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Combining options and games

» A systematic application of both real options and game theory
in strategic decisions has been proposed in the literature (see
Smit and Trigeorgis (2004) for a review).

» The essential idea can be summarized in two rules:

1. whenever the outcome of a given game involves a
“wait—and—see" strategy, its pay-off should be calculated as
the value of a real option;

2. whenever the pay-off of a given involves a game, its value
should calculated as the equilibrium solution to the game.

> In this way, option valuation and game theoretical equilibrium
become dynamically related in a decision tree.

» In what follows, we denote the NE solution for a given game
in bold face within the matrix of outcomes.

» For convenience of notation we will round all number to the
nearest integer.



One—stage investment: single firm

> As a first example, suppose that a single firm can make an
investment of /| = 90 either at t = 0 or at t = 1.

> Let the underlying project values be Vg = 100 at time t =0,

then either V" = 120 or V' = 80 at time ¢ = 1 with equal
probabilities.

» If V is perfectly correlated with a traded financial asset S,
then the option to invest can be valued using standard
risk—neutral pricing.

» For a one—period risk—free rate R = 0.06, the risk—neutral

probability in this case is g = LER=R — 0,65,

» If the firm postpones investment until t = 1 it realizes an
option value ¢y = 18.40.

» Since ¢g > Vo — | = 10, a firm acting in isolation should
postpone the investment.



One—stage investment: two firms

» Suppose now that two symmetric firms A and B face the
same investment problem as before.

» Let us assume that if a firm invests in the project alone, then
the payoff for the other firm is zero, whereas the payoff is
divided equally between them if both firms reach the same

decision.

» We then have the following matrix of outcomes:

B | . .
A Invest walt
invest (5,5) (10,0)
wait (0,10) | (9.20,9.20)

> Notice the “prisoner’s dilemma” character of this game.




Two—stage investment: one firm

> Using the same setting as in the previous example, let the
project value be Vy = 100 at time t = 0, then either 120 or
80 at time t = 1, and finally either 144, 96, or 64 at time
t = 2, leading to the following option values :

54

35.09

/
\ -

22.73

aa



Two—stage investment: two firms

» Suppose now that two firms A and B face the same
investment problem as before.

> The games played at time t = 1 are:

B

invest wait

invest | (15,15) (30,0)
wait | (0,30) | (17.55,17.55)
B

A

invest wait
A

invest | (—5,-5) (—10,0)
wait (0,—10) | (1.84,1.84)




Two—stage investment: two firms (continued)

» Using the previous values to calculate the option value at time
t = 0 leads to:

1.84
» Finally, the game played at time t =0 is:
B | . .
Invest walt

A

invest (5,5) (10,0)
wait | (0,10) | (9.81,9.81)




Sensitivity to model parameters

» Using R = 0.1 leads to the following matrices of outcomes at
time t = 1:

B| . .
A invest walt
invest | (15,15) (30,0)
wait (0,30) | (19.09,19.09)

B invest wait
A

invest | (—5,-5) (—10,0)
wait (0,—-10) | (2.05,2.05)

» This results in an option value of 10.69 at time t = 0, leading

to:
B | . .
A Invest wait
invest (5,5) (10,0)
wait | (0,10) | (10.69,10.69)




Incomplete Markets

» Consider the two—factor market where the discounted project
value V and the discounted a correlated traded asset S follow:

(uSo, hVh)  with probability p;,
) (uSo,¢Vp)  with probability po,

(57, Vr) = (dSo, hVp)  with probability ps, (1)
(dSo,¢Vh)  with probability pa,

where 0 < d <1< wuand 0< ¥ < 1< h, for positive initial
values S, Vo and historical probabilities p1, p2, p3, pa.

> Let the risk preferences be specified through an exponential
utility U(x) = —e™ 7.

> An investment opportunity is model as an option with
discounted payoff C; = (V — e "I)*, for t =0, T.



