# Switching problems and related BSDE approximation 

## Romuald ELIE

CEREMADE, Université Paris-Dauphine

Joint work with : I. Kharroubi \& J.-F. Chassagneux

## Outline of the talk

- Starting and stopping problem ( $\mathrm{d}=2$ )
- Numerical resolution of BSDE
- Numerical resolution of BSDE with oblique reflections
- An alternative approach : Constrained BSDEs with jumps


## Starting and Stopping problem

Hamadene and Jeanblanc (07) :

- Consider e.g. a power station producing electricity whose price is given by a diffusion process $X: d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$
- Two modes for the power station : mode 1 : operating, with running profit $f_{1}\left(X_{t}\right) d t$ and terminal one $g_{1}\left(X_{T}\right)$ mode 0 : closed, with running profit $f_{0}\left(X_{t}\right) d t$ and terminal one $g_{0}\left(X_{T}\right)$
$\hookrightarrow$ switching from one mode to another has a cost : c>0
- Management decide to produce electricity only when it is profitable enough.
- The management strategy is $\left(\theta_{j}, \alpha_{j}\right): \theta_{j}$ is a sequence of stopping times representing switching times from mode $\alpha_{j-1}$ to $\alpha_{j}$.
$\left(a_{t}\right)_{0 \leq t \leq T}$ is the state process, i.e. the management strategy.


## Starting and Stopping problem

- Following a strategy a from $t$ up to $T$, gives

$$
J(a, t)=g_{a T}+\int_{t}^{T} f_{a_{s}}\left(X_{s}\right) d s-\sum_{j \geq 0} c 1_{\left\{t \leq \theta_{j} \leq T\right\}}
$$

- The value processes starting respectively at time 0 in mode 1 and 2 are

$$
Y_{0}^{0}:=\sup _{\left\{a \text { s.t. } a_{0}=1\right\}} \mathbb{E}[J(a, 0)] \quad \text { and } \quad Y_{0}^{1}:=\sup _{\left\{a \text { s.t. } a_{0}=2\right\}} \mathbb{E}[J(a, 0)]
$$

- At any date $t \in[0, T]$ in state $i \in\{0,1\}$, the value function is $Y_{t}^{i}$.
- The solutions in both modes of production are interconnected


## Starting and Stopping problem

- $Y$ is solution of a coupled optimal stopping problem

$$
\begin{aligned}
& Y_{t}^{0}=\underset{t \leq \tau \leq T}{\operatorname{ess} \sup _{t \leq T} \mathbb{E}\left[\int_{t}^{\tau} f_{0}\left(X_{s}\right) d s+\left(Y_{\tau}^{1}-c\right) \mathbf{1}_{\{\tau<T\}} \mid \mathcal{F}_{t}\right]} \\
& Y_{t}^{1}=\operatorname{ess} \sup _{t \leq \tau \leq T} \mathbb{E}\left[\int_{t}^{\tau} f_{1}\left(X_{s}\right) d s+\left(Y_{\tau}^{0}-c\right) \mathbf{1}_{\{\tau<T\}} \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

- The optimal strategy $\left(\theta_{j}^{*}, \alpha_{j}^{*}\right)$ is given by

$$
\alpha_{j+1}^{*}:=1-\alpha_{j}^{*} \quad \text { and } \quad \theta_{j+1}^{*}:=\inf \left\{s \geq \theta_{j}^{*} \mid Y_{s}^{\alpha_{j}^{*}}=Y_{s}^{\alpha_{j+1}^{*}}-c\right\}
$$

## System of reflected BSDEs

$Y$ is the solution of the following system of reflected BSDEs :

$$
Y_{t}^{i}=g_{i}\left(X_{T}\right)+\int_{t}^{T} f_{i}\left(X_{s}\right) d s-\int_{t}^{T} Z_{s}^{i} \dot{d} W_{s}+\int_{t}^{T} d K_{s}^{i}, i \in\{0,1\}
$$

with (the coupling...)

$$
Y_{t}^{1} \geq Y_{t}^{0}-c \text { and } Y_{t}^{0} \geq Y_{t}^{1}-c, \forall t \in[0, T]
$$

and ('optimality' of $K$ )

$$
\int_{0}^{T}\left(Y_{s}^{1}-\left(Y_{s}^{0}-c\right)\right) d K_{s}^{1}=0 \text { and } \int_{0}^{T}\left(Y_{s}^{0}-\left(Y_{s}^{1}-c\right)\right) d K_{s}^{0}=0
$$

- Problem: Oblique reflections.
- Idea : Interpret $Y^{1}-Y^{0}$ as the solution of a doubly reflected BSDE.


