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• Since electricity is not storable one has to hedge with forward or futures contracts.

• Let us consider, Ft , the price quoted at time t for the delivery of one MWh on the
period [Td ,Td + θ], with Td ≥ t.

Quotation dates t Time to maturity Td − t Delivery period [Td ,Td + θ]

• Let Vt denote the value of a self-financed portfolio with a (short or long) forward
position ϕt (positive or negative) at time t for delivery on [Td ,Td + θ]. Recall that
entering in a forward contract is free, hence

Vt+∆t = ϕt(Ft+∆t − Ft) + er∆tVt , (1)

r being the (constant deterministic) interest rate. Then in a continuous time setting

d(e−rtVt) = ϕte
−rTd dFt . (2)

Let H be a payoff e.g. H = (FTd
− K)+, then the hedging problem consists of finding

an initial capital and a strategy (V0, ϕ) st

V0 +

∫ T

0
ϕudFu ≈ H , in some sense .
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A non Gaussian and non stationnary model for forward prices
log-returns [Benth (2003)]
[Benth (2003)] has proposed a model to represent two specific stylized features:

the volatility term structure: the futures volatility increases when the time to
maturity decreases

the non gaussianity of log-returns inducing huge spikes on the Spot.

Ft = F0 exp

mt +

∫ t

0
σse
−λ(Td−u)dΛu︸ ︷︷ ︸

long-term factor

+ σlWt︸ ︷︷ ︸
short-term factor

 , for all t ∈ [0,Td ] ,where

(3)

m is a real deterministic trend starting at 0 (a.c. wrt to Lebesgue);

Λ is a Lévy process on R following a Normal Inverse Gaussian (NIG) distribution
(with E[Λ1] = 0 and Var [Λ1] = 1);

W is a standard Brownian motion on R;

σs and σl standing respectively for the short-term and long-term volatility.

=> How to price and hedge contingent claims in such incomplete market ?
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The quadratic or mean-variance hedging appproach ([Schweizer
(1994)])
[Schweizer (1994)] proposed to minimize the expected quadratic distance between the
hedging portfolio and the payoff.

Definition: The mean-variance hedging problem

Given a payoff H ∈ L2, an admissible strategy pair (V ∗0 , ϕ
∗) will be called optimal if it

minimizes the expected squared hedging error

E[(H − V0 − GT (ϕ))2] , with Gt(ϕ) :=

∫ t

0
ϕsdSs (4)

over all admisible strategy pairs (V0, ϕ) ∈ R×Θ.

• Related approaches

minimizing the expected quadratic hedging error under the pricing measure
under which the underlying is martingale ([Cont-Tankov-Voltchkova (2007)] Via
integro-differential equations).

minimizing the quadratic error under the minimal martingal measure . . .

BSDE . . .
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Laplace transform approach ([Hubalek-Kallsen-Krawczyk (2006)])

• In the specific case of Lévy log-prices, [Hubalek-Kallsen-Krawczyk
(2006)] proposed to express the payoff as a linear combination of
exponential payoffs (using generalized Laplace transform) for which
the VO strategy can be expressed explicitely.

Then they obtain quasi-explicit formula for

the initial capital and the hedging strategy (V ∗0 , ϕ
∗)

the variance optimal hedging error;

• Here we propose to extend this approach to the case where
log-prices have independent but possibly non stationary increments.
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3 Föllmer Schweizer decomposition for exponential of PII processes
Processes with independent increments (PII)
Cumulant generating function
On the Structure Condition
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The set of admissible strategies Θ
Let X = (Xt)t∈[0,T ] be a real-valued special semimartingale with canonical
decomposition X = M + A.

Definition: Θ space

For a given local martingale M, the space L2(M) consists of all predictable R-valued
processes v = (vt)t∈[0,T ] such that

E
[∫ T

0
|vs |2d 〈M〉s

]
<∞ .

For a given predictable bounded variation process A, the space L2(A) consists of all
predictable R-valued processes v = (vt)t∈[0,T ] such that

E
[

(

∫ T

0
|vs |d ||A||s)2

]
<∞ .

Finally, we set
Θ := L2(M) ∩ L2(A) .
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The structure condition and the Mean-Variance Tradeoff Process

Let X = (Xt)t∈[0,T ] be a real-valued special semimartingale with canonical
decomposition

X = M + A .

Definition: Structure Condition and Mean-Variance Tradeoff Process

X is said to satisfy the structure condition (SC) if there is a predictable R-valued
process α = (αt)t∈[0,T ] such that

1 At =

∫ t

0
αsd 〈M〉s , for all t ∈ [0,T ], so that dA� d 〈M〉.

