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e Since electricity is not storable one has to hedge with forward or futures contracts.

e Let us consider, F;, the price quoted at time t for the delivery of one MWh on the
period [Td, Tg + 9], with Ty > t.

Quotation dates t  Time to maturity Ty — t Delivery period [Ty, Ty + 6]

i 1 ]
REREEREERERERREE] 1 1

e Let V; denote the value of a self-financed portfolio with a (short or long) forward
position ¢ (positive or negative) at time t for delivery on [Ty, Ty + 0]. Recall that
entering in a forward contract is free, hence

Verat = e(Fepae — Fe) + eV, (1)
r being the (constant deterministic) interest rate. Then in a continuous time setting
d(e™"V;) = pre TddF; . (2)

Let H be a payoff e.g. H = (Fr, — K)4, then the hedging problem consists of finding
an initial capital and a strategy (Vo, ¢) st

-
Vo + / pudF, =~ H, in some sense .
J0
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A non Gaussian and non stationnary model for forward prices
log-returns [Benth (2003)]
[Benth (2003)] has proposed a model to represent two specific stylized features:

@ the volatility term structure: the futures volatility increases when the time to
maturity decreases

@ the non gaussianity of log-returns inducing huge spikes on the Spot.

F: = Foexp | m: +/ ose  MTd=Ugp, + oW, , forallt €0, T4],where
\—,—/ N——
long-term factor short-term factor

3)

@ mis a real deterministic trend starting at 0 (a.c. wrt to Lebesgue);

@ Ais a Lévy process on R following a Normal Inverse Gaussian (NIG) distribution
(with E[A1] = 0 and Var[A;] = 1);

@ W is a standard Brownian motion on R;

@ o5 and o standing respectively for the short-term and long-term volatility.

=> How to price and hedge contingent claims in such incomplete_market ?
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The quadratic or mean-variance hedging appproach ([Schweizer
(1994)])

[Schweizer (1994)] proposed to minimize the expected quadratic distance between the
hedging portfolio and the payoff.

Definition: The mean-variance hedging problem

Given a payoff H € £2, an admissible strategy pair (V5> ¢*) will be called optimal if it
minimizes the expected squared hedging error

Bl(H— Vo~ Gr(a)?] . with Gi(e) = | ' edS, (4)

over all admisible strategy pairs (Vo,») € R x ©.

e Related approaches

@ minimizing the expected quadratic hedging error under the pricing measure
under which the underlying is martingale ([Cont-Tankov-Voltchkova (2007)] Via
integro-differential equations).

@ minimizing the quadratic error under the minimal martingal measure ...

@ BSDE ...
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Laplace transform approach ([Hubalek-Kallsen-Krawczyk (2006)])

e In the specific case of Lévy log-prices, [Hubalek-Kallsen-Krawczyk
(2006)] proposed to express the payoff as a linear combination of
exponential payoffs (using generalized Laplace transform) for which
the VO strategy can be expressed explicitely.

Then they obtain quasi-explicit formula for
e the initial capital and the hedging strategy (V{, ¢*)

@ the variance optimal hedging error;

e Here we propose to extend this approach to the case where
log-prices have independent but possibly non stationary increments.
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e Useful notions on Variance Optimal (VO) hedging
@ Follmer-Schweizer Structure Condition
@ Follmer-Schweizer Decomposition
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Useful notions on Variance Optimal (VO) hedging

Follmer-Schweizer Structure Condition
Follmer-Schweizer Decomposition

The set of admissible strategies ©

Let X = (Xt)te[o,T] be a real-valued special semimartingale with canonical
decomposition X = M + A.

Definition: © space

For a given local martingale M, the space L2(M) consists of all predictable R-valued
processes v = (Vt).co, 7] Such that

E{/OT\vst(M)S} e

For a given predictable bounded variation process A, the space L?(A) consists of all
predictable R-valued processes v = (vt)¢co, 7] such that

E [(/OT\vs\dHAns)z} <oo.

Finally, we set

0 = L2(M)N L3(A) .
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Useful notions on Variance Optimal (VO) hedging

Follmer-Schweizer Structure Condition
Follmer-Schweizer Decomposition

The structure condition and the Mean-Variance Tradeoff Process

Let X = (Xt)tcpo, 7] be a real-valued special semimartingale with canonical
decomposition
X=M+A.

