fund *i* at data *t*.

 we restrict ourselves to funds with AUM>\$20m 21% have lock-ups 38% have redemption+notice > 3 months noisy info (no side letters)

- 4 同 ト 4 ヨ ト 4 ヨ ト

duration of capital: descriptive statistics

mean earliest possible withdrawal of AUM =

notice + (redemption/2) + past inflows x remaining period under lock-up

A (1) × (2) ×

step 1: impediment to withdrawals prevent outflows

• we run the following regression (table 2)

 $\mathsf{net} \; \mathsf{outflow}_{it} = \alpha_i + \beta . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} + \gamma . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} \times \mathsf{impediment}_i + \varepsilon_{it}$

for fund *i* at date *t*. ε_{it} are assumed correlated by *t* or *i*. $1_{\{r_{it-1} < r_{t-1}^{rf}\}} = 1$ if the fund's return at t-1 was below the risk free rate net outflows_{it} = net inflow_{it} × (net inflow_{it} < 0)

step 1: impediment to withdrawals prevent outflows

• we run the following regression (table 2)

 $\mathsf{net} \; \mathsf{outflow}_{it} = \alpha_i + \beta . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} + \gamma . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} \times \mathsf{impediment}_i + \varepsilon_{it}$

for fund *i* at date *t*. ε_{it} are assumed correlated by *t* or *i*. $1_{\{r_{it-1} < r_{t-1}^{rf}\}} = 1$ if the fund's return at t - 1 was below the risk free rate net outflows_{it} = net inflow_{it} × (net inflow_{it} < 0)

- γ is positive statistically significant: after low performance
 - without lock up: outflows = 13% AUM
 - with lock up: outflows = 8% AUM
 - with > quarterly redemption: flows = 9% AUM

イロト 不得下 イヨト イヨト

mean reversion in returns stronger with impediments to withdrawal $1/3\,$

• first, we run the following regression:

$$r_{it} = \alpha_i + \beta . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} + \gamma . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} \times \mathsf{Impediment}_i + \varepsilon_{it}$$

mean reversion in returns stronger with impediments to withdrawal 1/3

• first, we run the following regression:

$$r_{it} = \alpha_i + \beta . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} + \gamma . \mathbf{1}_{\left\{r_{it-1} < r_{t-1}^f\right\}} \times \mathsf{Impediment}_i + \varepsilon_{it}$$

- $\bullet \ \gamma$ negative and statistically significant. Following bad performance
 - without lock-up: return = +3 ppt
 - with lock up: return = +8 ppt
 - with long redemption period: return = +7ppt (robust to accounting for fund death)
 - \implies but this is no evidence of asymmetry \rightarrow

mean reversion in returns stronger with impediments to withdrawal $2/3\,$

asymmetry: only present conditional on bad states of nature

Dependent variable	r_{it}		
Impediment to withdrawal	None	Lock Up	Quart. Red.
	(1)	(2)	(3)
$(r_{it-1} < r_{t-1}^{rf})$	3.0*	1.8	2.8
	(1.7)	(1.9)	(1.7)
$(r_{it-1}>20\%)$	-2.7^{*}	-2.9*	-2.1
	(1.5)	(1.5)	(2.0)
$(r_{it-1} < r_{t-1}^{rf})$	-	5.0***	2.8***
\times Impediment _i		(1.4)	(0.8)
$(r_{it-1}>20\%)$	-	0.5	-1.0
\times Impediment _i		(1.0)	(2.1)
Fund FE	Yes	Yes	Yes
Observations	4,541	4,412	3,902
$Adj. R^2$	0.48	0.48	0.49

・ロト ・四ト ・ヨト ・ヨト

mean reversion in returns stronger with impediments to withdrawal 3/3

not driven by attrition / fund death

Dependent variable	Exit_{it}			
Impediment to withdrawal	Lockup	Quarterly	Lockup	Quarterly
		Redemption		Redemption
	(1)	(2)	(3)	(4)
$Impediment_i$	-	-	-0.01**	-0.01*
			(0.00)	(0.00)
$(r_{it-1} < r_{t-1}^{rf})$	0.06^{***}	0.07^{***}	0.08^{***}	0.09^{***}
	(0.01)	(0.01)	(0.02)	(0.02)
$(r_{it-1} < r_{t-1}^{rf})$	-0.05^{**}	-0.05*	-0.03	-0.04
\times Impediment _i	(0.02)	(0.02)	(0.03)	(0.03)
Fund FE	Yes	Yes	No	No
Observations	4,707	4,171	4,707	4,171
$Adj. R^2$	0.62	0.61	0.02	0.02

Table 4: Probability of Exit and Impediments to Withdrawal

relation to hedge fund literature 1/3

• opposite to Lo, Aragon, Ding&al, Liang&Park

- autocorrelation in returns prevalent (us: mean reversion, rather)
- stronger with "illiquid" funds (us: weaker with illiquid funds)
- signs of earning smoothing / illiquid assets

< ロト < 同ト < ヨト < ヨ

relation to hedge fund literature 1/3

• opposite to Lo, Aragon, Ding&al, Liang&Park

- autocorrelation in returns prevalent (us: mean reversion, rather)
- stronger with "illiquid" funds (us: weaker with illiquid funds)
- signs of earning smoothing / illiquid assets

reason: we work @ annual frequency, not monthly

- to avoid accounting/smoothing issues
- in our data, @ monthly freq: mean autocorr is 0.09 (=Lo)

- in our data, @ monthly freq: lock-up and autocorr have correlation of 0.08 (=Ding&al)

 \Rightarrow not a data difference

 \rightarrow we run our regressions at the monthly, and quarterly frequencies

relation to hedge fund literature 2/3

monthly data / less liquid assets \rightarrow our results disappear, become like lit.

Dep. Variable	r_{it}				
Panel A: Monthly frequency					
	All	Long short equity	Fixed Income		
	(1)	(2)	(3)		
$\left(r_{it-1} < r_{t-1}^{rf}\right)$	-0.38**	-0.44**	-0.45***		
	(0.18)	(0.21)	(0.14)		
$\left(r_{it-1} < r_{t-1}^{rf}\right)$	-0.14*	0.14	-0.49***		
\times Lock-Up _i	(0.08)	(0.13)	(0.14)		
Fund FE	Yes	Yes	Yes		
Observations	120,734	51,963	6,929		
$Adj. R^2$	0.06	0.05	0.10		

イロン イロン イヨン イヨン

test

relation to hedge fund literature 3/3

quarterly data / more liquid assets \rightarrow our results re-appear.

	All	Long short equity	Fixed Income
	(1)	(2)	(3)
$(r_{it-1} < r_{t-1}^{rf})$	-0.10	-0.42	-0.49
	(0.42)	(0.58)	(0.40)
$(r_{it-1} < r_{t-1}^{rf})$	0.53**	1.37^{***}	-1.24**
\times Lock-Up _i	(0.26)	(0.24)	(0.55)
Fund FE	Yes	Yes	Yes
Observations	34,447	14,828	1,989
$Adj. R^2$	0.15	0.15	0.18

Panel B: Quarterly frequency

Johan Hombert, David Thesmar (ENSAE-CREST, HE Limits of Limits of Arbitrage Theory and Evidence

May 15, 2009 25 / 26

conclusion

- we investigate the effect of LT financing of arbitrageurs on their "market making" ability
- a model of optimal arbitrageur capital structure, to derive equilibrium predictions
- key empirical result: mean reversion in HF return larger when they are LT financed (i.e. with lock ups)
- not applicable to current crisis.
- bridges with the strategic asset allocation literature: long term investor should buy mean reverting assets