## Related PDE

Link with coupled system of PDE

- on $\mathbb{R} \times[0, T)$

$$
\begin{aligned}
& \min \left(-\partial_{t} u^{0}-\mathcal{L} u^{0}-f^{0}, u^{0}-u^{1}+c\right)=0 \\
& \min \left(-\partial_{t} u^{1}-\mathcal{L} u^{1}-f^{1}, u^{1}-u^{0}+c\right)=0
\end{aligned}
$$

- Terminal conditions

$$
u^{0}(T, .)=g^{0}(.) \quad \text { and } \quad u^{1}(T, .)=g^{1}(.)
$$

- Link via

$$
Y_{t}^{0}=u^{0}\left(t, X_{t}\right) \quad \text { and } \quad Y_{t}^{1}=u^{1}\left(t, X_{t}\right)
$$

## Literature

Literature on optimal switching :

- Hamadène \& Jeanblanc 07 : starting and stopping problem $(m=2)$.
- Djehiche, Hamadène \& Popier 07 : studied the multidimentional case.

Link with Backward SDE :

- Hu \& Tang 07 "multi-dimentional BSDEs with oblique reflection" BSDE representation for optimal switching in the case where $X$ uncontrolled or at most partially controlled : $d X_{t}^{a}=\sigma\left(X_{t}^{a}\right)\left[b_{a}\left(X_{t}^{a}\right) d t+d W_{t}\right]$.
- Hamadène \& Zhang 08 Generalization of Hu \& Tang's BSDEs but still with an uncontrolled underlying diffusion.

Literature on control :

- Bouchard 09 : Relation with stochastic target problems with jumps.


## Multi-dimensional reflected BSDE

- Multi-dimensional reflected BSDE (see Hamadène \& Zhang 08) :

Find $m$ triplets $\left(Y^{i}, Z^{i}, K^{i}\right)_{i \in \mathcal{I}} \in\left(\mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{A}^{2}\right)^{\mathcal{I}}$ satisfying

$$
\left\{\begin{array}{l}
Y_{t}^{i}=g\left(X_{T}\right)+\int_{t}^{T} f_{i}\left(s, X_{s}, Y_{s}^{1}, \ldots, Y_{s}^{m}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}+K_{T}^{i}-K_{t}^{i} \\
Y_{t}^{i} \geq Y_{t}^{j}-c_{i, j}\left(X_{t}\right) \\
\int_{0}^{T}\left[Y_{t}^{i}-\max _{j \in \mathcal{I}}\left\{h_{i, j}\left(t, Y_{t}^{j}\right)\right\}\right] d K_{t}^{i}=0
\end{array}\right.
$$

- The reflections are oblique with respect to the domain of definition of $Y$.


## FBSDE system

- FSDE

$$
\left\{\begin{array}{l}
X_{t}=\mathrm{x}+\int_{0}^{t} \mu\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \\
Y_{\mathrm{t}}=\mathrm{g}\left(\mathrm{X}_{1}\right)+\int_{t}^{1} h\left(s, X_{s}, Y_{\mathrm{s}}, Z_{\mathrm{s}}\right) d s-\int_{t}^{1} Z_{\mathrm{s}} d W_{s}
\end{array}\right.
$$

- Solution and link with PDE (Pardoux \& Peng, 90 \& 92);

$$
\|\mathbf{Y}\|_{\mathcal{S}^{2}}:=\mathbb{E}\left[\sup _{0 \leq r \leq 1}\left|Y_{r}\right|^{2}\right]^{\frac{1}{2}}<\infty, \quad\|Z\|_{\mathcal{L}^{2}}:=\mathbb{E}\left[\int_{0}^{1}\left|Z_{r}\right|^{2} d r\right]^{\frac{1}{2}}<\infty
$$

- The Four step scheme (Ma Protter \& Yong, 94) ;
- Approximation of the BM (Chevance 97, Briand 01, Ma 02) ;
- Discrete time scheme based on the path regularity of $Z$ (Zhang);