European Indifference Price

» Without the opportunity to invest in the project V/, a rational
agent with initial wealth x will try to solve the optimization
problem

u(x) = max E[U(X7")], (2

where
XM =€ 4 HST = x + H(ST — So). (3)
is the wealth obtained by keeping £ dollars in a risk—free cash
account and holding H units of the traded asset S.
> An agent with initial wealth x who pays a price w for the
opportunity to invest in the project will try to solve the
modified optimization problem

uC(x —7) = max E[U(X;(-_W’H + C7)] (4)

» The indifference price for the option to invest in the final
period as the amount 7€ that solves the equation

u0(x) = u€(x — 7). (5)



Explicit solution

Denoting the two possible pay-offs at the terminal time by Cj and

Cy, the European indifference price defined in (5) is given by
¢ = g(Ch, C)

where, for fixed parameters (u, d, p1, p2, p3, pa) the function
g:R xR — R is given by

g(X X ) _ ﬂ |Og P1 + P2
n v \preT T 4 pre

+1 ~ 9o p3 + pa
¥ p3e~ Y4 + pge=e )’

with
1-d

u—d’

q:

(6)



Early exercise

» When investment at time t = 0 is allowed, it is clear that
immediate exercise of this option will occur whenever its
exercise value (Vo — 1) is larger than its continuation value
given by 7€.

» That is, from the point of view of this agent, the value at
time zero for the opportunity to invest in the project either at
t=0ort=T is given by

Co=max{(Vo — NF,g((hVo — e TD)F, (tVo — e T



One—period investment revisited

>

As a first example, consider again the one—period setting with
I =90, Vp =100, R = 0.06.

For the dynamics of S we choose u =1.2/1.06, d = 0.8/1.06
(so that g = 0.65 as before) and p; = ps = 0.4,

p2=p3 =0.1.

Finally, let us set v = 0.01.

Therefore, using the function g to calculate the option value
for the “wait—and—see” strategy, we have the matrix of
outcomes for this game shown in Table 13.

B

invest wait
A

invest (5,5) (10,0)
wait | (0,10) | (8.02,8.02)

As expected, the utility—based option value is smaller than the
one obtained under risk—neutrality.



Two—period investment revisited

» For the two—period investment game we find
B

invest wait

invest | (15,15) (30,0)
wait | (0,30) | (15.39,15.39)
B

A

invest wait
A

invest | (—5,-5) (—10,0)
wait (0,—10) | (1.66,1.66)

» This gives an indifference option value of 8.86 at time t = 0,
leading to

B . .
Invest walt

invest (5,5) (10,0)
wait | (0,10) | (8.86,8.86)

A




One—period expansion option under monopoly

» Suppose now that a firm faces the decision to expand capacity
for a product with uncertain demand:

hY with probabilit
Yl _ { 0 p Yy P (8)

LYy with probability 1 —p ’

correlated with a traded asset
> The expansion requires a discounted sunk cost /.
» The state of the firm after the investment decision at time t; is

(9)

x(i) = 1 if the firm invests at time t;
~ | 0 if the does not invest at time t;

» The discounted cash flow per unit demand for the firm is
denoted by D, ;.



Definition of project values

» We denote by VX(D)(j 41, Y, 1) the project value at time
ti+1 given that the state of the firm at time t; was x(/) and
that the firm will act optimally from time t;;1 onwards.

» Next, denote by vi*(D)(i, Y;) the sum of the discounted cash
flow from time t; to tj+1 plus the indifference value of the
project at time tjy1, that is

v (i, ¥ = Doy Yirg (VD (i1, hY;), VOO (141, £Y7))

» For simplicity, we assume in this section that the project
terminates one period after time t; so that

D(1, Y1) = Dyyy Vi



The NPV solution

v

Assume first that the decision has to be taken at time tg.
If no expansion occurs, then V(O)(l, Y1) = DoY: and

v

v(9(0, Yo) = Do Yo + g(DohYo, Dol Ys).

