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Introduction

We want to give a PDE characterization to the following problem
v(t,z,p):=inf {y > —k:E [V (Xt”m(T),Yt”xy(T))] > p for some v}

introduced by Bouchard, Elie, Touzi (2009) for Brownian controlled SDEs,
in the case of jump diffusion processes X" and Y”.

dX:,uX(X,u)ds—i—UX(X,l/)dW—i—/ Bx(X,v,e)J(de,ds)
E

dY = py(Z,v)ds + oy (Z, V)dW—l—/ By (Z,v,e)J(de,ds)
E

where Z stands for (X,Y).
Notations : The controls v are in &/ and take values in U.



What has been done?

Soner and Touzi : Brownian filtration and bounded controls P — a.s.
criteria.

Bouchard : Jump diffusion with bounded control and locally bounded
jumps. P — a.s. criteria.

Bouchard, Elie and Touzi : Brownian filtration with unbounded controls.
Criteria in expectation (concentrating on the case of a criteria in
expectation).

Bouchard and Vu : “American” case.

Bouchard, Elie and Imbert : Optimal control under stochastic target
constraints

Bouchard and Vu : Multidimensional target

Bouchard and Dang : Optimal Control vs Stochastic target
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Examples

Financial Market

X" : Stocks (possibly influenced by a large investor strategy v/)
Y¥  : Portfolio process of the (large) investor

The market is incomplete
We do not treat the dual problem, but directly the primal



Examples

Insurance Market

XY : Sources of risks
Y"  : Portfolio process of an insurance company



Examples
" Hybrid” Market

X)) Sources of risks (d stocks + n random variables)
Yv : Portfolio process of an insurance company



Examples
Probability of Ruin

¥(z,y) == —Liy<g(@)}>

v(t, z,p) = inf {y > —k:dveUst. P [Yt"xy(T) <g (Xtyx(T))] < p} )

Remark

» In general settings, but no jumps, Bouchard, Elie and Touzi (2009)



Examples
Superhedging

¥(z,y) := Liy>g(a)}

v(t,z,1)=inf{y> —k:Ivelst P [Ytl,jx,y(T) > g (X7, (T))] =1}.

Remark

» For U compact and no jumps, Soner and Touzi (2002)
» For U compact and bounded jumps, Bouchard (2002)
> For the American case, Bouchard and Vu (2009)

Example : /f g(z) = (x — K)™, then
v(t, x,1) := inf {y > —k:3vell st Y7 (T) > (X1, (T) - K)+IP’—a.s.} .

» Y

Hedging a European call option with finite credit line.



Examples
Quantile Hedging

U(z,y) = Liy>g())

v(t,z,p) = inf {y > k:dvelUst P [Yt”xy(T) >g (Xt”x(T))] > p} )

Remark

» In "standard” financial models, Follmer and Leukert (1999)
» In general settings, but no jumps, Bouchard, Elie and Touzi (2009)



Examples

Loss Function

U(z,y) :=—p((y —g(x))”), with p convex non-decreasing

v(t,z,p) =
inf {y > _k:3velstE [p (()@i’w,y(T) - g(XZZ(T)))_ﬂ < p} .
Remark

» In "standard” financial models, Follmer and Leukert (1999)
» In general settings, but no jumps, Bouchard, Elie and Touzi (2009)



Examples

Success Ratio

V(z,y) = Lig)<y} + 505 Hg@)>yp for y 20,

Yoy 1] . p}
AL =Dy

v(t,z,p) =infJy>0:FJveldst E| 27—
) { 90X, (T

Remark

» In "standard” financial models, Follmer and Leukert (1999)
» In general settings, but no jumps, Bouchard, Elie and Touzi (2009)



Examples

Utility indifference Price in incomplete Markets

U(z,y) :=U (y — g(z)), with U concave non-decreasing,

v(t, z,p) =
inf{yZ—K:EVGUS.t.E[U(Y”

t,xz,y0+y

(T) — g(X¢,(T)))] > p}-

(v=swpE [0 (™))

veld



Life Insurance

In one of the previous cases, we sell the claim G(™)(x) :
(o,9) =Ty Gumso) OF — P ((y— G () ) or U (y— G"(a))

For z =: (2°,2') € R2, where 2" stands for the stock and x! stands for

some non tradable asset :

G(z) == g(2°) 1510},

and X!(-) = N. is a Poisson process of intensity A(-) indicating if the
customer is still alive (N7 = 0) or not (N7 # 0).

Remark We may consider a more intuitive case where we sell n contracts
based on d stocks :

2 eR? and G Zg M gizo}-



Volume and price Insurance

In one of the previous cases, we sell the claim G(™)(x) :
(o,9) =Ty Gumso) OF — P ((y— G () ) or U (y— G"(a))

For  =: (20, 2') € R?, where 2 stands for the stock and 2! stands for a

volume :

G(z) = (K° x k' —z xa:l)+,
and X!() is a bounded pure jump process living in [0, Viax] indicating the
volume produced by the customer at time 7.