Definition: Structure Condition and Mean-Variance Tradeoff Process

X is said to satisfy the structure condition (SC) if there is a predictable R-valued
process o = (ait)te(o, 7] Such that

t
(1) At:/ asd (M), , forall t € [0, T], so that dA < d (M).
0

-
Q K: ::/ a?d (M), < oo, P-as.
0

K = (Kt)tepo, 7] is called the mean-variance tradeoff (MVT) process.
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Useful notions on Variance Optimal (VO) hedging
Follmer-Schweizer Structure Condition
Féllmer-Schweizer Decomposition

Definition: Follmer-Schweizer (FS) decomposition

We say that a random variable H € £2(Q, F, P) admits a
Follmer-Schweizer (FS) decomposition, if it can be written as

.
H:Ho+/ Hax; + 1%, P—as., (5)
0

where
@ Hp € R is a constant,
o (M eo,
o IH= (Lf)te[o,T] is a square integrable martingale, with
E[L] = 0 and strongly orthogonal to M.
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Useful notions on Variance Optimal (VO) hedging

Follmer-Schweizer Structure Condition
Féllmer-Schweizer Decomposition

Existence and unicity of FS decomposition

Assumption SC

We assume that X satisfies (SC) and that the MVT process K is uniformly bounded in
t and w.

Theorem 1: Theorem 3.4 of Monat, P. and Stricker, C. (1995)

Under Assumption SC, every random variable H € £2(Q, F, P) admits a FS
decomposition. Moreover, this decomposition is unique in the following sense:

If
T / T ’ i
H:Ho+/ gfdxs+L”:Ho+/ eHaxs + L,
0 0

where (Ho, &M, LH) and (H{,,{’H7 L,H) satisfy the conditions of the FS decomposition,

then ,
Ho = Hy, P-as.,
g = " in2(m),
th — A P_as. .
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Useful notions on Variance Optimal (VO) hedging

Follmer-Schweizer Structure Condition
Féllmer-Schweizer Decomposition

Link between FS decomposition and VO hedging

Theorem 2: Theorem 3 of [Schweizer (1994)]

Suppose that X satisifies (SC) and that the MVT process K of X is deterministic. If
H € £? admits a FS decomposition of type (5), then the minimization problem has a
solution <p(°) € O for any ¢ € R, such that

Qi

m(Ht, —c— G (), foralltelo,T] (6)

o) =l +
where the process (Ht)¢c[o, 77 is defined by

t
He = H0+/ eMdxs + L1 (7)
0

and the process « is the process appearing in Definition of the (SC).

Corollary 1: Corollary 10 of [Schweizer (1994)]

Under the assumptions of Theorem 2, the solution of the minimization problem is
given by the pair (Hp, (")) .
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Useful notions on Variance Optimal (VO) hedging

Follmer-Schweizer Structure Condition
Féllmer-Schweizer Decomposition

Expression of the variance optimal error

Theorem 3: Theorem of [Schweizer (1994)]

Under the assumptions of Theorem 2, for any ¢ € R, we have

. T
min E[(H — ¢ = Gr(v))*] = &(=Kr) ((Ho — ¢ +E[(LF)] + /0 d (EI(L")]

~—
Naw¥
N~

1
£(=Ks)

Corollary 2: Theorem of [Schweizer (1994)]

If (M, M) is continuous
minE[(H—c = Gr(v))] = exp(=K7) ((Ho— ) +E(L§)])

+E {/()Texp{f(KT - Ks)}d<LH>J .9
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e Follmer Schweizer decomposition for exponential of Pll processes
@ Processes with independent increments (PII)
@ Cumulant generating function
@ On the Structure Condition
@ Explicit Follmer-Schweizer decomposition
@ FS decomposition of special contingent claims
@ Representation of some typical contingent claims
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Processes with independent increments (PIl)
Cumulant generating function
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition
Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims

Representation of some typical contingent claims

Definition: PII

X = (Xt)tepo, 1] is a (real) process with independent increments (PlI) iff
@ X has cadlag paths.

@ X: — X is independent of Fs for 0 < s < t < T where (F;) is the canonical
filitration associated with X.
Moreover we will also suppose

© X is continuous in probability, i.e. X has no fixed time of discontinuties.

We recall Theorem 11.4.15 of Jacod, J. and Shiryaev, A. (2003).

Theorem 4:

Let (Xt)te[o,T] be a real-valued special semimartingale, with Xo = 0. Then, X is a
process with independent increments, iff there is a version (b, c,v) of its
characteristics that is deterministic.

Definition: Lévy process (PIIS)

We add the stationnary increments property to the Pll definition:
The distribution of X; — Xs depends onlyont —sfor0 <s<t< T.

jane (EDF R&D) Joint work with S. Goutte and F.Russo = Variance optimal hedging for Pll and applicatio



Processes with independent increments (PIl)
Cumulant generating function
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition

Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

Set T > 0 a fixed terminal time. (Q, F, (Ft)cjo, 7], P) a filtered probability space and
X = (Xt)tepo, 1] be a real valued stochastic process.