2 Kt :=

∫ T

0
α2

s d 〈M〉s <∞ , P−a.s.

K = (Kt)t∈[0,T ] is called the mean-variance tradeoff (MVT) process.
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Definition: Föllmer-Schweizer (FS) decomposition

We say that a random variable H ∈ L2(Ω,F ,P) admits a
Föllmer-Schweizer (FS) decomposition, if it can be written as

H = H0 +

∫ T

0
ξHs dXs + LH

T , P − a.s. , (5)

where

H0 ∈ R is a constant,

ξH ∈ Θ,

LH = (LH
t )t∈[0,T ] is a square integrable martingale, with

E[LH
0 ] = 0 and strongly orthogonal to M.
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Existence and unicity of FS decomposition

Assumption SC

We assume that X satisfies (SC) and that the MVT process K is uniformly bounded in
t and ω.

Theorem 1: Theorem 3.4 of Monat, P. and Stricker, C. (1995)

Under Assumption SC, every random variable H ∈ L2(Ω,F ,P) admits a FS
decomposition. Moreover, this decomposition is unique in the following sense:
If

H = H0 +

∫ T

0
ξH
s dXs + LH

T = H
′
0 +

∫ T

0
ξ
′H
s dXs + L

′H
T ,

where (H0, ξ
H , LH) and (H

′
0, ξ

′H , L
′H) satisfy the conditions of the FS decomposition,

then 
H0 = H

′
0 , P − a.s. ,

ξH = ξ
′H in L2(M) ,

LH
T = L

′H
T , P − a.s. .
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Link between FS decomposition and VO hedging

Theorem 2: Theorem 3 of [Schweizer (1994)]

Suppose that X satisifies (SC) and that the MVT process K of X is deterministic. If
H ∈ L2 admits a FS decomposition of type (5), then the minimization problem has a
solution ϕ(c) ∈ Θ for any c ∈ R, such that

ϕ
(c)
t = ξH

t +
αt

1 + ∆Kt
(Ht− − c − Gt−(ϕ(c))) , for all t ∈ [0,T ] (6)

where the process (Ht)t∈[0,T ] is defined by

Ht := H0 +

∫ t

0
ξH
s dXs + LH

t , (7)

and the process α is the process appearing in Definition of the (SC).

Corollary 1: Corollary 10 of [Schweizer (1994)]

Under the assumptions of Theorem 2, the solution of the minimization problem is
given by the pair (H0, ϕ

(H0)) .
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Expression of the variance optimal error

Theorem 3: Theorem of [Schweizer (1994)]

Under the assumptions of Theorem 2, for any c ∈ R, we have

min
v∈Θ

E[(H − c − GT (v))2] = E(−K̃T )

(
(H0 − c)2 + E[(LH

0 )2] +

∫ T

0

1

E(−K̃s)
d
(

E[
〈
LH
〉

s
]
))

. (8)

Corollary 2: Theorem of [Schweizer (1994)]

If 〈M,M〉 is continuous

min
v∈Θ

E[(H − c − GT (v))2] = exp(−KT )
(

(H0 − c)2 + E[(LH
0 )2]

)
+E
[∫ T

0
exp{−(KT − Ks)}d

〈
LH
〉

s

]
. (9)
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Föllmer-Schweizer Structure Condition
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Definition: PII

X = (Xt)t∈[0,T ] is a (real) process with independent increments (PII) iff

1 X has cadlag paths.

2 Xt − Xs is independent of Fs for 0 ≤ s < t ≤ T where (Ft) is the canonical
filitration associated with X .
Moreover we will also suppose

3 X is continuous in probability, i.e. X has no fixed time of discontinuties.

We recall Theorem II.4.15 of Jacod, J. and Shiryaev, A. (2003).

Theorem 4:

Let (Xt)t∈[0,T ] be a real-valued special semimartingale, with X0 = 0. Then, X is a
process with independent increments, iff there is a version (b, c, ν) of its
characteristics that is deterministic.

Definition: Lévy process (PIIS)

We add the stationnary increments property to the PII definition:
The distribution of Xt − Xs depends only on t − s for 0 ≤ s ≤ t ≤ T .
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Set T > 0 a fixed terminal time. (Ω,F , (Ft)t∈[0,T ],P) a filtered probability space and
X = (Xt)t∈[0,T ] be a real valued stochastic process.

Definition: cumulant generating function

The cumulant generating function of (the law of) Xt is the mapping
z 7→ Log(E[ezXt ]) where Log(w) = log(|w |) + iArg(w) where Arg(w) is the Argument
of w , chosen in ]− π, π]; Log is the principal value logarithm. In particular we have

κt : D → C with eκt (z) = E[ezXt ] ,

where D := {z ∈ C | E[eRe(z)Xt ] <∞, ∀t ∈ [0,T ]}.

