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Combining options and games

I A systematic application of both real options and game theory
in strategic decisions has been proposed in the literature (see
Smit and Trigeorgis (2004) for a review).

I The essential idea can be summarized in two rules:

1. whenever the outcome of a given game involves a
“wait–and–see” strategy, its pay-off should be calculated as
the value of a real option;

2. whenever the pay-off of a given involves a game, its value
should calculated as the equilibrium solution to the game.

I In this way, option valuation and game theoretical equilibrium
become dynamically related in a decision tree.

I In what follows, we denote the NE solution for a given game
in bold face within the matrix of outcomes.

I For convenience of notation we will round all number to the
nearest integer.



One–stage investment: single firm

I As a first example, suppose that a single firm can make an
investment of I = 90 either at t = 0 or at t = 1.

I Let the underlying project values be V0 = 100 at time t = 0,

then either V
h

= 120 or V
`

= 80 at time t = 1 with equal
probabilities.

I If V is perfectly correlated with a traded financial asset S ,
then the option to invest can be valued using standard
risk–neutral pricing.

I For a one–period risk–free rate R = 0.06, the risk–neutral

probability in this case is q = (1+R)−h
h−` = 0.65.

I If the firm postpones investment until t = 1 it realizes an
option value c0 = 18.40.

I Since c0 ≥ V0 − I = 10, a firm acting in isolation should
postpone the investment.



One–stage investment: two firms

I Suppose now that two symmetric firms A and B face the
same investment problem as before.

I Let us assume that if a firm invests in the project alone, then
the payoff for the other firm is zero, whereas the payoff is
divided equally between them if both firms reach the same
decision.

I We then have the following matrix of outcomes:

HHH
HHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (9.20, 9.20)

I Notice the “prisoner’s dilemma” character of this game.



Two–stage investment: one firm
I Using the same setting as in the previous example, let the

project value be V0 = 100 at time t = 0 , then either 120 or
80 at time t = 1 , and finally either 144, 96, or 64 at time
t = 2, leading to the following option values :

22.73

3.70

35.09

0

6

54



Two–stage investment: two firms

I Suppose now that two firms A and B face the same
investment problem as before.

I The games played at time t = 1 are:

H
HHH

HHA
B

invest wait

invest (15, 15) (30, 0)

wait (0, 30) (17.55, 17.55)
H
HHHHHA

B
invest wait

invest (−5,−5) (−10, 0)

wait (0,−10) (1.84, 1.84)



Two–stage investment: two firms (continued)

I Using the previous values to calculate the option value at time
t = 0 leads to:

9.81

1.84

15

I Finally, the game played at time t = 0 is:

H
HHH

HHA
B

invest wait

invest (5, 5) (10, 0)

wait (0, 10) (9.81, 9.81)



Sensitivity to model parameters
I Using R = 0.1 leads to the following matrices of outcomes at

time t = 1:
H
HHH

HHA
B

invest wait

invest (15, 15) (30, 0)

wait (0, 30) (19.09, 19.09)
H
HHH

HHA
B

invest wait

invest (−5,−5) (−10, 0)

wait (0,−10) (2.05, 2.05)

I This results in an option value of 10.69 at time t = 0, leading
to:

HH
HHHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (10.69, 10.69)



Incomplete Markets

I Consider the two–factor market where the discounted project
value V and the discounted a correlated traded asset S follow:

(ST ,VT ) =


(uS0, hV0) with probability p1,
(uS0, `V0) with probability p2,
(dS0, hV0) with probability p3,
(dS0, `V0) with probability p4,

(1)

where 0 < d < 1 < u and 0 < ` < 1 < h, for positive initial
values S0,V0 and historical probabilities p1, p2, p3, p4.

I Let the risk preferences be specified through an exponential
utility U(x) = −e−γx .

I An investment opportunity is model as an option with
discounted payoff Ct = (V − e−rt I )+, for t = 0,T .



European Indifference Price
I Without the opportunity to invest in the project V , a rational

agent with initial wealth x will try to solve the optimization
problem

u0(x) = max
H

E [U(X x ,H
T )], (2)

where
X x ,H
T = ξ + HST = x + H(ST − S0). (3)

is the wealth obtained by keeping ξ dollars in a risk–free cash
account and holding H units of the traded asset S .