## Discrete time scheme (Zhang 02)

- FSDE
- BSDE

$$
\left\{\begin{array}{l}
X_{t}=\mathrm{x}+\int_{0}^{t} \mu\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \\
Y_{\mathrm{t}}=\mathrm{g}\left(\mathrm{X}_{1}\right)+\int_{t}^{1} h\left(s, X_{s}, Y_{\mathrm{s}}, Z_{s}\right) d s-\int_{t}^{1} Z_{\mathrm{s}} d W_{s}
\end{array}\right.
$$

- Regular time grid $\left(t_{i}\right)_{i \leq n}$ on $[0,1]$
- Forward Euler approximation $X^{\pi}$ of $X$

Initial value :

$$
\mathrm{X}_{0}^{\pi}:=x
$$

From $t_{i}$ to $t_{i+1}: \quad \mathbf{X}_{t_{i}+1}^{\pi}:=X_{t_{i}}^{\pi}+\frac{1}{n} \mu\left(t_{i}, X_{t_{i}}^{\pi}\right)+\sigma\left(t_{i}, X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)$

- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of $(Y, Z)$

Terminal value :

$$
\mathbf{Y}_{1}^{\pi}:=g\left(X_{1}^{\pi}\right)
$$

From $t_{i+1}$ to $t_{i}: \quad\left\{\begin{array}{l}\mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right] \\ \mathbf{Y}_{t_{\mathrm{i}}}^{\pi}:=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} h\left(t_{i}, X_{t_{i}}^{\pi}, Y_{\mathrm{t}_{\mathrm{i}}}^{\pi}, \mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}\right)\end{array}\right.$

## Intuition of the scheme

$$
Y_{t_{i}}=Y_{t_{i+1}}+\int_{t_{i}}^{t_{i+1}} h\left(r, X_{r}, Y_{r}, Z_{r}\right) d r-\int_{t_{i}}^{t_{i+1}} Z_{r} \cdot d W_{r}
$$

Step 1: Constant step driver ( $Z^{\pi}$ given by the representation of $Y_{t_{i+1}}^{\pi}$ )

$$
\mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}=\mathbf{Y}_{\mathrm{t}_{\mathrm{i}+1}}^{\pi}+\frac{1}{n} h\left(t_{i}, X_{t_{i}}^{\pi}, \mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}, \mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}\right)-\int_{t_{i}}^{t_{i+1}} Z_{r}^{\pi} \cdot d W_{r}
$$

Step 2 : Best $\mathcal{L}^{2}\left(\Omega \times\left[t_{i}, t_{i+1}\right]\right)$ approximation of $Z^{\pi}$ by $\mathcal{F}_{t_{i}}$-meas. r.v.

$$
\mathrm{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=n \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} Z_{r}^{\pi} d r \mid \mathcal{F}_{t_{i}}\right]=\mathbf{n} \mathbb{E}\left[\mathbf{Y}_{\mathrm{t}_{\mathrm{i}+1}}^{\pi}\left(\mathrm{W}_{\mathrm{t}_{\mathrm{i}+1}}-\mathrm{W}_{\mathrm{t}_{\mathrm{i}}}\right) \mid \mathcal{F}_{\mathrm{t}_{\mathrm{i}}}\right]
$$

Step 3 : Conditioning the first expression

$$
\mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}=\mathbb{E}\left[\mathbf{Y}_{\mathbf{t}_{\mathrm{i}+1}}^{\pi} \mid \mathcal{F}_{\mathrm{t}_{\mathrm{i}}}\right]+\frac{1}{\mathbf{n}} \mathbf{h}\left(\mathbf{t}_{\mathbf{i}}, \mathbf{X}_{\mathbf{t}_{\mathrm{i}}}^{\pi}, \mathbf{Y}_{\mathbf{t}_{\mathrm{i}}}^{\pi}, \mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}\right)
$$