Proposition 5:

Suppose that (Xt) is a semimartingale with independent increments. Then the
function (t, z) 7→ κt(z) is continuous. In particular, (t, z) 7→ κt(z), t ∈ [0,T ], z
belonging to a compact real subset, is bounded.
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Föllmer Schweizer decomposition for exponential of PII processes
The solution to the minimization problem

Examples
Simulations

Processes with independent increments (PII)
Cumulant generating function
On the Structure Condition
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We come back to the main optimization problem which was
formulated in the beginning of this presentation. We assume that
the process S is the discounted price of the non-dividend paying
stock which is supposed to be of the form,

St = s0 exp(Xt) , for all t ∈ [0,T ] ,

where s0 is a strictly positive constant and X is a semimartingale
process with independent increments (PII) but not necessarily with
stationary increments.
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A significant reference measure

Definition

For any t ∈ [0,T ], let ρt denote the complex valued function such that for all z, y ∈ D
2

ρt(z, y) = κt(z + y)− κt(z)− κt(y) . (10)

For all z, z̄ ∈ D
2

, ρt(z, z̄) is well defined. To shorten notations ρt will also denote the
real valued function defined on D such that,

ρt(z) = ρt(z, z̄) = κt(2Re(z))− 2Re(κt(z)) . (11)

An important technical lemma follows below.

Lemma 1

Let z ∈ D
2

, with z 6= 0, then, t 7→ ρt(z) is strictly increasing if and only if X has no
deterministic increments.
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A reference measure
From now on, we will always suppose the following assumption.

Assumption NDI-L2

1 (Xt) has no deterministic increments.

2 2 ∈ D.

We will note dρt = ρdt the measure

dρt = ρdt(1) = d(κt(2)− 2κt(1)) . (12)

It is a positive measure which is strictly positive on each interval.

Proposition 6:

Under Assumption NDI-L2

d(κt(z))� dρt , for all z ∈ D . (13)
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Expression of the canonical decomposition of Sz

Proposition 7:

Let y , z ∈ D
2

, then Sz is a special semimartingale whose canonical decomposition

Sz
t = M(z)t + A(z)t

satisfies

A(z)t =

∫ t

0
Sz

u−κdu(z) , 〈M(y),M(z)〉t =

∫ t

0
Sy+z

u− ρdu(z, y) , M(z)0 = sz
0 , (14)

where dρu(z) is defined by equation (11). In particular we have the following:

1 〈M(z),M〉t =
∫ t

0 Sz+1
u− ρdu(z, 1)

2 〈M(z),M(z̄)〉t =
∫ t

0 S
2Re(z)
u− ρdu(z) .
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Föllmer Schweizer decomposition for exponential of PII processes
The solution to the minimization problem

Examples
Simulations

Processes with independent increments (PII)
Cumulant generating function
On the Structure Condition
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Expression of the Mean Variance Tradeoff
If we apply Proposition 7 with y = z = 1, we obtain

Proposition 8:

Under Assumption NDI-L2, we have

At =

∫ t

0
αud 〈M〉u , where αu :=

λu

Su−
with λu :=

dκu(1)

dρu
. (15)

Moreover the MVT process is given by

Kt =

∫ t

0

(
d(κu(1))

dρu

)2

dρu . (16)

Then if KT is bounded, according to Theorem of existence of the FS decomposition,

there will exist a unique FS decomposition for any H ∈ L2 and since K is deterministc

the minimization problem (4) will have a unique solution, by Theorem 2.
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Corollary 3:

Under Assumption NDI-L2, the structure condition (SC) is verified if and only if

KT =

∫ T

0

(
d(κu(1))

dρu

)2

dρu <∞ .

In particular, (Kt) is deterministic therefore bounded.

We denote by D the set of z ∈ D such that

∫ T

0

∣∣∣∣dκu(z)

dρu

∣∣∣∣2 dρu <∞. (17)

From now on, we formulate another assumption which will be in force for the whole
presentation.

Assumption K

1 ∈ D.
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Proposition 9: FS Decomposition in exponential PII case

Let z ∈ D ∩ D
2

with z + 1 ∈ D. Then Sz
T ∈ L

2(Ω,FT ).
Moreover, we suppose Assumptions NDI-L2 and K. Then we can define

γ(z, t) := d(ρt (z,1))
dρt

, t ∈ [0,T ]. such that
∫ T

0 |γ(z, t)|2ρdt <∞

η(z, t) := κt(z)−
∫ t

0 γ(z, s)κds(1) which is well-defined and st η(z, ·) is ac wrt
ρds and therefore bounded.