If expansion occurs, then V(l)(l7 Y1) =D1Y: and

v

vD(0, Yo) = D1 Yo + g(D1hYo, D1lYo).

Accordingly, the firm should expand provided v(}) — | > v(0),
that is, provided Yy > Y NPV where YNPV solves

v

(D1 — Do)y = g(Dohy, Doly) — g(D1hy, Dily) + 1.



The Real Options solution

» Assume now that the decision can be taken either at ty or t7.

» If expansion occurs at tp, then we still have
vD(0, Yo) = D1 Yo + g(D1hYo, DiLYs).

» Conversely, if no expansion occur at ty, then
vV(O(1,Y;) = max{D1 Y1 — I, Do Y1} and

v0(0, Yo) = Do Yo + g(VO(1, hYo), VO(1,£Yp)).

» Accordingly, the firm should expand provided Yy > YRO
where YR solves

(D1 — Do)y = g(max{D1hy — I, Dohy}, max{D1ly — I, Doly})
— g(D1hy, Dy ly) + 1.

> It is easy to show that YRO > yNPV o4 that the firm is less
likely to expand at time tp.



One—period expansion game under duopoly

» Consider now two firms A and B facing the same decision as
before.

» The state of the firm m after the investment decision at time
t is

(10)

sm(i) = 1 if firm m invests at time t;
Y771 0 if firm m does not invest at time t;

> Let Dy, (t)xg(t;) denote the cash—flow per unit of demand of
firm A and D, (1)x,(t;) the cash—flow per unit of demand of
firm B.

» Assume that Dig > D11 > Dgg > Dos.

» We say that there is FMA is (D19 — Doo) > (D11 — Do1) and
that there is SMA otherwise.



Definition of project values

> VA6 i 11y, 1) the value of the project for firm m at
time tj;1 given that the state of the firms at time t; was
(xa(i),xg(i)) and assuming that both firms will follow an
equilibrium strategy from tj; onwards.

> Next denote by vi4(0*8(D)(j v} the sum of the cash—flows
for firm m from time t; to time t; 1 with the indifference
value of the project at time t;;1, that is

(XA (I y) (1) m/(f) )/iAt—f—g(V;XA(i)7XB(i))(i+1,h\/i)7V;XA(IILXB(I'))(I"‘F].,E)/I'))‘

where m’ = B whenever m = A and vice-versa.

» For simplicity, we still assume that the project terminates one
period after time t; so that

VEAWeW)(1 vy = Dy

m



NPV analysis

» Assume for now that firm A decides first and firm B observes
the decision of A before reaching it own (this will be dropped
later ).

» If firm A invests at tg we have that

vg (0, Yo) = D11 Yo + g(D11hYo, DuilYo),

and
vél’o)(o, Yo) = Do1 Yo + g(Do1hYo, Dor{ Yo).

» Therefore, firm B should also invest provided Yy > YéVPV,
where Yé/PN solves

(D11 — Do1)y = g(Do1hy, Do1ly) — g(D11hy, Diily) + 1

» Similarly, if firm A does not invest tg, then firm B should
invest provided Yp > Y}‘VPV, where YZ‘VPV solves

(D10 — Doo)y = g(Doohy, Dooly) — g(Diohy, Dioly) + 1



NPV equilibirum

Proposition
Under first mover advantage (FMA) and assuming that the

investment decision can only be made at time ty, we have that
YAfVPV < YéVPV and:
1. If Yy > YéVPV, then the optimal strategy at time zero is
(xa(0), x5(0)) = (1,1).
2. If YNPV < Yo < Y)PV then the optimal strategy at time
zero is (xa(0),xg(0)) = (1,0).
3.IfFYh < YA\’PV, then the optimal strategy at time zero is
(xa(0),x8(0)) = (0,0).

In other words, under FMA, the demand thresholds for firms A and
B are YNPY and YYFV| respectively.