I An agent with initial wealth x who pays a price π for the
opportunity to invest in the project will try to solve the
modified optimization problem

uC (x − π) = max
H

E [U(X x−π,H
T + CT )] (4)

I The indifference price for the option to invest in the final
period as the amount πC that solves the equation

u0(x) = uC (x − π). (5)



Explicit solution

Denoting the two possible pay-offs at the terminal time by Ch and
C`, the European indifference price defined in (5) is given by

πC = g(Ch,C`) (6)

where, for fixed parameters (u, d , p1, p2, p3, p4) the function
g : R× R→ R is given by

g(x1, x2) =
q

γ
log

(
p1 + p2

p1e−γx1 + p2e−γx2

)
(7)

+
1− q

γ
log

(
p3 + p4

p3e−γx1 + p4e−γx2

)
,

with

q =
1− d

u − d
.



Early exercise

I When investment at time t = 0 is allowed, it is clear that
immediate exercise of this option will occur whenever its
exercise value (V0 − I )+ is larger than its continuation value
given by πC .

I That is, from the point of view of this agent, the value at
time zero for the opportunity to invest in the project either at
t = 0 or t = T is given by

C0 = max{(V0 − I )+, g((hV0 − e−rT I )+, (`V0 − e−rT I )+)}.



One–period investment revisited

I As a first example, consider again the one–period setting with
I = 90, V0 = 100, R = 0.06.

I For the dynamics of S we choose u = 1.2/1.06, d = 0.8/1.06
(so that q = 0.65 as before) and p1 = p4 = 0.4,
p2 = p3 = 0.1.

I Finally, let us set γ = 0.01.

I Therefore, using the function g to calculate the option value
for the “wait–and–see” strategy, we have the matrix of
outcomes for this game shown in Table 13.

HH
HHHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (8.02, 8.02)

I As expected, the utility–based option value is smaller than the
one obtained under risk–neutrality.



Two–period investment revisited

I For the two–period investment game we find
HHH

HHHA
B

invest wait

invest (15, 15) (30, 0)

wait (0, 30) (15.39, 15.39)
HHH

HHHA
B

invest wait

invest (−5,−5) (−10, 0)

wait (0,−10) (1.66, 1.66)

I This gives an indifference option value of 8.86 at time t = 0,
leading to

HHH
HHHA

B
invest wait

invest (5, 5) (10, 0)

wait (0, 10) (8.86, 8.86)



One–period expansion option under monopoly

I Suppose now that a firm faces the decision to expand capacity
for a product with uncertain demand:

Y1 =

{
hY0 with probability p
`Y0 with probability 1− p

, (8)

correlated with a traded asset

I The expansion requires a discounted sunk cost I .

I The state of the firm after the investment decision at time ti is

x(i) =

{
1 if the firm invests at time ti
0 if the does not invest at time ti

(9)

I The discounted cash flow per unit demand for the firm is
denoted by Dx(i).



Definition of project values

I We denote by V (x(i))(i + 1,Yi+1) the project value at time
ti+1 given that the state of the firm at time ti was x(i) and
that the firm will act optimally from time ti+1 onwards.

I Next, denote by v (x(i))(i ,Yi ) the sum of the discounted cash
flow from time ti to ti+1 plus the indifference value of the
project at time ti+1, that is

v (x(i))(i ,Yi ) = Dx(i)Yi+g(V (x(i))(i+1, hYi ),V
(x(i))(i+1, `Yi ))

I For simplicity, we assume in this section that the project
terminates one period after time t1 so that

v (x(1))(1,Y1) = Dx(1)Y1.



The NPV solution

I Assume first that the decision has to be taken at time t0.

I If no expansion occurs, then V (0)(1,Y1) = D0Y1 and

v (0)(0,Y0) = D0Y0 + g(D0hY0,D0`Y0).

I If expansion occurs, then V (1)(1,Y1) = D1Y1 and

v (1)(0,Y0) = D1Y0 + g(D1hY0,D1`Y0).

I Accordingly, the firm should expand provided v (1) − I ≥ v (0),
that is, provided Y0 ≥ Y NPV where Y NPV solves

(D1 − D0)y = g(D0hy ,D0`y)− g(D1hy ,D1`y) + I .



The Real Options solution

I Assume now that the decision can be taken either at t0 or t1.

I If expansion occurs at t0, then we still have

v (1)(0,Y0) = D1Y0 + g(D1hY0,D1`Y0).

I Conversely, if no expansion occur at t0, then
V (0)(1,Y1) = max{D1Y1 − I ,D0Y1} and

v (0)(0,Y0) = D0Y0 + g(V (0)(1, hY0),V (0)(1, `Y0)).