## Approximation Error (Zhang 02)

$$
\mathcal{L}^{x}[y]+h(., y, \sigma \nabla y)=0 \quad y(1, .)=g(.)
$$

- Forward Euler approximation $X^{\pi}$ of $X$
$\mathrm{X}_{0}^{\pi}:=x \quad$ and $\quad \mathbf{X}_{t_{i}+1}^{\pi}:=X_{t_{i}}^{\pi}+\frac{1}{n} \mu\left(t_{i}, X_{t_{i}}^{\pi}\right)+\sigma\left(t_{i}, X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)$
- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of $(Y, Z)$

$$
\mathbf{Y}_{1}^{\pi}:=g\left(X_{1}^{\pi}\right) \& \quad\left\{\begin{array}{l}
\mathbf{Z}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right] \\
\mathbf{Y}_{\mathrm{t}_{\mathrm{i}}}^{\pi}:=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} h\left(t_{i}, X_{t_{i}}^{\pi}, Y_{t_{\mathrm{i}}}^{\pi}, Z_{t_{i}}^{\pi}\right)
\end{array}\right.
$$

- Approximation Error

$$
\operatorname{Err}_{n}(\mathbf{Y}, \mathbf{Z}):=\sup _{t_{i}} \mathbb{E}\left[\left|Y_{t_{i}}-Y_{t_{i}}^{\pi}\right|^{2}\right]+\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left|Z_{t_{i}}-Z_{t_{i}}^{\pi}\right|^{2}\right] \leq \frac{k}{n}
$$

## Approximation Error (Gobet 05)

$$
\mathcal{L}^{x}[y]+h(., y, \sigma \nabla y)=0 \quad y(1, .)=g(.)
$$

- Forward Euler approximation $X^{\pi}$ of $X$
$\mathrm{X}_{0}^{\pi}:=x \quad$ and $\quad \mathbf{X}_{t_{i}+1}^{\pi}:=X_{t_{i}}^{\pi}+\frac{1}{n} \mu\left(t_{i}, X_{t_{i}}^{\pi}\right)+\sigma\left(t_{i}, X_{t_{i}}^{\pi}\right)\left(W_{t_{i+1}}-W_{t_{i}}\right)$
- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of $(Y, Z)$
$\mathbf{Y}_{1}^{\pi}:=g\left(X_{1}^{\pi}\right) \&\left\{\begin{array}{l}\mathbf{Z}_{t_{i}}^{\pi}:=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right] \\ Y_{t_{i}}^{\pi}:=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} \mathbb{E}\left[h\left(t_{i}, X_{t_{i}}^{\pi}, Y_{t_{i}+1}^{\pi}, Z_{t_{i}}^{\pi}\right) \mid \mathcal{F}_{\mathrm{t}_{\mathrm{i}}}\right]\end{array}\right.$
- Approximation Error

$$
\operatorname{Err}_{n}(\mathbf{Y}, \mathbf{Z}):=\sup _{t_{i}} \mathbb{E}\left[\left|Y_{t_{i}}-Y_{t_{i}}^{\pi}\right|^{2}\right]+\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left|Z_{t_{i}}-Z_{t_{i}}^{\pi}\right|^{2}\right] \leq \frac{k}{n}
$$

## Addition of reflections (Bouchard Chassagneux 08)

- Reflected BSDE on a boundary $I\left(X_{t}\right)$

$$
\begin{aligned}
& Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{t}, Y_{t}, Z_{t}\right) \mathrm{d} t-\int_{t}^{T}\left(Z_{t}\right)^{\prime} \mathrm{d} W_{t}+\int_{t}^{T} \mathrm{~d} K_{t} \\
& Y_{t} \geq I\left(X_{t}\right) \text { and } \int_{0}^{T}\left(Y_{t}-I\left(X_{t}\right)\right) \mathrm{d} K_{t}=0
\end{aligned}
$$

- Forward Euler approximation $X^{\pi}$ of $X$
- Backward approximation $\left(\mathbf{Y}^{\pi}, \mathbf{Z}^{\pi}\right)$ of $(Y, Z)$

$$
\mathbf{Y}_{1}^{\pi}:=g\left(X_{1}^{\pi}\right) \& \quad\left\{\begin{array}{l}
\mathbf{Z}_{\mathrm{t}_{i}}^{\pi}:=n \mathbb{E}\left[Y_{t_{i+1}}^{\pi}\left(W_{t_{i+1}}-W_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right] \\
\tilde{Y_{t_{i}}^{\pi}}:=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\frac{1}{n} h\left(t_{i}, X_{t_{i}}^{\pi}, Y_{t_{\mathrm{i}}}^{\pi}, Z_{t_{i_{i}}}^{\pi}\right) \\
\mathbf{Y}_{\mathrm{t}_{i}}^{\pi}:=\max \left[\tilde{Y_{t_{i}}^{\pi}} ; l\left(X_{t_{i}}^{\pi}\right)\right] 1_{\left\{\mathrm{t}_{i} \in \Re\right\}}
\end{array}\right.
$$

with $\Re \subset \pi$ the reflection grid to be chosen properly.