Definition: cumulant generating function

The cumulant generating function of (the law of) X; is the mapping
z +— Log(E[e?t]) where Log(w) = log(|w|) 4 iArg(w) where Arg(w) is the Argument
of w, chosen in | — 7, 7]; Log is the principal value logarithm. In particular we have

ke:D—C with ™) =E[e?],

where D := {z € C | E[eR(2)Xt] < oo, Vt € [0, T]}.

Proposition 5:

Suppose that (X;) is a semimartingale with independent increments. Then the
function (t,z) — kt(z) is continuous. In particular, (t,z) — k¢(z), t € [0, T], z
belonging to a compact real subset, is bounded.
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Féllmer Schweizer decomposition for exponential of Pll processes

Explicit Follmer- decomposition
FS decomposition of sp i
Representation of some typical cunt I

We come back to the main optimization problem which was
formulated in the beginning of this presentation. We assume that
the process S is the discounted price of the non-dividend paying
stock which is supposed to be of the form,

St =spexp(Xt), forallte[0,T],

where sp is a strictly positive constant and X is a semimartingale
process with independent increments (PII) but not necessarily with
stationary increments.
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Processes with independent increments (PIl)
Cumulant generating function
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition

Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

A significant reference measure

For any t € [0, T], let p; denote the complex valued function such that for all z,y € %

pi(z,y) = ke(z + y) — Ke(2) — ke(y) - (10)

For all z,z € g, pt(z,Z) is well defined. To shorten notations p; will also denote the
real valued function defined on D such that,

p(2) = pe(z,2) = ne(2Re(2)) — 2Re(re(2)) - (11)

An important technical lemma follows below.

Let z € %,

deterministic increments.

with z # 0, then, t — p:(z) is strictly increasing if and only if X has no

jane (EDF R&D) Joint work with S. Goutte and F.Russo Variance optimal hedging for Pll and applicati



Processes with independent increments (PII)
Cumulant
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition

Explicit Follmer-Sct zer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

A reference measure

From now on, we will always suppose the following assumption.

Assumption NDI-L2

@ (X:) has no deterministic increments.

Q 2¢cD.

We will note dp: = pgr the measure
dpt = par(1) = d(ke(2) — 2k¢(1)) . (12)

It is a positive measure which is strictly positive on each interval.

Proposition 6:

Under Assumption NDI-L2

d(ke(z)) < dpt, forallze D . (13)

jane (EDF R&D) Joint work wi te and F.Russo = Variance optimal hedging for PlI



Processes with independent increments (PIl)
Cumulant generating function
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition

Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

Expression of the canonical decomposition of 5%

Proposition 7

Let y,z € g, then 57 is a special semimartingale whose canonical decomposition
St = M(2): + A(2):

satisfies
A(z): =/(; Si—kau(z),  (M(y), M(2)), = /O Sy pau(z,y) , M(2)o =5, (14)

where dp,(z) is defined by equation (11). In particular we have the following:
o (M(Z) M fo Szilpdu(zyl)
Q (M(2), M), = J5 5, pa(2) -

jane (EDF R&D) Joint work with S. Goutte and F.Russo Variance optimal hedging for Pll and applicati
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FS decomposition of special contingent claims
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Expression of the Mean Variance Tradeoff
If we apply Proposition 7 with y = z = 1, we obtain

Pr on

Under Assumption NDI-L2, we have
t )\u
At:/ oyd (M), , where oy := 5 with A, =
0

Moreover the MVT process is given by

Then if KT is bounded, according to Theorem of existence of the FS decomposition,
there will exist a unique FS decomposition for any H € £? and since K is deterministc

the minimization problem (4) will have a unique solution, by Theorem 2.
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Processes with independent increments (PII)
Cumulant
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition
Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims

Representation of some typical contingent claims

Under Assumption NDI-L2, the structure condition (SC) is verified if and only if

In particular, (Kt) is deterministic therefore bounded.

We denote by D the set of z € D such that

l

From now on, we formulate another assumption which will be in force for the whole
presentation.

dru(z) |2

dpuy < co. (17)
dpu

te and F.Russo = Variance optimal hedging for PlI



Processes with independent increments (PII)
Cumulant generating function
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition
Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

FS Decomposition in exponential Pll case

Let z€ DN 2 with z+1 € D. Then S% € £2(Q, F7).
Moreover, we suppose Assumptions NDI-L2 and K. Then we can define

@ y(z,t):= %ﬂi’l)), t € [0, T]. such that fOT (2, t)|?pgr < o0

Q@ 1(z,t) = ke(z) — fot (2, s)kqs(1) which is well-defined and st 7(z, -) is ac wrt
pds and therefore bounded.