I Accordingly, the firm should expand provided Y0 ≥ Y RO

where Y RO solves

(D1 − D0)y = g(max{D1hy − I ,D0hy},max{D1`y − I ,D0`y})
− g(D1hy ,D1`y) + I .

I It is easy to show that Y RO ≥ Y NPV , so that the firm is less
likely to expand at time t0.



One–period expansion game under duopoly

I Consider now two firms A and B facing the same decision as
before.

I The state of the firm m after the investment decision at time
ti is

xm(i) =

{
1 if firm m invests at time ti
0 if firm m does not invest at time ti

(10)

I Let DxA(ti )xB(ti ) denote the cash–flow per unit of demand of
firm A and DxB(ti )xA(ti ) the cash–flow per unit of demand of
firm B.

I Assume that D10 > D11 > D00 > D01.

I We say that there is FMA is (D10 − D00) > (D11 − D01) and
that there is SMA otherwise.



Definition of project values

I V
(xA(i),xB(i))
m (i + 1,Yi+1) the value of the project for firm m at

time ti+1 given that the state of the firms at time ti was
(xA(i), xB(i)) and assuming that both firms will follow an
equilibrium strategy from ti+1 onwards.

I Next denote by v
(xA(i),xB(i))
m (i ,Yi ) the sum of the cash–flows

for firm m from time ti to time ti+1 with the indifference
value of the project at time ti+1, that is

v
(xA(i),xB (i))
m (i ,Yi )=Dxm(i)xm′ (i)

Yi∆t+g
(
V

(xA(i),xB (i))
m (i+1,hYi ),V

(xA(i),xB (i))
m (i+1,`Yi )

)
,

where m′ = B whenever m = A and vice-versa.

I For simplicity, we still assume that the project terminates one
period after time t1 so that

v
(xA(1),xB(1))
m (1,Y1) = Dxm(1)xm′ (1)Y1.



NPV analysis
I Assume for now that firm A decides first and firm B observes

the decision of A before reaching it own (this will be dropped
later !).

I If firm A invests at t0 we have that

v
(1,1)
B (0,Y0) = D11Y0 + g(D11hY0,D11`Y0),

and
v

(1,0)
B (0,Y0) = D01Y0 + g(D01hY0,D01`Y0).

I Therefore, firm B should also invest provided Y0 ≥ Y NPV
B ,

where Y VPN
B solves

(D11 − D01)y = g(D01hy ,D01`y)− g(D11hy ,D11`y) + I

I Similarly, if firm A does not invest t0, then firm B should
invest provided Y0 ≥ Y NPV

A , where Y NPV
A solves

(D10 − D00)y = g(D00hy ,D00`y)− g(D10hy ,D10`y) + I



NPV equilibirum

Proposition

Under first mover advantage (FMA) and assuming that the
investment decision can only be made at time t0, we have that
Y NPV
A ≤ Y NPV

B and:

1. If Y0 ≥ Y NPV
B , then the optimal strategy at time zero is

(xA(0), xB(0)) = (1, 1).

2. If Y NPV
A ≤ Y0 < Y NPV

B , then the optimal strategy at time
zero is (xA(0), xB(0)) = (1, 0).

3. If Y0 < Y NPV
A , then the optimal strategy at time zero is

(xA(0), xB(0)) = (0, 0).

In other words, under FMA, the demand thresholds for firms A and
B are Y NPV

A and Y NPV
B , respectively.



Real Option analysis at time t1

I Suppose now that both firms can either invest at time t0 or
postpone investment to time t1 and are perfectly symmetric.

I We start with time t1, where

V
(1,1)
A (1,Y1) = V

(1,1)
B (1,Y1) = D11Y1 (11)

V
(1,0)
B (1,Y1) = V

(0,1)
A (1,Y1) = max{D11Y1 − I ,D01Y1} (12)

V
(1,0)
A (1,Y1) = V

(0,1)
B (1,Y1) =

{
D11Y1 if D11Y1 − I ≥ D01Y1

D10Y1 otherwise
.

(13)

I Finally, the values V
(0,0)
m (1,Y1) corresponds to the game:

H
HHH

HHA
B

invest wait

invest (D11Y1 − I ,D11Y1 − I ) (D10Y1 − I ,D01Y1)

wait (D01Y1,D10Y1 − I ) (D00Y1,D00Y1)

I When multiple equilibria occur, we select one at random with
equal probabilities.