- Approximation Error

$$
\operatorname{Err}_{\mathrm{n}}(\mathbf{Y}, \mathbf{Z}):=\sup _{t_{i}} \mathbb{E}\left[\left|Y_{t_{i}}-Y_{t_{i}}^{\pi}\right|^{2}\right]+\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left|Z_{t_{i}}-Z_{t_{i}}^{\pi}\right|^{2}\right] \leq \frac{\mathrm{K}}{\sqrt{n}}
$$

## Obliquely reflected BSDEs

- Multidimensional value process contrained in a domain $(d \geq 2)$

$$
\mathcal{C}=\left\{y \in \mathbb{R}^{d} \mid y^{i} \geq \mathcal{P}^{\mathrm{i}}(\mathrm{y}):=\max _{\mathrm{j}}\left(\mathrm{y}_{\mathrm{j}}-\mathrm{c}_{\mathrm{ij}}\right)\right\}
$$

with $c_{i i}=0, \inf _{i \neq j} c_{i j}>0, c_{i j}+c_{j k}>c_{i k}$
$\hookrightarrow \mathcal{P}$ (oblique projection) is $L$-lipschitz with $L>1$ (euclidean norm)

- System of reflected BSDEs

$$
\begin{aligned}
& Y_{t}^{i}=g^{i}\left(X_{T}\right)+\int_{t}^{T} f^{i}\left(X_{u}, Y_{u}^{i}, Z_{u}^{i}\right) \mathrm{d} u-\int_{t}^{T} Z_{u}^{i} \mathrm{~d} W_{u}+K_{T}^{i}-K_{t}^{i} \\
& Y_{t} \in \mathcal{C}(\text { constrained by } K) \int_{0}^{T}\left(Y_{t}^{i}-\mathcal{P}^{i}\left(Y_{t}\right)\right) \mathrm{d} K_{t}^{i}=0
\end{aligned}
$$

## Goal and method

Goal : approximation scheme for Continuously Obliquely Reflected BSDE (COR) and convergence results...

Method :
(i) Discretize the reflection along a grid $\Re$
$\Longrightarrow$ Discretely Obliquely Reflected BSDE' (DOR)
(ii) Approximation scheme for the DOR along a grid $\pi \supset \Re$
$\Longrightarrow$ Convergence of the scheme, via regularity of DOR
(iii) Convergence of the DOR to the COR when $\Re$ is refined.
$\Longrightarrow$ The scheme converges to the DOR ( $\Re$ and $\pi$ well chosen)

## Discretely reflected BSDEs

- Grid $\Re=\left\{0=r_{0}<\ldots<r_{k}<\ldots<r_{\kappa}=T\right\}$ given.
- A DOR is a triplet ( $Y^{d \Re}, \widetilde{Y}^{d \Re}, Z^{d \Re}$ ) satisfying $Y_{T}^{d \Re}=\widetilde{Y}_{T}^{d \Re}:=g\left(X_{T}\right)$ and, for $j \leq \kappa-1$ and $t \in\left[r_{j}, r_{j+1}\right)$,

$$
\left\{\begin{array}{l}
\widetilde{Y}_{t}^{d \Re}=Y_{r_{j+1}}^{d \Re}+\int_{t}^{r_{j+1}} f\left(X, \widetilde{Y}^{d \Re}, Z^{d \Re}\right) \mathrm{d} u-\int_{t}^{r_{j+1}} Z_{u}^{d \Re} \dot{\mathrm{~d}} W_{u}, \\
Y_{t}^{d \Re}=\widetilde{Y}_{t}^{d \Re} \mathbf{1}_{\{t \notin \Re\}}+\mathcal{P}\left(\widetilde{Y}_{t}^{d \Re}\right) \mathbf{1}_{\{t \in \Re\}} .
\end{array}\right.
$$