Under those assumptions, H(z) = S% admits a FS decomposition
H(z) = H(z2)o + f; €(2)¢dSt + L(z)7 where

Hz)e = el =gy, (18)

E(Z)t = ’7(27 t)efrT 7;(z,d5)stz:1 , (19)

L@ = H@:—H@o— [ €G0S, . -
0
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Féllmer Schweizer decomposition for exponential of Pll processes S Condition
Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

Contingent claims

Now, we will proceed to the FS decomposition of more general
contingent claims. We consider now options of the type

H=f(Sy) with f(s)= /@ s2M(dz) | (21)

where I is a (finite) complex measure in the sense of Rudin
(1987), Section 6.1.
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Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

Assumption 8Pi

Let lp = suppl1 N R. We denote / := 2/y U {1}.

0Vz€suppl'| z,z+1eD.

Q@ hcC3 and SUPxeju{1} H dtﬁSrX) Hoo = o

Remark:
@ Point 2. of Assumption [T implies
Supze; ik ||t (Re(2))[l 7+ < oo
@ Under Assumption I, H = f(S7) is square integrable. In
particular it admits an FS decomposition.

© Because of (13), the Radon-Nykodim derivative at Point 2. of
Assumption [1, always exists.
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Processes with independent increments (PII)
Cumulant generating function

Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition
Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims
Representation of some typical contingent claims

Theorem 5:

Let 1 be a finite complex-valued Borel measure on C.
Suppose Assumptions NDI-L2, K and 1. Any complex-valued
contingent claim H = f(S7), where f is of the form (21), and
H € £?, admits a unique FS decomposition

H = Ho + [, €:dS; + L7 with the following properties.

@ He [£?and
o H;, = fH(z)tI_I(dz)7
° & = f§ )

o L= [L(z) dz)
where for z € supp(ﬂ), H(z),&(z) and L(z) are the same as
those introduced before and we convene that they vanish if

z ¢ supp(N).
@ Previous decomposition is real-valued if f is real-valued.
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Processes with independent increments (PII)
Cumulant generating function
Féllmer Schweizer decomposition for exponential of Pll processes On the Structure Condition
Explicit Follmer-Schweizer decomposition
FS decomposition of special contingent claims

Representation of some typical contingent claims

mma European Call and Put cas

Let K > 0, the European Call option H = (St — K)+ has two representations of the

form (21):
@ For arbitrary R > 1, s > 0, we have
1 R+ico Klfz
(s—K)+:—,/ s ———dz . (22)
27w JR—ico  2(z—1)

@ For arbitrary 0 < R < 1, s > 0, we have

1 R+ioco Kl—z
(s—K)y —s=— sf———dz .
270 Jr—ico  2(z—1)

(23)
Let K > 0, the European Put option H = (K — St)+ gives for an arbitrary R < 0,
s>0

1 R+ioco Kl-z
(K =)y = — :

——dz . 24
270 JR_ico s z(z—1) “ (24)
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The solution to the minimization problem

e The solution to the minimization problem
@ Mean-Variance Hedging
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Mean-Variance Hedging

The solution to the minimization problem

Theorem 6: The exponential of PIl Case

Let X = (Xt)te[o, 7] be a process with independent increments with cumulant
generating function x. Let H = f(eXT) where f is of the form (21). We assume the
validity of Assumptions NDI-L2, K and [1. The variance-optimal capital V4 and the
variance-optimal hedging strategy ¢, solution of the minimization problem (4), are
given by

Vo = Ho (25)

and the implicit expression
At 't
pr =& + T(Ht— -V — ©sdSs) , (26)
t— 0

where the processes (H:), (£¢) and (\¢) are defined by

dpt(27 1)

4 with  pi(z,y) = ke(z + y) — ke(2) — Ke(y) (27)
Pt

v(z,t) =
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. Mean-Variance Hedgin,
The solution to the minimization problem cEm=Verteme: (g

Theorem 6 (follow

(2, dt) := kar(2) — (2, t)rae(1) (28)

NC0)

8 29
dpt (29)

Hy := /C eld 1z sz (dz) | (30)
€= [C (2, t)eld M4 571 dz) . (31)

The optimal initial capital is unique. The optimal hedging strategy ¢¢(w) is unique up
to some (P(dw) ® dt)-null set.
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Mean-Variance Hedging

The solution to the minimization problem

Theorem 7:

Under the assumptions NDI-L2, K and I1, the variance of the hedging error equals

o= E[(V§ + Gr(¢™) — H ( [ [ 502 dy)ﬂ(dz)) ,
where
y+z T +z)+a(y,z,t .
JO(_y7 z) ::{ ) fO ﬁ(.y7 Z, dt)oe’if(y Jraly )dt Loy,z€ SUPPH
otherwise.
and
T [ drs(1)) 2
alyzt) = e T)=n(z0) - (. T) = nly,0) - | L) dns
t s

Bly,z,t) = pz(yﬂz)—/otv(z,S)pds(y,l)~
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Exponential of a 3 gral driven by a Lévy proce:
Application to E

Examples

e Examples

@ The exponential Lévy case
@ Exponential of a Wiener integral driven by a Lévy process
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The exponential Lévy case
Exponential of a Wiener integral driven by a Lévy process

Application to Electricity
Examples ?

In this section, we specify rapidly the results concerning FS
decomposition and the minimization problem when (X;) is a Lévy
process (A¢). Using the fact that (A:) is a process with
independent stationary increments it is not difficult to show that

re(z) = tk\(z2) , (32)

where k"\(z) = k1(z), k" : D — C. Since for every z € D,
t — K¢(z) has bounded variation then X = A is a semimartingale
and a previous Proposition says that (t, z) — k¢(z) is continuous.
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The exponential Lé

Exponential of

Application to Electricity
Examples ’

We make the following hypothesis.

Assumption 6

Q 2¢cD;
Q ~"(2) —2x"N1) £0.

Q ru: = (N(2) — 2kM(1)) dt;

dl{t 1 A .
Q Tm(z :mn (z) forany t € [0, T],z€ D;so D =D.

© Assumptions 3 and 4 are verified.

Again we denote the process S as
St = sg exp(Xt) = sp exp(A¢) -

It remains to verify Assumption 5 which of course depends on the contingent claim.

N. Oudjane (EDF R&D) Joint work with S. Goutte and F.Russo
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The exponential Lévy case
Exponential of a Wiener integral driven by a Lévy process

Examples Application to

Examples

@ H = (St — K)4+. We choose the second representation for the call. So, for
0<R<1,

lo = supp(M)NR ={R,1}.

In this case Assumption 5.1 becomes | = [R, R+ 1] C D. This is always
satisfied since D D [0,2] and it is convex. Assumption 5.2 is always verified
because | is compact and k" is continuous.

@ H=(K—S7)+. We recall that R < 0 and so
Io = supp(M) NR = {R}.

In this case, Assumption 5.1, gives again | = [2R,1] C D. Since [0, 2] is always
included in D, we need to suppose here that 2R (which is a negative value)
belongs to D.

This is not a restriction provided that D contains some negative values since we
have the degree of freedom for choosing R.
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We recall some cumulant generating functions of some typical Lévy
processes.

@ Poisson Case: If X is a Poisson process with intensity A, we
have that k"(z) = A\(e? — 1). and we have D = C.

@ NIG Case: This process was introduced by Barndorff-Nielsen.
Then X is a Lévy process with X; ~ NIG(«, 3, 6, 1), with
a> |6 >0,6>0and peR. We have
KN(2) = pz +6(v0 — 7z) and 7 = /a2 — (B + 2)?,
D=]-a-08a—p[+iR.

Assumption 6 is verified if 2 € D. This happens in the following
situations:

@ always in the Poisson case;

@ if A= X is a NIG process and if 2 < a — (3;
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Examples Poisson process

If X is a Poisson process with parameter A > 0 then the quadratic
error is zero. In fact, the quantities

#Nz) = Aexp(z) — 1))
pe(y:z) = At(exp(y) —1)(exp(z) — 1)
KNz +1) — kMN2) — kM) exp(z) — 1
W(z1) = KA(2) — 2kM1) i

imply that 3(y,z,t) =0 for every y,z€ C,t € [0, T].
Therefore Jy(y,z,t) = 0. In particular all the options of type (21)
are perfectly hedgeable.
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We consider the PII process X; = fot lsdAs.
Let A be a Lévy process. The cumulant function of A; equals
ki (z) = telM(z) for k) = Kk : Dy — C. We formulate the

following hypothesis:

@ There is r > 0 such that r € Dy.

Q@ x"(2) —2xMN1) #0.

© Letesuchthat 2e <rand/:[0, T] — [g,r/2] be a
(deterministic continuous) function.
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According to Lemma 1 for every v > 0, such that v € D,

kMN2y) = 26M(y) >0 . (33)

@ D contains D, , := {x eRlex, 5 € D/\} + /R, and
ke(z) = fot x"(zls)ds .