Under those assumptions, H(z) = Sz
T admits a FS decomposition

H(z) = H(z)0 +
∫ T

0 ξ(z)tdSt + L(z)T where

H(z)t := e
∫ T
t η(z,ds)Sz

t , (18)

ξ(z)t := γ(z, t)e
∫ T
t η(z,ds)Sz−1

t− , (19)

L(z)t := H(z)t − H(z)0 −
∫ t

0
ξ(z)udSu . (20)
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Contingent claims

Now, we will proceed to the FS decomposition of more general
contingent claims. We consider now options of the type

H = f (ST ) with f (s) =

∫
C

szΠ(dz) , (21)

where Π is a (finite) complex measure in the sense of Rudin
(1987), Section 6.1.
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Assumption 8Pi

Let I0 = suppΠ ∩ R. We denote I := 2I0 ∪ {1}.
1 ∀z ∈ suppΠ, z , z + 1 ∈ D.
2 I0 ⊂ D

2 and supx∈I∪{1}

∥∥∥d(κt(x))
dρt

∥∥∥
∞
<∞.

Remark:

1 Point 2. of Assumption Π implies
supz∈I+iR ‖κdt(Re(z))‖T <∞ .

2 Under Assumption Π, H = f (ST ) is square integrable. In
particular it admits an FS decomposition.

3 Because of (13), the Radon-Nykodim derivative at Point 2. of
Assumption Π, always exists.
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Theorem 5:

Let Π be a finite complex-valued Borel measure on C.
Suppose Assumptions NDI-L2, K and Π. Any complex-valued
contingent claim H = f (ST ), where f is of the form (21), and
H ∈ L2, admits a unique FS decomposition
H = H0 +

∫ T
0 ξtdSt + LT with the following properties.

1 H ∈ L2 and

Ht =
∫

H(z)tΠ(dz) ,
ξt =

∫
ξ(z)tΠ(dz) ,

Lt =
∫

L(z)tΠ(dz) ,

where for z ∈ supp(Π), H(z), ξ(z) and L(z) are the same as
those introduced before and we convene that they vanish if
z /∈ supp(Π).

2 Previous decomposition is real-valued if f is real-valued.
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Lemma 2: European Call and Put case.

Let K > 0, the European Call option H = (ST − K)+ has two representations of the
form (21):

1 For arbitrary R > 1, s > 0, we have

(s − K)+ =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

z(z − 1)
dz . (22)

2 For arbitrary 0 < R < 1, s > 0, we have

(s − K)+ − s =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

z(z − 1)
dz . (23)

Let K > 0, the European Put option H = (K − ST )+ gives for an arbitrary R < 0,
s > 0

(K − s)+ =
1

2πi

∫ R+i∞

R−i∞
sz K1−z

z(z − 1)
dz . (24)
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Theorem 6: The exponential of PII Case

Let X = (Xt)t∈[0,T ] be a process with independent increments with cumulant

generating function κ. Let H = f (eXT ) where f is of the form (21). We assume the
validity of Assumptions NDI-L2, K and Π. The variance-optimal capital V0 and the
variance-optimal hedging strategy ϕ, solution of the minimization problem (4), are
given by

V0 = H0 (25)

and the implicit expression

ϕt = ξt +
λt

St−
(Ht− − V0 −

∫ t

0
ϕsdSs) , (26)

where the processes (Ht), (ξt) and (λt) are defined by

γ(z, t) :=
dρt(z, 1)

dρt
with ρt(z, y) = κt(z + y)− κt(z)− κt(y) , (27)
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Theorem 6 (following):

η(z, dt) := κdt(z)− γ(z, t)κdt(1) , (28)

λt :=
d(κt(1))

dρt
, (29)

Ht :=

∫
C

e
∫ T
t η(z,ds)Sz

t Π(dz) , (30)

ξt :=

∫
C
γ(z, t)e

∫ T
t η(z,ds)Sz−1

t− Π(dz) . (31)

The optimal initial capital is unique. The optimal hedging strategy ϕt(ω) is unique up
to some (P(dω)⊗ dt)-null set.
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Theorem 7:

Under the assumptions NDI-L2, K and Π, the variance of the hedging error equals

J0 := E[(V ∗0 + GT (ϕ∗)− H)2] =

(∫
C

∫
C

J0(y , z)Π(dy)Π(dz)

)
,

where

J0(y , z) :=

{
sy+z

0

∫ T
0 β(y , z, dt)eκt (y+z)+α(y,z,t)dt : y , z ∈ suppΠ

0 : otherwise.