Real Option analysis at time t;

>

Suppose now that both firms can either invest at time t or
postpone investment to time t; and are perfectly symmetric.
We start with time t;, where

v, vp) = V(L Vi) = Dy (11)

VEO(1, vp) = VIOD(L, ¥4) = max{Dy, ¥4 — I, Doy Y} (12)

DuYr if DuYi—12>DuYy

1,0 0,1
Vzg )(1’ Yl) = Vé )(17 Yl) = { DlO Yl OtherWiSe

(13)
Finally, the values V,S,O’O)(l, Y1) corresponds to the game:
B invest ait
A inv wai
invest (D11 Y1 —1,D11Y1 — I) (D10 Y1 — 1, Doy Yl)
wait (Do1Y1, D1oY1 — 1) (Doo Y1, Doo Y1)

When multiple equilibria occur, we select one at random with
equal probabilities.



Real Option analysis at time t,
» The conditional values at time t; are
—DuYo+g (v( D(1, hYp), VD (1 zvo))
(0, Yo) = Dot Yo + g

= (
.‘(3 )(0 Vo) = DlOYo+g(V£\1’O)

m
VSO, hYo), VI3, 0v5))
(1, hYp), vf\l’o’(l,evo))
o(

= DooYo + g (VIO(1, h¥o), VIO (1,0%5))

> Since by definition both firms still have the option to invest at
time tp, they play the game

B _ _

A Invest walt
invest (vl(41’1) —1, Vél’l) — 1) (V,(ALO) — 1, vél’o))
wait | (gt - | )0

» Again, when multiple equilibria occur, we select one at
random with equal probabilities.



The N—period game
» Consider now a continuous-time model of the form
dPy = (1 — r)Pedt + o1 PrdW
dYy = (2 —r)Yedt + a2 Ye(pdW + /1 — p2dZ).
> Next take At = % and

Lt
pr=- 1+p+@(”+2>]

41 o1 o2

T
pr =~ 1—p+¢§(1’1—1’2]

41 1 02

170 v v
Py =3 1—p+m(_1+)]

4 1 g2

1 %
ps= - 1+p+r(2)]

4 g1 02
u:eA}/1:e \/Ail’7 d:1/u:e_‘71‘/E

h= eAyz _ ea2\/E, /= l/h — 6702\/5

where v; = p; — r — 0?/2.



Numerical experiments

» In what follows, we use [ =200, r =0.03, T =1, N = 500.
» For the dynamics of S; we choose ;3 = 0.10 and o7 = 0.30.

> For the demand Y; we fix oo = 0.20 and calculate pu» as

M2 = [y — 57 (20)

where 7i, is an equilibrium expected rate of return on the
non-traded asset and § = 0.04 is the below-equilibirum
shortfall rate

» For the equilibrium rate fi, we use the CAPM relation

A= BT (21)
01
M = r+Apos (22)

» Finally we consider FMA with Dig = 8, Dog = 3, Do1 = 0.



Project values
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Figure: Project values in FMA case for different risk aversions.



Competition in continuous times

» Consider the model of Grenadier (2000), where two firms
contemplating the decision to pay a cost K to invest in a
project leading to instantaneous cash flows Y;Dg where

dY; —
St = vdt+ndW; = rdt +n(dW, +Edt), € = Y77 (23)
t n
» Assume both market completeness and infinite maturity.
» More specifically, assume that Y; is perfectly correlated with a
traded financial asset
dP;
5= pdt +odW; = rdt +o(dW; +Adt) A=
t
» After both firms have invested, the value of the project is
given by the expected value of all discounted future cash

flows, that is

w—r

. (24)

EQ [/ e IY,Dods| Y = y| = yTD2,
t

where § = n(A — &).