Q pr= fot (kN21s) — 26M(1s)) ds ;

© 2 € D; X is a Pll semimartingale since t — £¢(2) has
bounded variation because t — k+(z) is continuous.

Q@ 1€ D.,since 0,r € Dp.
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If /=1 then X = A and the validity of Assumption 7 is equivalent
to the validity of Assumption 9. In fact if Assumption 7 is verified
then, setting r = 2, = 1, Assumption 6 is verified. The converse
is a consequence of Remark just before.

Proposition 10:

Assumptions 3 and 4 are verified. Moreover D, , C D.
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@ Point 1. of Assumption 5 is also verified if we show that
I CD.,;infact D., CDand hU(lp+1)C /.

@ From previous proof it follows that

dr(2) wMN(zl)

dpt N /{A(2/t) — 2HA(It) '

© Since / is compact and t — d%p(z) is continuous, point 2. of
Assumption 5 would be verified again for all cases provided
that I C Dg .
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It remains to verify Assumption 5 for the same class of options as
in previous subsections. The only point to establish will be to show

I C {xex, % € D). (34)

Q@ H= (57 — K)4. Similarly to the case where X is a Lévy
process, we take the second representation of the European
Call. In this case I = [R, R + 1] and (34) is verified.

@ H= (K —S7)+. Again, here R <0, | = 2R, R + 1].

We only have to require that Dp contains some negative
values, which is the case for the two Lévy processes examples
introduced before. Selecting R in a proper way, (34) is
fulfilled.
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We provide now the FS decomposition and the solution to the minimization problem
under Assumption 7.

Corollary 4:

We consider a process X of the form X; = fot IsdA\s under Assumption 7. We consider
an option H of the type (21). For z € suppll, t € [0, T] we set

_ HA(IS)
A = R~ 2n sy’
Mz 4 1)) — KMzs) — kM)
vzs) = "M (205) — 2kM(l5) ’
A &N(ls) A A A
n(z,s) = wMazks)— O = T <,i ((z + 1)) — KM(zls) — & (/5)) .

For convenience, if z ¢ suppll then we define

'7(27') = W(Za') =0.
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Corollary 4(following):

The following properties hold true.

@ The FS decomposition is given by Hr = Hp + fOT &:dSy + LT where

H: = /Cef‘T"(z’ds)Stzl'l(dz),
& = / 7(z, t)el 124 521N (dz),
C
t
L, = HtfHof/ £,dS,.
0

@ The solution of the minimization problem is given by a pair (Vo, ¢) where

Vo= Ho and o =&+ 28 (M — Vo — Gi_ ().

Variance optimal hedging for PIl and applications.
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We suppose that the forward price F follows the two factors model

Fe = Foexp(me + X!+ X2), forall t € [0, Ty] ,where (35)

@ mis a real deterministic trend starting at 0. It is supposed to
be absolutely continuous with respect to Lebesgue;

X! = fot ogse MTa=t)dN,, where A is a Lévy process on R
with A following a Normal Inverse Gaussian (NIG) distribution.
Moreover, we will assume that E[A;] = 0 and Var[A{] = 1;
X2 = ;W where W is a standard Brownian motion on R;

(]

A and W are independent.

os and o standing respectively for the short-term volatilty
and long-term volatility.
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The result below helps to extend Theorem of the solution of the
mean-variance hedging to the case where X is a finite sum of
independent PIl semimartingales, each one verifying Assumptions
3,4 and 5 for a given payoff H = f(speXT).

Let X!, X? be two independent Pl semimartingales with cumulant
generating functions ' and related domains D', D', i = 1,2. Let
f : C — C of the form (21).
For X = X! + X? with related domains D, D and cumulant
generating function x, we have the following.

Q@ D=D'nD%

Q@ D'ND2CD.

Q If X1, X? verify Assumptions 3, 4 and 5, then X has the same

property.
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With the two factors model, the forward price F is then given as
the exponential of a PII, X, such that for all t € [0, T4],

t
Xe=me+ X} + X2 =m, + as/ e MTa=UdA, + oW, . (36)
0

For this model, we formulate the following assumption.

Assumption 11

O 205 € Dp.

@ If g, = 0, we require A not to have deterministic increments.
© We define e = g,e 14, r = 20..

Q 1 :C — C is of the type (21) fulfilling (34).
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Proposition 11:

@ The cumulant generating function of X is x: [0, Ty] x D — C
is such that for all z € D, , := {x € R|x0s € Dp} + iR, then
for all t € [0, Tq4],

220,21'
2

t
ke(z) = zmy + + / Nzose M Ta=)du . (37)
0

In particular for fixed z € D, ,, t — k¢(z) is absolutely
continuous with respect to Lebesgue measure.