- It can be rewritten as

$$
\begin{aligned}
\widetilde{Y}_{t}^{d \Re} & =g\left(X_{T}\right)+\int_{t}^{T} f\left(X_{s}, \widetilde{Y}_{s}^{d \Re}, Z_{s}^{d \Re}\right) \mathrm{d} s-\int_{t}^{T}\left(Z_{s}^{d \Re}\right)^{\prime} \mathrm{d} W_{s}+\tilde{K}_{T}^{d}-\tilde{K}_{T}^{d} \\
\tilde{K}_{t}^{d} & =\sum_{r \in \Re \backslash\{0\}} \Delta \tilde{K}_{r}^{d} 1_{t \geq r}, \Delta \tilde{K}_{r}^{d}=Y_{r}^{d \Re}-\widetilde{Y}_{r}^{d \Re}=\mathcal{P}\left(\widetilde{Y}_{r}^{d \Re}\right)-\widetilde{Y}_{r}^{d \Re}
\end{aligned}
$$

- Same switching representation property as the COR with switching times restricted to the grid $\Re$.
- Regularity results on $\widetilde{Y}^{d \Re}$ and $Z^{d \Re}$


## Approximation Scheme

- Discretization grid $\pi \supset \Re$
- Start from the terminal condition $Y_{T}^{\pi}:=g\left(X_{T}^{\pi}\right) \in \mathcal{C}$
- Compute at each step

$$
\left\{\begin{array}{l}
\bar{Z}_{t_{i}}^{\pi}=\left(t_{i+1}-t_{i}\right)^{-1} \mathbb{E}\left[\left(W_{t_{i+1}}-W_{t_{i}}\right) \dot{Y}_{\pi}^{\pi} t_{t_{i+1}} \mid \mathcal{F}_{t_{i}}\right] \\
\widetilde{Y}_{t_{i}}^{\pi}=\mathbb{E}\left[Y_{t_{i+1}}^{\pi} \mid \mathcal{F}_{t_{i}}\right]+\left(t_{i+1}-t_{i}\right) f\left(X_{t_{i}}^{\pi}, \widetilde{Y}_{t_{i}}^{\pi}, \bar{Z}_{t_{i}}^{\pi}\right) \\
Y_{t_{i}}^{\pi}=\widetilde{Y}_{t_{i}}^{\pi} \mathbf{1}_{\left\{t_{i} \notin \Re\right\}}+\mathcal{P}\left(\widetilde{Y}_{t_{i}}^{\pi}\right) \mathbf{1}_{\left\{t_{i} \in \Re\right\}}
\end{array}\right.
$$

- Natural geometric scheme
- Problem : The projection operator is $L$-lipschitz with $L>1$
- Idea : Monotonicity arguments and well chosen dominating BSDE


## Convergence results

- Convergence of the scheme to the DOR ( $f$ independent of $z$ )

$$
\mathcal{E r r}\left(Y^{d \Re}, Y^{\pi}\right) \leq \frac{C}{\sqrt{n}} \quad \text { and } \quad \operatorname{Err}\left(Z^{d \Re}, \bar{Z}^{\pi}\right) \leq C\left(\sqrt{\frac{\kappa}{n}}+\frac{1}{n^{\frac{1}{4}}}\right)
$$

where we used the regularity of $\left(\widetilde{Y}^{d \Re}, Z^{d \Re}\right)$.

- Distance between the DOR and the COR ( f bounded in $z$ )

$$
\mathcal{E r r}\left(Y, Y^{d \Re}\right)+\mathcal{E} r r\left(Z, Z^{d \Re}\right) \leq C \left\lvert\, \kappa^{-\frac{1}{4}}\right.
$$

- Always convergence of the scheme
- If $f$ independent of $Z$ and $\Re=\pi$, we have

$$
\mathcal{E r r}\left(Y, Y^{\pi}\right) \leq C n^{-\frac{1}{4}} \quad \text { and } \quad \mathcal{E r r}\left(Z, \bar{Z}^{\pi}\right) \leq C n^{-\frac{1}{6}}
$$

## General Multi-dimensional reflected BSDE

- Multi-dimensional reflected BSDE (see Hamadène \& Zhang 08) :