Remark We may consider a more intuitive case where we sell n contracts
based on 1 stock :



Volume, price and production costs Insurance

In one of the previous cases, we sell the claim G(™)(x) :
(o,9) =Ty Gumso) OF — P ((y— G () ) or U (y— G"(a))

For z =: (z%,--- ,2%r) € R4, where (2!, -, 2%) stands for d stocks and

r stands for a volume :
G(z) == <(k1 xk =zt xr)+k xa- <x2:(d) — kQ’(d)>)+,

and R(-) = N(:) is a bounded pure jump process living in [0, Viax]
indicating the volume produced by the customer at time 7.

Remark We may consider a more intuitive case where we sell n contracts
based on d stocks :

G0 () = 3 (K K0 — ot x 1) 4 B0 x - (2@ — @)

=1



On the "hybrid” case

In the case where we sell n contracts based on d stocks
(xv = X @s(n)y — (X(d)vv;Rl’ - R"))
1. The dimension of the PDE is at least n + d, but...



On the "hybrid” case
In the case where we sell n contracts based on d stocks
(XV — x(d),(n)v — (X(d)vv;Rl’ ... ,R")) .
1. The dimension of the PDE is at least n + d, but...

2. ... if the n random variables R% are independent of the market, and i.i.d.
conditionally to the market information, the dimension of the PDE is
then at least d.



On the "hybrid” case

In the case where we sell n contracts based on d stocks
(xv = X @s(n)y — (X(d)VV;Rl’ - R"))
1. The dimension of the PDE is at least n + d, but...

2. ... if the n random variables R% are independent of the market, and i.i.d.
conditionally to the market information, the dimension of the PDE is
then at least d.

The problem
w(t, 2, p) = inf {y > k:E [\If (Xt(i)’(")’”(T), Y;x,y(T))} > p for some 1/}
becomes indeed

u(t, z,p) == inf {y > kK [\Tu (Xt(i)’”(T),Yt,”x,y(T)ﬂ > p for some y}
with

T (XDU(D), Y, (1)) = E [0 (X{D (1), v, (1)) | ]

t.x
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Geometric Dynamic Programming Principle
(Soner Touzi (2002) , Bouchard Vu (2009))

Fix (¢t,x) and {6”,v € U} a family of [t, T]-valued stopping times,

(GDP1) : y > v(t,z,1) = I v U s.t.

Yoy (0) 2 v (0, X, (6),1)



Geometric Dynamic Programming Principle
(Soner Touzi (2002) , Bouchard Vu (2009))

Fix (t,z) and {0, v € U} a family of [t, T]-valued stopping times,

(GDP1) : y > v(t,z,1) = I v U s.t.

Yoy (0) 2 v (0, X, (6),1)

(GDP2) : For every —x <y < v(t,z,1),v €U

P[Yy,, (0) > v (6, X, (0"),1)] <1.



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

y>v(t,x,p) & I v el st Y;’jz’y(e”) EU(QV,XEx(H”),p),

but



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

y>v(t,x,p) & I v el st K:',’w’y(ﬁ") EU(HV,X,Zx(G”),p),

but
y>o(t,z,p) =3veldst Y, (0")>v (0", XY, (0"),P)

where P:=E [V (X/,(T),Y%,,(T))| Fi], and E[P] = p, i.e.

Pt,p(') = p+/ Qg dWS
t



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

y>v(t,x,p) & I v el st tzy(e”)zu(ey,xgx(e”),p),
but

y>o(t,z,p) =3veldst Y, (0")>v (0", XY, (0"),P)

where P:=E [V (X/,(T),Y%,,(T))| Fi], and E[P] = p, i.e.

Pip(-): p+/as dW+//x5 J(de, ds).



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties in Bouchard Elie Touzi (2009) :

> « possibly unbounded = unbounded controls



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties in Bouchard Elie Touzi (2009) :

> « possibly unbounded = unbounded controls

= Local relaxation.



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties here :

» « and y possibly unbounded = unbounded controls



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties here :

» « and y possibly unbounded = unbounded controls and
unbounded jumps



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties here :

» « and y possibly unbounded = unbounded controls and
unbounded jumps

= Non-local Relaxation.



Formal GDPP with Jumps

(Bouchard Elie Touzi (2009) , Bouchard Vu (2009))

Main difficulties here :

» « and y possibly unbounded = unbounded controls and
unbounded jumps

= Non-local Relaxation.