Follower value

» Given that a leader has already invested, the follower has an
option to invest with value F(y) satisfying

1
502»/2F” +(r=80)YF=rF, 0<Y<VYF,
subject to the boundary conditions
YeD(2 D(2
Fo)=0. Fve)=T20 Py = P2

» The solution to this equation is

B
LL
F) - Eal) . Y

}/6() K7 )/ZYF

where Yr = Dj(gﬂ 0 and 8 > 1 is a solution of

B -1+ (r—0)5 =1,



Follower value

F(y)

(D,y/8-K)*




Leader value and simultaneous exercise

> After investing, the leader has no more options to exercise. As
a result, the value of being a leader can be obtained entirely
by expected value of future cash flow at a rate Y;D; until the
process Y reaches Yg and Y:D, thereafter.

» The solution to this simple first—passage time problem is

8
D(1) D1—D. K
L(y) = %—%5m(%) » Y <YE
y5D27 y > Y

» Finally, it is clear that the value obtained from simultaneous
exercise is
_yD»

5(y) 5



Threshold for the leader

» It can be shown that there exists a unique point Y, € (0, YF)

such that
LY)-K < F(Y), Y<Y
LY)-K = F(Y), Y=Y
LY)—K > F(Y), YL<Y<Yr
LY)-K = F(Y), Y>YF

» In addition

S(Y)— K < min(L(Y) - K,F(Y), Y <Y
S(K)—K = LIY)-K=F(Y), Y>YF



Threshold for the leader

dy(y)=L(y)-K-F(y)

Y

\

dy(y)=S(y)-K-F(y)

Ye



Equilibrium strategies

v

Consider a mixed—strategy game with

p1(Y) = prob. of exercise for firm 1
p2(Y) = prob. of exercise for firm 2

Assume that the game is played successively until one of the
firms exercises.

For Y > Yr we have that p*(Y) = pi(Y) =p(Y)=1isa
Nash equilibrium.
For Y < Y. we have that p*(Y) = p1(Y) = p2(Y) =0is a
Nash equilibrium.

The interesting region is Y, < Y < Y.



Equilibrium strategies (continued)

» For Y < Y < YE, the pay-off for firm i is
Vi = [pi(1 = p)(L(Y) — K) +pipi(S(Y) — K)
+ (1= pi)piF ]XZ[]-_PI 1_pj)]

k=0
pi(1 — p))(L(Y) — K) + pipi(S(Y) — K) + (1 — pi)p; F(Y)

(1= p)(L- )

» Maximizing this expression with respect to p; and using
symmetry leads to

L(Y) - F(Y) -
L(Y) = 5(Y)

p(Y)=pi1(Y)=p2(Y) =



Expected payoff

» Observe that the expected payoff for each firm is

F(y)a y < YL
V(y) = (1 — ps) FOHELZK o ho(S(y) = K), vy € (Y1, YF)
S(y) - K7 y > YF
(25)

» Using he expression for p we find

 L-K-F
Ps = YK+ F—25

and
2(K+ F-=5)

1-— = .
A=ps) = T35 K+ F
» This gives V(y) = F(y) for all y !




Predetermined roles

» Define L™(Y) as the project value for a firm that has been
predetermined as the Leader.

> Following the same reasoning as before, this value is given by

L™(y) = supE® [e V(Y1) 7 co0y Yo = ¥, (26)

7>0

where 7 is a stopping time, the payoff function is
V(y) = Ly) — K.
» Observe that

Dly—<D1_D2)5F(y)—K ify < Yr
V) =9 L Do :
= - ity > Yr

(27)

is not differentiable at YE.



Obstacle problem for the leader




The value of the priority

» We conclude that

AyP fo<y<WY
Ly)- K fYi<y<Y

PO =B 1ch ifvacy<vs
D>y

5 ify >3,

» Observe that Y; < Yi, so the priority option delays
investment.

» The value of the priority option is then given by
m(y) = L"(y) = F(y).