@ Assumptions 3, 4 and 5 are verified.
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Theorem 8: Electricity Model

We suppose Assumption 11. The variance-optimal capital Vj and the variance-optimal
hedging strategy ¢, solution of the minimization problem (4), are given by

Vo = Ho (38)

and the implicit expression
At 3
pr =&+ T(Ht— — Vo — psdSs), (39)
t— Jo

where the processes (H¢),(£¢) and (A¢) are defined as follows:
Zt: = Use_A(Td_t)7
z0? + kM(z 4 1)z) — £MN22) — KMZ)
o? + kMN2zZ) — 26M(2)

Y(z,t): =
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Theorem 8 (following

220.2 0.2
n(z,t): = zms + T/ + HA(ZE) —(z, t)(mt + 7/ + HA(E)) dt

2
me + 3L + £NZ)

Ay =
‘ o2 + kN2z) — 26M(Z)’
H: = /CefrT"(Z’ds)sgn(dz),
& = / Yz, t)eld M=) Sz Mn(dz) .
C

The optimal initial capital is unique. The optimal hedging strategy ¢:(w) is unique up
to some (P(dw) ® dt)-null set.
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Previous formulae are practically exploitable numerically. The last
condition to be checked is

20'5 S D/\. (40)

In our classical examples, this is always verified.
@ A; is a Normal Inverse Gaussian random variable. If o < O‘T_/B
then (40) is verified.
@ A; is a Variance Gamma random variable then (40) is verified.

< —B+/PH2a
i

if for instance o <
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Exponential PlI

Simulations

We consider the problem of pricing a European call, with payoff (St — K)4, where the
underlying process S is given as the exponential of a NIG Lévy process i.e. for all
telo,T],

St = speXt | where X is a Lévy process with X1 ~ NIG(a, 8,6, 1) .

The time unit is the year and the interest rate is zero in all our simulations. sy = 100
Euros, T = 0.25 i.e. three months from now. Five different sets of parameters for the
NIG distribution have been considered, going from the case of almost Gaussian returns
corresponding to standard equities, to the case of highly non Gaussian returns. The
standard set of parameters is estimated on the Month-ahead base forward prices of
the French Power market in 2007:

a=38.46, B=—3.85, § =6.40, u=0.64. (41)

Those parameters imply a zero mean, a standard deviation of 41%, a skewness
(measuring the asymmetry) of —0.02 and an excess kurtosis (measuring the fatness of
the tails) of 0.01. The other sets of parameters are obtained by multiplying parameter
a by a coefficient C, (3,6, u) being such that the first three moments are unchanged.
Note that when C grows to infinity the tails of the NIG distribution get closer to the

tails of the Gaussian distribution.

N. Oudjane (EDF R&D) Joint work with S. Goutte and F.Russo Variance optimal hedging for Pll and applications.



Exponential Lévy

Exponential PlI

Simulations

For instance, Table 1 shows how the excess kurtosis (which is zero for a Gaussian
distribution) is modified with the five values of C chosen in our simulations.

[ Coefficient [[ C=008] C=014]C=02[C=1] C=2 |
« 3.08 5.38 7.69 38.46 76.92
Excess kurtosis 1.87 0.61 0.30 0.01 4,103

Figure: Excess kurtosis of Xj for different values of «, (8,9, i) insuring
the same three first moments.

We have compared on simulations the Variance Optimal strategy (VO) using the real
NIG incomplete market model with the real values of parameters to the Black-Scholes
strategy (BS) assuming Gaussian returns with the real values of mean and variance.
Of course, the VO strategy is by definition theoritically optimal in continuous time,
w.r.t. the quadratic norm. However, both strategies are implemented in discrete time,
hence the performances observed in our simulations are spoiled w.r.t. the theoritical
continuous rebalancing framework.
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Strike impact on the pricing value and the hedging ratio

== VO-NIG C=0.08

Variance-optimal initial capital

i i i i I i "
50 60 70 80 90 100 110 120 130 140 150
Stike price

Figure: Initial capital w.r.t. the strike, for C =0.08, C =1, C =2.
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Strike impact on the pricing value and the hedging ratio

°
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>

Variance-optimal initial hedge
° o
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o
@
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50 60 70 80 90 100 110 120 130 140 150
Strike price

Figure: Initial Hedge w.r.t. the strike, for C =0.08, C =1, C =2.
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Strike impact on the pricing value and the hedging ratio

| Strikes [ K=50 | K=99 | K=150 |
ICvo 50.08 7.11 0.40
ICps (vs ICvo) || 50.00 (99.56%) | 8.65 (121.73%) | 0.23 (57.30%)