Find $m$ triplets $\left(Y^{i}, Z^{i}, K^{i}\right)_{i \in \mathcal{I}} \in\left(\mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{A}^{2}\right)^{\mathcal{I}}$ satisfying

$$
\left\{\begin{array}{l}
Y_{t}^{i}=\xi^{i}+\int_{t}^{T} \psi_{i}\left(s, Y_{s}^{1}, \ldots, Y_{s}^{m}, Z_{s}^{i}\right) d s-\int_{t}^{T} Z_{s}^{i} d W_{s}+K_{T}^{i}-K_{t}^{i} \\
Y_{t}^{i} \geq \max _{j \in \mathcal{I}} h_{i, j}\left(t, Y_{t}^{j}\right) \\
\int_{0}^{T}\left[Y_{t}^{i}-\max _{j \in \mathcal{I}}\left\{h_{i, j}\left(t, Y_{t}^{j}\right)\right\}\right] d K_{t}^{i}=0
\end{array}\right.
$$

where

- $\left(\xi^{i}\right)_{i \in \mathcal{I}} \in\left(\mathbf{L}^{2}\left(\Omega, \mathcal{F}_{T}, \mathbf{P}\right)\right)^{\mathcal{I}}$,
- $h_{i, j}: \Omega \times[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ are a given constraint functions,
- $\psi_{i}: \Omega \times[0, T] \times \mathbb{R}^{m} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an $\mathbb{F}$-progressively measurable map.
- The reflections are oblique with respect to the domain of definition of $Y$. We reinterpret the solution in terms of the solution to a corresponding constrained BSDE with jumps.

Idea: Introduce an independent random switching regime allowing to jump between the components of the solution!

## Alternative BSDE representation

- Introduce the random switching regime I defined by

$$
I_{t}=I_{0}+\int_{0}^{t} \int_{\mathcal{I}}\left(i-I_{s^{-}}\right) \mu(d s, d i) \quad t \leq T .
$$

- Consider the one-dimensional constrained BSDE with jumps :

$$
\begin{aligned}
& \tilde{Y}_{t}=\xi^{\prime T}+\int_{t}^{T} \psi_{I_{s}}\left(s, \tilde{Y}_{s}+\tilde{U}_{s}(1), \ldots, \tilde{Y}_{s}+\tilde{U}_{s}(m), \tilde{Z}_{s}\right) d s+\tilde{K}_{T}-\tilde{K}_{t} \\
& \quad-\int_{t}^{T} \tilde{Z}_{s} \cdot d W_{s}-\int_{t}^{T} \int_{\mathcal{I}} \tilde{U}_{s}(i) \mu(d s, d i), \quad 0 \leq t \leq T, \text { a.s. }
\end{aligned}
$$

constrained by: $\quad \tilde{Y}_{t^{-}}-h_{t^{-}}, j\left(t, \tilde{Y}_{t^{-}}+\tilde{U}_{t}(j)\right) \geq 0, d \mathbb{P} \otimes d t \otimes \lambda(d j)$ a.e.

- Under technical assumptions, this constrained BSDE with jumps admits a unique minimal solution ( $\tilde{Y}, \tilde{Z}, \tilde{U}, \tilde{K}$ ), which relates to the solution $\left(Y^{i}, Z^{i}, K^{i}\right)_{i \in \mathcal{I}}$ of the multidimensional reflected BSDE via

$$
\tilde{Y}_{t}=Y_{t}^{I_{t}-}, \quad \tilde{Z}_{t}=Z_{t}^{\prime^{t^{-}}} \quad \text { and } \quad \tilde{U}_{t}=\left[Y_{t}^{j}-Y_{t^{-}}^{t^{-}}\right]_{j \in \mathcal{I}}
$$

## Markovian Optimal Switching

Consider the optimal switching problem : $\sup _{a \in \mathcal{A}} J(a)$ with

$$
J(a):=\mathbb{E}\left[g_{a_{T}}\left(X_{T}^{a}\right)+\int_{0}^{T} \psi_{a_{s}}\left(X_{s}^{a}\right) d s-\sum_{0<\tau_{k} \leq T} c_{a_{\tau_{k}}, a_{\tau_{k}}}\left(X_{\tau_{k}}^{a}\right]\right.
$$

where $\mathcal{A}$ is the set of strategies $a=\left(\tau_{k}, \alpha_{k}\right)_{k}$ with