Real Option analysis at time t0

I The conditional values at time t0 are

v (1,1)
m (0,Y0) = D11Y0 + g

(
V (1,1)
m (1, hY0),V (1,1)

m (1, `Y0)
)

v
(1,0)
B (0,Y0) = v

(0,1)
A (0,Y0) = D01Y0 + g

(
V

(1,0)
B (1, hY0),V

(1,0)
B (1, `Y0)

)
v

(1,0)
A (0,Y0) = v

(0,1)
B (0,Y0) = D10Y0 + g

(
V

(1,0)
A (1, hY0),V

(1,0)
A (1, `Y0)

)
v (0,0)
m (0,Y0) = D00Y0 + g

(
V (0,0)
m (1, hY0),V (0,0)

m (1, `Y0)
)

I Since by definition both firms still have the option to invest at
time t0, they play the game

H
HHH

HHA
B

invest wait

invest (v
(1,1)
A − I , v

(1,1)
B − I ) (v

(1,0)
A − I , v

(1,0)
B )

wait (v
(0,1)
A , v

(0,1)
B − I ) (v

(0,0)
A , v

(0,0)
B )

I Again, when multiple equilibria occur, we select one at
random with equal probabilities.



The N–period game
I Consider now a continuous-time model of the form

dPt = (µ1 − r)Ptdt + σ1PtdW

dYt = (µ2 − r)Ytdt + σ2Yt(ρdW +
√

1− ρ2dZ ).

I Next take ∆t = T
N and

p1 =
1

4

[
1 + ρ+

√
∆t

(
ν1

σ1
+
ν2

σ2

)]
(14)

p2 =
1

4

[
1− ρ+

√
∆t

(
ν1

σ1
− ν2

σ2

)]
(15)

p3 =
1

4

[
1− ρ+

√
∆t

(
− ν1

σ1
+
ν2

σ2

)]
(16)

p4 =
1

4

[
1 + ρ+

√
∆t

(
− ν1

σ1
− ν2

σ2

)]
(17)

u = e∆y1 = eσ1

√
∆t , d = 1/u = e−σ1

√
∆t (18)

h = e∆y2 = eσ2

√
∆t , ` = 1/h = e−σ2

√
∆t , (19)

where νi = µi − r − σ2
i /2.



Numerical experiments

I In what follows, we use I = 200, r = 0.03, T = 1, N = 500.

I For the dynamics of St we choose µ1 = 0.10 and σ1 = 0.30.

I For the demand Yt we fix σ2 = 0.20 and calculate µ2 as

µ2 = µ2 − δ, (20)

where µ2 is an equilibrium expected rate of return on the
non-traded asset and δ = 0.04 is the below-equilibirum
shortfall rate

I For the equilibrium rate µ2 we use the CAPM relation

λ =
µ1 − r

σ1
(21)

µ2 = r + λρσ2 (22)

I Finally we consider FMA with D10 = 8, D00 = 3, D01 = 0.



Project values

Figure: Project values in FMA case for different risk aversions.



Competition in continuous times
I Consider the model of Grenadier (2000), where two firms

contemplating the decision to pay a cost K to invest in a
project leading to instantaneous cash flows YtDQ where

dYt

Yt
= νdt + ηdWt = rdt + η(dWt + ξdt), ξ =

ν − r

η
(23)

I Assume both market completeness and infinite maturity.
I More specifically, assume that Yt is perfectly correlated with a

traded financial asset

dPt

Pt
= µdt +σdWt = rdt +σ(dWt +λdt) λ =

µ− r

σ
. (24)

I After both firms have invested, the value of the project is
given by the expected value of all discounted future cash
flows, that is

EQ

[∫ ∞
t

e−r(s−t)YsD2ds|Yt = y

]
=

yD2

δ
,

where δ = η(λ− ξ).



Follower value

I Given that a leader has already invested, the follower has an
option to invest with value F (y) satisfying

1

2
σ2Y 2F ′′ + (r − δ)YF = rF , 0 ≤ Y ≤ YF ,

subject to the boundary conditions

F (0) = 0, F (YF ) =
YFD(2)

δ
− K , F ′(YF ) =

D(2)

δ
.

I The solution to this equation is

F (y) =

 K
β−1

(
y
YF

)β
, Y ≤ YF

yD(2)
δ − K , y ≥ YF

where YF = δKβ
D2(β−1) and β > 1 is a solution of

1

2
η2β(β − 1) + (r − δ)β = r .