(28)



Priority option value
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Incomplete markets

» Suppose now that the stochastic demand Y; is correlated with
the market portfolio P; as follows:

)

Y =vdt +ndW,, &:=
d—PP = pdt+odB;, \:=

Qe SIx

where W; and B; have instantaneous correlation p.
» For simplicity, take r = 0.

» According to CAPM, if Y could be traded its equilibrium rate
of return 7 would satisfy

v

o
n o

=p
» We then define § := U — v as the

below—equilibrium—shortfall-rate, which plays the role of a
dividend vyield in this case.



Utility problem

> As before, we calculate the project value for a fixed level

D(Q) as

V3(Y.) =E [/too eD(St)YSD(Q)ds] _ :D(Q) _ ¥.D(Q)

UV—v 1)

» For a utility function U(x) = —e™7%, define

X2 Dy, +
ez U[X?+ ( T K)
( 5(p)

F(x,y)=supE
(7,0)




Follower value function

» Using Henderson (2007), let

and define Yg(p) as the solution to

DyYe(p) o 1 o (1 = p?)D2YE(p)
i) TAa A e [1 B0 ] ’
» Then
—yx (1 - p2)D2 Yr y B(p) ﬁ
Flay) = B [1 B <5ﬂ7(1 - P2)02YF> <YF) 0=

Doy

_ef'YXe_"/(é(p)_K>7y > YF(P)



Leader’'s Expected Utility Value

» As before, the value for the Leader can be found by expected
discounted cash—flows assuming that the Follower exercises
optimally:

D)y, (DR)-D(1) y \¥
| Zv+( JYe(35) - } .
_ —e_7Xe |: 0 4 F |f Y S YF
L(X,Y) = - |
o2ty =] ifY > Yr
2 _
where ¥ = (3= )+ (3 - ) + %

» Similarly, the value for simultaneous exercise is

S(X,Y) = _ xR YK



Leader’s threshold

» We can again show that, for each fixed X, there exists a
unique point Y; € (0, Yr) such that

L(X,Y) < F(X,Y), Y<YL
L(X,Y) = F(X,Y), Y=Y,
LX,Y) > F(X,Y), YL<Y<Yr
L(X,Y) = F(X,Y), Y>YF

» In addition

S(X,Y) < min(L(X,Y),F(X,Y), Y <Y
S(X,Y) = LX,Y)=F(X,Y), Y>VY¢r



Equilibrium strategies

» Following the same arguments as before, we have that:

» For Y > Yg, p*(X,Y) =pi(X.Y) =p2(X,Y) =1is a Nash
equilibrium.

» For Y <Y, p*(X,Y)=pi(X,Y) =p2(X,Y) =0 is a Nash
equilibrium.

> For Y <Y < YE.

L(X,Y) = F(X,Y)

pr(X,Y)=pi(X,Y)=pAX,Y) = L(X.Y)=S(X,Y)"

» Moreover,

~p(Y)
(i) _1-p*(Y)
pseq(y) = 72 — p*(Y)



The priority option

» Define L™(Y) as the expected utility for a firm that has been
given a priority option for choosing to be the Leader.

» Formally, this has the same type of two-interval solution as in
the complete market, but a rigorous proof is still open.

» The value for the priority option can then be obtained by an
indifference value argument comparing L™ (X, Y) and the
equilibrium value V' without the priority option.



Conclusions

>

Real options and game theory can be combined in a dynamic
framework for decision making under uncertainty and
competition.

The effects of incompleteness and risk aversion can be
incorporated using the concept of indifference pricing.
Analytic expressions for exponential utility lead to numerical
schemes with the same computational complexity as a
binomial model.

We have fully implemented a generic example of two firms
and uncertain demand and finite maturity in discrete time.
Continuous—time versions with infinite maturity are also
possible (extensions of Grenadier (2000))

We calculated the value of the priority option in complete
markets and characterized it in incomplete markets (extension
of Bensoussan et al (2010)).

» Much more work is necessary for a large number of firms.
> Merci !