- $\left(\tau_{k}\right)_{k}$ increasing sequence of stopping times,
- $\alpha_{k}$ is an $\mathcal{F}_{\tau_{k}}$-measurable r. v. taking values in $\mathcal{I}=\{1, \ldots, m\}$.
- For $a \in \mathcal{A}$, the current regime is $a_{t}=\sum_{k \geq 0} \alpha_{k} \mathbf{1}_{\left[\tau_{k}, \tau_{k+1}\right)}(t)$
- The underlying $X^{a}$, is the controlled diffusion defined by

$$
X_{t}^{a}=X_{0}+\int_{0}^{t} b_{a_{s}}\left(X_{s}^{a}\right) d s+\int_{0}^{t} \sigma_{a_{s}}\left(X_{s}^{a}\right) d W_{s}, \quad t \geq 0
$$

Hu \& Tang 08 : Multidimensional reflected BSDE linked with Optimal Switching with uncontrolled diffusion.

Can we relate constrained BSDE with jumps to switching problems with controlled diffusion?

## Related Constrained BSDE with Jumps

- Introduce the forward process $\left(I, X^{\prime}\right)$ defined by
$I_{t}=i_{0}+\int_{0}^{t} \int_{\mathcal{I}}\left(i-I_{t}-\right) \mu(d t, d i), \quad X_{t}^{\prime}=x_{0}+\int_{0}^{t} b_{l_{s}}\left(X_{s}^{\prime}\right) d s+\int_{0}^{t} \sigma_{I_{s}}\left(X_{s}^{\prime}\right) d W_{s}$
- Consider the constrained BSDE with jumps : find a minimal quadruple $(Y, Z, U, K) \in \mathcal{S}^{2} \times \mathbf{L}^{2}(\mathbf{W}) \times \mathbf{L}^{2}(\tilde{\mu}) \times \mathbf{A}^{2}$ satisfying $Y_{t}=g_{I_{T}}\left(X_{T}^{\prime}\right)+\int_{t}^{T} \psi_{l_{s}}\left(X_{s}\right) d s-\int_{t}^{T} Z_{s} . d W_{s}-\int_{t}^{T} \int_{\mathcal{I}} U_{s}(i) \mu(d s, d i)+K_{T}-K_{t}$, on $[0, T]$, with the constraint : $U_{t}(i) \leq c\left(I_{s^{-}}, i\right), d \mathbb{P} \otimes d t \otimes \lambda(d i)$ a.e.
- $Y_{0}$ is the solution of the switching problem starting in mode $i_{0}$ at time 0 .
- Numerical approximation possible vie penalization of the constraint.


## Conclusion

- Probabilistic numerical approximation of optimal switching problems.
- via obliquely reflected BSDE
- via constrained BSDE with jumps
- New BSDE Unifying and Generalizing approach for BSDE representation.
- Constrained BSDE without jumps, Peng \& Xu 07
- BSDE with diffusion-transmutation process, Pardoux, Pradeilles \& Rao 97
- BSDE with constrained jumps, Kharroubi, Ma, Pham \& Zhang 08
- Multidimensional BSDE with oblic reflection, Hamadène \& Zhang 08
- BSDE representation for coupled Systems of Variational Inequality

$$
\min \left[-\frac{\partial v_{i}}{\partial t}-\mathcal{L}^{i} v_{i}-f_{i}\left(., v_{i}, \sigma^{\top} D_{\times} v_{i},\left[v_{j}-v_{i}\right]_{j \in \mathcal{I}}\right), \min _{j \in \mathcal{I}} h_{i, j}\left(., v_{i}, \sigma^{\top} D_{\times} v_{i}, v_{j}-v_{i}\right)\right]
$$

with the terminal condition on $\mathcal{I} \times\left\{T^{-}\right\} \times \mathbb{R}^{d}$

$$
\min \left[v_{i}-g_{i}, \min _{j \in \mathcal{I}} h_{i, j}\left(., v_{i}, \sigma^{\top} D_{x} v_{i}, v_{j}-v_{i}\right)\right]\left(T^{-}, x\right)=0
$$