Follower value

                                 YFK

(D2y/δ-K)+

F(y)

Figure: Value of being a follower



Leader value and simultaneous exercise

I After investing, the leader has no more options to exercise. As
a result, the value of being a leader can be obtained entirely
by expected value of future cash flow at a rate YtD1 until the
process Y reaches YF and YtD2 thereafter.

I The solution to this simple first–passage time problem is

L(y) =

 yD(1)
δ − D1−D2

D2
β K
β−1

(
y
YF

)β
, Y < YF

yD2
δ , y ≥ YF

I Finally, it is clear that the value obtained from simultaneous
exercise is

S(y) =
yD2

δ



Threshold for the leader

I It can be shown that there exists a unique point YL ∈ (0,YF )
such that

L(Y )− K < F (Y ), Y < YL

L(Y )− K = F (Y ), Y = YL

L(Y )− K > F (Y ), YL < Y < YF

L(Y )− K = F (Y ), Y ≥ YF

I In addition

S(Y )− K < min(L(Y )− K ,F (Y ), Y < YF

S(K )− K = L(Y )− K = F (Y ), Y ≥ YF



Threshold for the leader

YFYL

-K

d1(y)=L(y)-K-F(y)

d2(y)=S(y)-K-F(y)

Figure: Differences in values



Equilibrium strategies

I Consider a mixed–strategy game with

p1(Y ) = prob. of exercise for firm 1

p2(Y ) = prob. of exercise for firm 2

I Assume that the game is played successively until one of the
firms exercises.

I For Y ≥ YF we have that p∗(Y ) = p1(Y ) = p2(Y ) = 1 is a
Nash equilibrium.

I For Y ≤ YL we have that p∗(Y ) = p1(Y ) = p2(Y ) = 0 is a
Nash equilibrium.

I The interesting region is YL < Y < YF .



Equilibrium strategies (continued)

I For YL < Y < YF , the pay-off for firm i is

Vi = [pi (1− pj)(L(Y )− K ) + pipj(S(Y )− K )

+ (1− pi )pjF (Y )]×
∞∑
k=0

[(1− pi )(1− pj)]k

pi (1− pj)(L(Y )− K ) + pipj(S(Y )− K ) + (1− pi )pjF (Y )

1− (1− pi )(1− pj)

I Maximizing this expression with respect to pi and using
symmetry leads to

p∗(Y ) = p1(Y ) = p2(Y ) =
L(Y )− F (Y )− K

L(Y )− S(Y )
.



Expected payoff

I Observe that the expected payoff for each firm is

V (y) =


F (y), y < YL

(1− pS) F (y)+L(y)−K
2 + pS(S(y)− K ), y ∈ (YL,YF )

S(y)− K , y > YF

(25)

I Using he expression for p̂ we find

pS =
L− K − F

L + K + F − 2S

and

(1− pS) =
2(K + F − S)

L− 2S + K + F
.

I This gives V (y) = F (y) for all y !



Predetermined roles

I Define Lπ(Y ) as the project value for a firm that has been
predetermined as the Leader.

I Following the same reasoning as before, this value is given by

Lπ(y) = sup
τ≥0

EQ [e−rτΨ(Yτ )1{τ<∞}|Y0 = y
]
, (26)

where τ is a stopping time, the payoff function is
Ψ(y) = L(y)− K .

I Observe that

Ψ(y) =


D1y

δ
−
(

D1 − D2

D2

)
βF (y)− K if y < YF

D2y

δ
− K if y ≥ YF

.

(27)
is not differentiable at YF .



Obstacle problem for the leader

                                

   

   

   

   

   

   

   

   

   

   

   

Y3YFY2

-K

Y1

Lπ(y)

Ψ(y)

D2y/δ

D2y/δ-K

YL

F(y)

Figure:



The value of the priority

I We conclude that

Lπ(y) =


Ayβ if 0 ≤ y < Y1

L(y)− K if Y1 ≤ y ≤ Y2

Byβ + Cyβ1 if Y2 < y < Y3

D2y

δ
− K if y ≥ Y3,

(28)

I Observe that YL < Y1, so the priority option delays
investment.

I The value of the priority option is then given by
π(y) = Lπ(y)− F (y).



Priority option value

Figure:



Incomplete markets

I Suppose now that the stochastic demand Yt is correlated with
the market portfolio Pt as follows:{

dY
Y = νdt + ηdWt , ξ := ν

η
dP
P = µdt + σdBt , λ := µ

σ

,

where Wt and Bt have instantaneous correlation ρ.

I For simplicity, take r = 0.