and

α(y , z, t) := η(z,T )− η(z, t)− (η(y ,T )− η(y , t))−
∫ T

t

(
dκs(1)

dρs

)2

dρs ,

β(y , z, t) := ρt(y , z)−
∫ t

0
γ(z, s)ρds(y , 1) .
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Exponential of a Wiener integral driven by a Lévy process
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Exponential of a Wiener integral driven by a Lévy process
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In this section, we specify rapidly the results concerning FS
decomposition and the minimization problem when (Xt) is a Lévy
process (Λt). Using the fact that (Λt) is a process with
independent stationary increments it is not difficult to show that

κt(z) = tκΛ(z) , (32)

where κΛ(z) = κ1(z), κΛ : D → C. Since for every z ∈ D,
t 7→ κt(z) has bounded variation then X = Λ is a semimartingale
and a previous Proposition says that (t, z) 7→ κt(z) is continuous.
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We make the following hypothesis.

Assumption 6

1 2 ∈ D ;

2 κΛ(2)− 2κΛ(1) 6= 0 .

1 ρdt =
(
κΛ(2)− 2κΛ(1)

)
dt ;

2
dκt

dρt
(z) =

1

κΛ(2)− 2κΛ(1)
κΛ(z) for any t ∈ [0,T ], z ∈ D ; so D = D.

3 Assumptions 3 and 4 are verified.

Again we denote the process S as

St = s0 exp(Xt) = s0 exp(Λt) .

It remains to verify Assumption 5 which of course depends on the contingent claim.
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Examples

1 H = (ST − K)+. We choose the second representation for the call. So, for
0 < R < 1,

I0 = supp(Π) ∩ R = {R, 1} .

In this case Assumption 5.1 becomes I = [R,R + 1] ⊂ D. This is always
satisfied since D ⊃ [0, 2] and it is convex. Assumption 5.2 is always verified
because I is compact and κΛ is continuous.

2 H = (K − ST )+. We recall that R < 0 and so

I0 = supp(Π) ∩ R = {R}.

In this case, Assumption 5.1, gives again I = [2R, 1] ⊂ D. Since [0, 2] is always
included in D, we need to suppose here that 2R (which is a negative value)
belongs to D.
This is not a restriction provided that D contains some negative values since we
have the degree of freedom for choosing R.
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Examples

We recall some cumulant generating functions of some typical Lévy
processes.

1 Poisson Case: If X is a Poisson process with intensity λ, we
have that κΛ(z) = λ(ez − 1). and we have D = C.

2 NIG Case: This process was introduced by Barndorff-Nielsen.
Then X is a Lévy process with X1 ∼ NIG (α, β, δ, µ), with
α > |β| > 0, δ > 0 and µ ∈ R. We have
κΛ(z) = µz + δ(γ0 − γz) and γz =

√
α2 − (β + z)2,

D =]− α− β, α− β[+iR .
Assumption 6 is verified if 2 ∈ D. This happens in the following
situations:

1 always in the Poisson case;

2 if Λ = X is a NIG process and if 2 < α− β ;

N. Oudjane (EDF R&D) Joint work with S. Goutte and F.Russo Variance optimal hedging for PII and applications.



Motivation
Useful notions on Variance Optimal (VO) hedging
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Examples Poisson process

If X is a Poisson process with parameter λ > 0 then the quadratic
error is zero. In fact, the quantities

κΛ(z) = λ(exp(z)− 1))

ρt(y , z) = λt(exp(y)− 1)(exp(z)− 1)

γ(z , t) =
κΛ(z + 1)− κΛ(z)− κΛ(1)

κΛ(2)− 2κΛ(1)
t =

exp(z)− 1

e − 1

imply that β(y , z , t) = 0 for every y , z ∈ C, t ∈ [0,T ].
Therefore J0(y , z , t) ≡ 0. In particular all the options of type (21)
are perfectly hedgeable.
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We consider the PII process Xt =
∫ t

0 lsdΛs .
Let Λ be a Lévy process. The cumulant function of Λt equals
κΛ

t (z) = tκΛ
1 (z) for κΛ

1 = κΛ : DΛ → C. We formulate the
following hypothesis:

Assumption 7

1 There is r > 0 such that r ∈ DΛ.

2 κΛ(2)− 2κΛ(1) 6= 0.

3 Let ε such that 2ε ≤ r and l : [0,T ]→ [ε, r/2] be a
(deterministic continuous) function.
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Remarks:

According to Lemma 1 for every γ > 0, such that γ ∈ D,

κΛ(2γ)− 2κΛ(γ) > 0 . (33)

1 D contains Dε,r :=
{
x ∈ R | εx , rx

2 ∈ DΛ

}
+ iR , and

κt(z) =
∫ t

0 κ
Λ(zls)ds .