Figure: Initial Capital of VO pricing (ICyo) vs Initial Capital of BS
pricing (ICgs) for C = 0.08.
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Hedging error and number of trading dates

‘1n[— vo-NiG c-0.08 ).
................. BS C=0.08
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ — VO-NIG C=0.14
i S e T Gl 1 BSC=0.14
— VO-NIG C=02
s
08
8 os
04f
02|
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02 i i 1 i L 1 ;
0 10 20 50 60 70

3 0
Number of trading dates: N

Figure: Bias of the Hedging error w.r.t. the number of trading dates for
different values of C and for K = 99 Euros
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Hedging error and number of trading dates

= VO-NIG C=0.08

1 BSC=0.14
— VO-NIG G=0.2
' BSC=02
— VO-NIG C=1
BS C=1
VO-NIG C=2
BS C=2

o
T

o
T

Standard deviation
~
T

w

3 0
Number of trading dates: N

Figure: Std of the Hedging error w.r.t. the number of trading dates for
different values of C and for K = 99 Euros

N. Oudjane (EDF R&D) Joint work with S. Goutte and F.Russo Variance optimal hedging for Pll and applications.



Exponential Lévy
Exponential PlI

Simulations

Hedging error and number of trading dates

Coef: C || 008 [ 014 | 02 | 1 | 2 |
Stdvo/Stdgs || 91.19% | 95.88% | 97.63% | 107.52% | 109.39%
Biasgs — Biasyo || 1.20 [ 057 | 032 | 0.022 | 0.019
ICgs —ICvo 1.55 0.7 0.39 0.01 0

Figure: Variance optimal hedging error vs Black-Scholes hedging error for
different values of C and for K = 99 Euros (averaged values for different
numbers of trading dates).
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Hedging error and number of trading dates

Moments H Mean ‘ Std ‘ Ske ‘ Kur
VO —0.049 | 6.59 | —3.50 | 31.51
BS 1.27 | 7.25 | —7.65 | 152.09
VO with ICyp = ICpgs 1.39 | 6.47 | —2.37 | 10.70

Figure: Empirical moments of the hedging error for C = 0.08, N = 12
and K = 99 Euros (averaged values for different numbers of trading

dates).

Variance optimal hedging for PIl and applications.
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Hedging error and number of trading dates

1+ = VO-NIG C=0.08

BS C=0.08.
= VO-NIG with ICVO:ICES C=0.08
08t — VO-NIG C=1
2 o BSC=1
@ ., VO-NIG with IG, ;=ICqg C=1
06
04t
02t

i i
5 10 15 20 25 30
Number of trading dates: N

Figure: Bias of the Hedging error of BS v.s. the VO strategy with the
same initial capital as BS w.r.t. N for different C and K = 99
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Hedging error and number of trading dates
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= VO-NIG C=1
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o
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Figure: Std of the Hedging error of BS v.s. the VO strategy with the
same initial capital as BS w.r.t. N for different C andK = 99
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We consider the problem of hedging and pricing a European call on an electricity
forward, with a maturity T = T4 = 0.25 of three month. The natural hedging
instrument is the corresponding forward contract with value S0 = e~/ (T=t(F,] — )
for all t € [0, T], where FT = F is supposed to follow the NIG one factor model:

F: = Xt where X; = fot o’se_A(T_”)d/\u where A is a NIG process with

A1 ~ NIG(«, 8,0, 1)

The standard set of parameters (C = 1) for the distribution of A; is estimated on the
same data as in the previous section (Month-ahead base forward prices of the French
Power market in 2007):

a=15.81, 3= —-1.581, § = 1557, = 1.56 .

Those parameters correspond to a standard and centered NIG distribution with a
skewness of —0.019. The estimated annual short-term volatility and mean-reverting

rate are 0s = 57.47% and \ = 3.
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= VO-NIG C=0.08

20 25 35 40 45 50
Number of trading dates: N

Figure: Bias of the Hedging error w.r.t. the number of trading dates for
C =0.08 and C =1, for K = 99 Euros
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Hedging error and number of trading dates

o
T

Standard deviation

0 5 10 15 20 25 30 35 40 45 50
Number of trading dates: N

Figure: Std of the Hedging error w.r.t. the number of trading dates for
C =0.08 and C =1, for K =99 Euros
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Hedging error and number of trading dates

] Moments H Mean \ Standard deviation \ Skewness | Kurtosis

VO 0.43 6.59 —2.89 16.24
BS 1.58 6.65 -3.79 25.53

Figure: Empirical moments of the hedging error for C = 0.08, N = 10
and K =99 Euros.
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