» The control x is a measurable function
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Reduction of the Problem

We then reduce to the problem :

v(t,z,p) =inf{y>—k:3 (va,x) €U x L? x H2 s.t.
v (Xél,x(T)7 }/tl,/:p,y(T)) Z Pt?épéX(T) }

where H3 denotes the set of maps x : 2 x [0,7] x E — R s.t.

U/Xt A(de)dt

and \(de)dt is the intensity of J(de, dt).



Set

Geometric Dynamic Programming Principle

P (')—p+/a5 dW+//Xs J(de, ds).



Geometric Dynamic Programming Principle

Py ()—p—i—/as dW+//xs J(de, ds).

(GDP1) : y > v(t,x,p) = 3 (v,a,x) €U x L? x Hj s.t.

Set

(60") > v (0", X7, (67), P2 (67))

t ,T,Y

for all stopping times 6”.



Geometric Dynamic Programming Principle

Set

PX() ::p—l—/t as-dWs—l—/O /Exs(e)j(de,ds).
(GDP1) : y > v(t,x,p) = 3 (v,a,x) €U x L? x Hj s.t.
Yoy (07) 2 v (0%, Xy, (67), PpX (67))

for all stopping times 6”.

(GDP2) : y < w(t,x,p) = forall 0¥ < T, (v,a,x) €U x L? x H3

P Yy, (07) > v (0¥, XY, (0"), PpX (67))] < 1.
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Formal PDE Derivation

We hence study the problem
v(t,z) := inf {y >k U (Xfx(T),Kf’xy(T)) > ( for some v € L{}
with
dX = px(X,v)ds + ox (X, v)dW —I—/EﬁX(X, v,e)J(de,ds)
dY = py(Z,v)ds + oy (Z,v)dW + /Eﬂy(Z, v,e)J(de,ds)
where Z stands for (X,Y).

Notations : The controls v are in U/ and take values in U...



Formal PDE Derivation

We hence study the problem
v(t,z) := inf {y >k U (Xfx(T),Kf’xy(T)) > ( for some v € L{}
with
dX = px(X,v)ds+ ox(X,v)dW + /EﬂX(X,l/(e),e)J(de, ds)
dY = py(Z,v)ds + oy (Z,v)dW + /E By (Z,v(e),e)J(de,ds)
where Z stands for (X,Y).

Notations : The controls v are in U and take values in U... is a space of
unbounded measurable functions



Formal PDE Derivation

dYy, , = uy (X, Y,v)ds + oy (X, Y,v)dWs + / By (X,Y,v(e),e)](de,ds)
E
> dv(s, X(s))

— £70()ds + Dov(Jox (dWs + /E [ (- + Bx () — v()] J(de, ds)



Formal PDE Derivation

dYy, , = uy (X, Y,v)ds + oy (X, Y,v)dWs + / By (X,Y,v(e),e)](de,ds)
E
> dv(s, X(s))

— £0()ds + Doo(Jox (VWi + [ o+ Bx() = v(0)] J(de,ds
which leads to
sup {uy (z,v(t,z),u) — L(t,x)} =0

u€No,0



Formal PDE Derivation

dYy, , = uy (X, Y,v)ds + oy (X, Y,v)dWs + /Eﬁy(X, Y,v(e),e)J(de,ds)

> dv(s, X(s))

— £70()ds + Dov(Jox (dWs + /E [ (- + Bx () — v()] J(de, ds)

which leads to

sup {py(z,v(t,z),u) — L(t,z)} =0

u€No,0
where
Ney ={ueU st |oy(z,y,u) — Du(t,x)ox(z,u)| <e
and G“%(t,x) >n for \-a.e. e €E}.

and

Gh(t, x) = Py (-, v(), ule), e) —v (- + Bx (-, ule), e)) + v(-)
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The (local) Relaxation of Bouchard Elie Touzi (2009)

H*(©) = limsup H.(©) H,(©) = liminf H.(0),
e\0,0/’—6 e\0,0’—6

with ©' = (¢, 2/, y,k,q, A), © = (',90('),3#,0(');D‘P(')aD290(')) (t, =)
and
H.(©) = us;lj\% {,uy(z,u) —k—px(z,u) q— %Tr [UXU)T((:U, u)A]}

and
Ne(z,y,q) :=={ueUst. |oy(z,y,u) — gox(z,u)| <e}.



Our (Non-Local) Relaxation

The relaxation of is no longer sufficient to ensure the upper (resp. lower) semi
continuity of H* (resp. H,) in the non-local term G*““v(t, z, p).

H*(("),QO): limsup HE,n(@,adj) H*(@aSO): lim inf HE,U((_)lvw)a

e\0,0' =6 e\0,0’—=6
n—0p—p N0

with © = (', 2/, y,k,q, A), © = ('780(‘)78%0(‘),D‘P(')aD2‘P(‘)) (t,x)

where 1) — ¢ has to be understood in the sense that i) converges
u.c.

uniformly on compact sets towards ¢,



Our (Non-Local) Relaxation

The relaxation of is no longer sufficient to ensure the upper (resp. lower) semi
continuity of H* (resp. H,) in the non-local term G*““v(t, z, p).