2 ρt =
∫ t

0

(
κΛ(2ls)− 2κΛ(ls)

)
ds ;

3 2 ∈ D ; X is a PII semimartingale since t 7→ κt(2) has
bounded variation because t 7→ κt(z) is continuous.

4 1 ∈ Dε,r since 0, r ∈ DΛ.
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If l ≡ 1 then X = Λ and the validity of Assumption 7 is equivalent
to the validity of Assumption 9. In fact if Assumption 7 is verified
then, setting r = 2, ε = 1, Assumption 6 is verified. The converse
is a consequence of Remark just before.

Proposition 10:

Assumptions 3 and 4 are verified. Moreover Dε,r ⊂ D.
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Remarks:

1 Point 1. of Assumption 5 is also verified if we show that
I ⊂ Dε,r ; in fact Dε,r ⊂ D and I0 ∪ (I0 + 1) ⊂ I .

2 From previous proof it follows that

dκt(z)

dρt
=

κΛ(zlt)

κΛ(2lt)− 2κΛ(lt)
.

3 Since I is compact and t 7→ dκt(z)
dρt

is continuous, point 2. of
Assumption 5 would be verified again for all cases provided
that I ⊂ Dε,r .
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It remains to verify Assumption 5 for the same class of options as
in previous subsections. The only point to establish will be to show

I ⊂ {x |εx , rx
2
∈ DΛ}. (34)

1 H = (ST − K )+. Similarly to the case where X is a Lévy
process, we take the second representation of the European
Call. In this case I = [R,R + 1] and (34) is verified.

2 H = (K − ST )+. Again, here R < 0, I = [2R,R + 1].
We only have to require that DΛ contains some negative
values, which is the case for the two Lévy processes examples
introduced before. Selecting R in a proper way, (34) is
fulfilled.
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Exponential of a Wiener integral driven by a Lévy process
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We provide now the FS decomposition and the solution to the minimization problem
under Assumption 7.

Corollary 4:

We consider a process X of the form Xt =
∫ t

0 lsdΛs under Assumption 7. We consider
an option H of the type (21). For z ∈ suppΠ, t ∈ [0,T ] we set

λ(s) =
κΛ(ls)

κΛ(2ls)− 2κΛ(ls)
,

γ(z, s) =
κΛ((z + 1)ls)− κΛ(zls)− κΛ(ls)

κΛ(2ls)− 2κΛ(ls)
,

η(z, s) = κΛ(zls)−
κΛ(ls)

κΛ(2ls)− 2κΛ(ls)

(
κΛ((z + 1)ls)− κΛ(zls)− κΛ(ls)

)
.

For convenience, if z /∈ suppΠ then we define

γ(z, ·) = η(z, ·) ≡ 0.
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Exponential of a Wiener integral driven by a Lévy process
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Corollary 4(following):

The following properties hold true.

1 The FS decomposition is given by HT = H0 +
∫ T

0 ξtdSt + LT where

Ht =

∫
C

e
∫ T
t η(z,ds)Sz

t Π(dz),

ξt =

∫
C
γ(z, t)e

∫ T
t η(z,ds)Sz−1

t− Π(dz),

Lt = Ht − H0 −
∫ t

0
ξudSu .

2 The solution of the minimization problem is given by a pair (V0, ϕ) where

V0 = H0 and ϕt = ξt +
λ(t)

St−
(Ht− − V0 − Gt−(ϕ)).
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Model

We suppose that the forward price F follows the two factors model

Ft = F0 exp(mt + X 1
t + X 2

t ) , for all t ∈ [0,Td ] ,where (35)

m is a real deterministic trend starting at 0. It is supposed to
be absolutely continuous with respect to Lebesgue;

X 1
t =

∫ t
0 σse

−λ(Td−u)dΛu, where Λ is a Lévy process on R
with Λ following a Normal Inverse Gaussian (NIG) distribution.
Moreover, we will assume that E[Λ1] = 0 and Var [Λ1] = 1;

X 2 = σlW where W is a standard Brownian motion on R;

Λ and W are independent.

σs and σl standing respectively for the short-term volatilty
and long-term volatility.
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The result below helps to extend Theorem of the solution of the
mean-variance hedging to the case where X is a finite sum of
independent PII semimartingales, each one verifying Assumptions
3,4 and 5 for a given payoff H = f (s0e

XT ).

Lemma 3:

Let X 1,X 2 be two independent PII semimartingales with cumulant
generating functions κi and related domains D i ,Di , i = 1, 2. Let
f : C→ C of the form (21).
For X = X 1 + X 2 with related domains D,D and cumulant
generating function κ, we have the following.