I According to CAPM, if Y could be traded its equilibrium rate
of return ν̄ would satisfy

ν̄

η
= ρ

µ

σ

I We then define δ := ν̄ − ν as the
below–equilibrium–shortfall–rate, which plays the role of a
dividend yield in this case.



Utility problem

I As before, we calculate the project value for a fixed level
D(Q) as

V 2(Yt) = E

[∫ ∞
t

e−ν̄(s−t)YsD(Q)ds

]
=

YtD(Q)

ν̄ − ν
=

YtD(Q)

δ
.

I For a utility function U(x) = −e−γx , define

F (x , y) = sup
(τ,θ)

E

[
e
λ2τ

2 U

(
X θ
τ +

(
D2Yτ
δ(ρ)

− K

)+
)]

.



Follower value function

I Using Henderson (2007), let

β(ρ) = 1 +
2δ(ρ)

η2
> 1

and define YF (ρ) as the solution to

D2YF (ρ)

δ(ρ)
− K =

1

γ(1− ρ2)
log

[
1 +

γ(1− ρ2)D2YF (ρ)

β(ρ)δ(ρ)

]
,

I Then

F (x , y) =


−e−γx

[
1−

(
γ(1− ρ2)D2YF

δβγ(1− ρ2)D2YF

)(
y

YF

)β(ρ)
] 1

1−ρ2

, 0 ≤ y ≤ YF

−e−γxe
−γ
(

D2y
δ(ρ)
−K
)
, y > YF (ρ)



Leader’s Expected Utility Value

I As before, the value for the Leader can be found by expected
discounted cash–flows assuming that the Follower exercises
optimally:

L(X ,Y ) =

−e−γX e
−γ
[
D(1)
δ

Y+
(

D(2)−D(1)
δ

)
YF

(
Y
YF

)Ψ
−K
]

if Y ≤ YF

−e
−γ
[
X+D(2)

δ
Y−K

]
if Y ≥ YF

,

where Ψ =
(

1
2 −

ν
η2

)
+

√(
1
2 −

ν
η2

)2
+ 2ν̄

η2

I Similarly, the value for simultaneous exercise is

S(X ,Y ) = −e
−γ
[
X+D(2)

δ
Y−K

]



Leader’s threshold

I We can again show that, for each fixed X , there exists a
unique point YL ∈ (0,YF ) such that

L(X ,Y ) < F (X ,Y ), Y < YL

L(X ,Y ) = F (X ,Y ), Y = YL

L(X ,Y ) > F (X ,Y ), YL < Y < YF

L(X ,Y ) = F (X ,Y ), Y ≥ YF

I In addition

S(X ,Y ) < min(L(X ,Y ),F (X ,Y ), Y < YF

S(X ,Y ) = L(X ,Y ) = F (X ,Y ), Y ≥ YF



Equilibrium strategies

I Following the same arguments as before, we have that:

I For Y ≥ YF , p∗(X ,Y ) = p1(X .Y ) = p2(X ,Y ) = 1 is a Nash
equilibrium.

I For Y ≤ YL, p∗(X ,Y ) = p1(X ,Y ) = p2(X ,Y ) = 0 is a Nash
equilibrium.

I For YL < Y < YF .

p∗(X ,Y ) = p1(X ,Y ) = p2(X ,Y ) =
L(X ,Y )− F (X ,Y )

L(X ,Y )− S(X ,Y )
.

I Moreover,

psim(Y ) =
p∗(Y )

2− p∗(Y )

p
(i)
seq(Y ) =

1− p∗(Y )

2− p∗(Y )



The priority option

I Define Lπ(Y ) as the expected utility for a firm that has been
given a priority option for choosing to be the Leader.

I Formally, this has the same type of two-interval solution as in
the complete market, but a rigorous proof is still open.

I The value for the priority option can then be obtained by an
indifference value argument comparing Lπ(X ,Y ) and the
equilibrium value V i without the priority option.



Conclusions
I Real options and game theory can be combined in a dynamic

framework for decision making under uncertainty and
competition.

I The effects of incompleteness and risk aversion can be
incorporated using the concept of indifference pricing.

I Analytic expressions for exponential utility lead to numerical
schemes with the same computational complexity as a
binomial model.

I We have fully implemented a generic example of two firms
and uncertain demand and finite maturity in discrete time.

I Continuous–time versions with infinite maturity are also
possible (extensions of Grenadier (2000))

I We calculated the value of the priority option in complete
markets and characterized it in incomplete markets (extension
of Bensoussan et al (2010)).

I Much more work is necessary for a large number of firms.
I Merci !