1 D = D1 ∩ D2.

2 D1 ∩ D2 ⊂ D.

3 If X 1,X 2 verify Assumptions 3, 4 and 5, then X has the same
property.
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With the two factors model, the forward price F is then given as
the exponential of a PII, X , such that for all t ∈ [0,Td ],

Xt = mt + X 1
t + X 2

t = mt + σs

∫ t

0
e−λ(Td−u)dΛu + σlWt . (36)

For this model, we formulate the following assumption.

Assumption 11

1 2σs ∈ DΛ.

2 If σl = 0, we require Λ not to have deterministic increments.

3 We define ε = σse
−λTd , r = 2σs .

4 f : C→ C is of the type (21) fulfilling (34).
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Proposition 11:

1 The cumulant generating function of X is κ : [0,Td ]×D → C
is such that for all z ∈ Dε,r := {x ∈ R | xσs ∈ DΛ}+ iR, then
for all t ∈ [0,Td ],

κt(z) = zmt +
z2σ2

l t

2
+

∫ t

0
κΛ(zσse

−λ(Td−u))du . (37)

In particular for fixed z ∈ Dε,r , t 7→ κt(z) is absolutely
continuous with respect to Lebesgue measure.

2 Assumptions 3, 4 and 5 are verified.
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Exponential of a Wiener integral driven by a Lévy process
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Theorem 8: Electricity Model

We suppose Assumption 11. The variance-optimal capital V0 and the variance-optimal
hedging strategy ϕ, solution of the minimization problem (4), are given by

V0 = H0 (38)

and the implicit expression

ϕt = ξt +
λt

St−
(Ht− − V0 −

∫ t

0
ϕsdSs), (39)

where the processes (Ht),(ξt) and (λt) are defined as follows:

z̃t : = σse
−λ(Td−t),

γ(z, t) : =
zσ2

l + κΛ((z + 1)z̃)− κΛ(zz̃)− κΛ(z̃)

σ2
l + κΛ(2z̃)− 2κΛ(z̃)
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Theorem 8 (following):

η(z, t) : =

[
zmt +

z2σ2
l

2
+ κΛ(zz̃)− γ(z, t)

(
mt +

σ2
l

2
+ κΛ(z̃)

)]
dt

λt =
mt +

σ2
l

2
+ κΛ(z̃)

σ2
l + κΛ(2z̃)− 2κΛ(z̃)

,

Ht =

∫
C

e
∫ T
t η(z,ds)Sz

t Π(dz),

ξt =

∫
C
γ(z, t)e

∫ T
t η(z,ds)Sz−1

t− Π(dz) .

The optimal initial capital is unique. The optimal hedging strategy ϕt(ω) is unique up
to some (P(dω)⊗ dt)-null set.
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Remarks

Previous formulae are practically exploitable numerically. The last
condition to be checked is

2σs ∈ DΛ. (40)

In our classical examples, this is always verified.

1 Λ1 is a Normal Inverse Gaussian random variable. If σs ≤ α−β
2

then (40) is verified.

2 Λ1 is a Variance Gamma random variable then (40) is verified.

if for instance σs ≤
−β+
√
β2+2α

2 .
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We consider the problem of pricing a European call, with payoff (ST −K)+, where the
underlying process S is given as the exponential of a NIG Lévy process i.e. for all
t ∈ [0,T ],

St = s0e
Xt , where X is a Lévy process with X1 ∼ NIG(α, β, δ, µ) .

The time unit is the year and the interest rate is zero in all our simulations. s0 = 100
Euros, T = 0.25 i.e. three months from now. Five different sets of parameters for the
NIG distribution have been considered, going from the case of almost Gaussian returns
corresponding to standard equities, to the case of highly non Gaussian returns. The
standard set of parameters is estimated on the Month-ahead base forward prices of
the French Power market in 2007:

α = 38.46 , β = −3.85 , δ = 6.40 , µ = 0.64 . (41)

Those parameters imply a zero mean, a standard deviation of 41%, a skewness

(measuring the asymmetry) of −0.02 and an excess kurtosis (measuring the fatness of

the tails) of 0.01. The other sets of parameters are obtained by multiplying parameter

α by a coefficient C , (β, δ, µ) being such that the first three moments are unchanged.

Note that when C grows to infinity the tails of the NIG distribution get closer to the

tails of the Gaussian distribution.
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For instance, Table 1 shows how the excess kurtosis (which is zero for a Gaussian
distribution) is modified with the five values of C chosen in our simulations.

Coefficient C = 0.08 C = 0.14 C = 0.2 C = 1 C = 2

α 3.08 5.38 7.69 38.46 76.92
Excess kurtosis 1.87 0.61 0.30 0.01 4. 10−3

Figure: Excess kurtosis of X1 for different values of α, (β, δ, µ) insuring
the same three first moments.

We have compared on simulations the Variance Optimal strategy (VO) using the real
NIG incomplete market model with the real values of parameters to the Black-Scholes
strategy (BS) assuming Gaussian returns with the real values of mean and variance.
Of course, the VO strategy is by definition theoritically optimal in continuous time,
w.r.t. the quadratic norm. However, both strategies are implemented in discrete time,
hence the performances observed in our simulations are spoiled w.r.t. the theoritical
continuous rebalancing framework.
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Strike impact on the pricing value and the hedging ratio

Figure: Initial capital w.r.t. the strike, for C = 0.08 , C = 1 , C = 2.
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Föllmer Schweizer decomposition for exponential of PII processes
The solution to the minimization problem

Examples
Simulations

Exponential Lévy
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Strike impact on the pricing value and the hedging ratio

Figure: Initial Hedge w.r.t. the strike, for C = 0.08 , C = 1 , C = 2.
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Exponential PII

Strike impact on the pricing value and the hedging ratio

Strikes K = 50 K = 99 K = 150

ICVO 50.08 7.11 0.40

ICBS (vs ICVO) 50.00 (99.56%) 8.65 (121.73%) 0.23 (57.30%)

Figure: Initial Capital of VO pricing (ICVO) vs Initial Capital of BS
pricing (ICBS) for C = 0.08.
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Hedging error and number of trading dates

Figure: Bias of the Hedging error w.r.t. the number of trading dates for
different values of C and for K = 99 Euros
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Hedging error and number of trading dates

Figure: Std of the Hedging error w.r.t. the number of trading dates for
different values of C and for K = 99 Euros
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Hedging error and number of trading dates

Coef: C 0.08 0.14 0.2 1 2

StdVO/StdBS 91.19% 95.88% 97.63% 107.52% 109.39%

BiasBS − BiasVO 1.20 0.57 0.32 0.022 0.019

ICBS − ICVO 1.55 0.7 0.39 0.01 0

Figure: Variance optimal hedging error vs Black-Scholes hedging error for
different values of C and for K = 99 Euros (averaged values for different
numbers of trading dates).
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Hedging error and number of trading dates

Moments Mean Std Ske Kur

VO −0.049 6.59 −3.50 31.51

BS 1.27 7.25 −7.65 152.09

VO with ICVO = ICBS 1.39 6.47 −2.37 10.70

Figure: Empirical moments of the hedging error for C = 0.08, N = 12
and K = 99 Euros (averaged values for different numbers of trading
dates).
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Hedging error and number of trading dates

Figure: Bias of the Hedging error of BS v.s. the VO strategy with the
same initial capital as BS w.r.t. N for different C and K = 99
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Hedging error and number of trading dates

Figure: Std of the Hedging error of BS v.s. the VO strategy with the
same initial capital as BS w.r.t. N for different C andK = 99
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We consider the problem of hedging and pricing a European call on an electricity
forward, with a maturity T = Td = 0.25 of three month. The natural hedging
instrument is the corresponding forward contract with value S0

t = e−r(T−t)(FT
t − FT

0 )

for all t ∈ [0,T ], where FT = F is supposed to follow the NIG one factor model:
Ft = eXt where Xt =

∫ t
0 σse−λ(T−u)dΛu where Λ is a NIG process with

Λ1 ∼ NIG(α, β, δ, µ)
The standard set of parameters (C = 1) for the distribution of Λ1 is estimated on the
same data as in the previous section (Month-ahead base forward prices of the French
Power market in 2007):

α = 15.81 , β = −1.581 , δ = 15.57 , µ = 1.56 .

Those parameters correspond to a standard and centered NIG distribution with a

skewness of −0.019. The estimated annual short-term volatility and mean-reverting

rate are σs = 57.47% and λ = 3.
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Hedging error and number of trading dates

Figure: Bias of the Hedging error w.r.t. the number of trading dates for
C = 0.08 and C = 1, for K = 99 Euros

N. Oudjane (EDF R&D) Joint work with S. Goutte and F.Russo Variance optimal hedging for PII and applications.



Motivation
Useful notions on Variance Optimal (VO) hedging
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Hedging error and number of trading dates

Figure: Std of the Hedging error w.r.t. the number of trading dates for
C = 0.08 and C = 1, for K = 99 Euros
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Hedging error and number of trading dates

Moments Mean Standard deviation Skewness Kurtosis

VO 0.43 6.59 −2.89 16.24

BS 1.58 6.65 −3.79 25.53

Figure: Empirical moments of the hedging error for C = 0.08, N = 10
and K = 99 Euros.
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