H*(("),QO): limsup HE,n(@,adj) H*(@aSO): lim inf HE,U((_)lvw)a

e\0,0' =6 e\0,0’—=6
n—0p—p N0

with ©' = (t’,f,y,k,q, A)v e = (730()78t@()’D90(>’D290()) (t,ZE) and,
fore > 0and n € [-1,1]

1
H.,(0,v¢) = a {uy(& u) —k —px(z,u) - q— ST [oxok(z, u)A] }
uENe

where 1) — ¢ has to be understood in the sense that i) converges
u.c.

uniformly on compact sets towards ¢, and

NE,n(ta$7y7q>d}) = {u eUst ‘O'Y(.CL',y,’LL) - QO'X(l',U)| <e
and By(LL',y,U(G),G) - w(tax + ﬂX(xvu((B)’e)) +y > n for -ae.ce B }
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Our main results

Theorem
The function v, is viscosity supersolution on [0,T) x X of

H*v, > 0.



Our main results

Theorem
The function v, is viscosity supersolution on [0,T) x X of

H*v, > 0.
Under some extra assumption of regularity of the set No (-, f) for f € C°
and n € [—1,1], the function v* is a viscosity subsolution on [0,T) x X of

min {H,v*,v* + k} <0.



Sketch of the Proof (Supersolution) :
Let ¢ be a test function, and assume that

H*p(tg, x9) =: —2n < 0.

Define
P(t,z) == p(t, x) — ]|z — zo|* for 1 > 0.

By the definition of H*, after possibly changing 1, we may find € > 0 and
¢ > 0 small enough such that

py (z,y,u) — LY@(t,z) < —n
for all v € /\/’5,777 (t,z,y, Do(t, ), P)

and (t,z,y) s.t.(t,x) € Be(to, zo) and |y — o(t, z)| < e.



We then have
(v = ) (8:2) > ¢ Ais" =5 € > 0 for (t,2) € Va(to, 20)
with

Va(t07 x()) = apBg(t(), 1’0) U [to, to + E) X BEC(JJ())

Let (tn,l'n)nzl — (to,{L‘o) s.t. U(tn,l‘n) — ’U*(to,l'o) and set
Yn = V(tn, Tn) +n L.



For each n > 1, y,, > v(ty, z,) together with (GDP1) : there exists some
v eU st

YA, >0 (EA O, XM (EAOR)) > G (EA O, XP(EAO)), > tn,
where

0y = {s>t,:(s,X"(s)) ¢ Be(to,x0)}
O :={s>t, : |Y"(s) — @ (s, X"(s))| > e} NOy.

We then have

(€140, <00} + L g0, =001] Lii>0,}-

Yn(t A en) - Sz(t A ean(t A en)) >
> (e AN Ly>g,y > 0.



We conclude by using 1t6's lemma, and by making a " change of measure” to
obtain a contradiction.
We need in order to do that to observe that

IUY(xa Y, u) - 5“95(757 iL’) <-n

for all uw € NZ _;, (t,z,y, DP(t, x), P)

implies that, for s € [ty, 0,] such that

min{py (Z,v}) = L7 ¢ (s, X)),
BY( s—) ;L(e)?e) (SX +/BX( s— 7Vg( )76))+6(37ng)}>_777

we have
oy (Z3,v¢) — D@ (s, X{) ox (X, vg) > €.

S’S
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On the terminal condition (formally)

In the expected loss case
v(t,x,p) :=inf {y > —k: v E[¥ (X{,(T),Y,(T)] > p}
leads to

o(t,z,p) = inf {y > =k : Fv,0,x : O (X{(T), Y,

(T)) = PX(T)} -



On the terminal condition (formally)

In the expected loss case
v(t,x,p) :=inf {y > —k: v E[¥ (X{,(T),Y,(T)] > p}
leads to

o(t,z,p) = inf {y > =k : Fv,0,x : O (X{(T), Y,

(T)) = PX(T)} -

Define
Y(z,p) = inf {y: ¥(x,y) > p}.



On the terminal condition (formally)

In the expected loss case
v(t, z,p) := inf {y > —k:3dv:E [\IJ (Xé’x(T),Y;’;Jy(T))] > p}
leads to
o(t,z,p) =inf {y > —k:Iv,a,x: O (X{,(T), Y, (1)) = PXNT)}
Define
U(z,p) = nf{y : U(z,y) = p}.

We may expect that
U(T7 x?p) = w(a’:7p)'



On the terminal condition (formally)

For the Quantile Hedging (Bouchard Elie Touzi (2009))

U(z,y) = Liy>g()}

leads to

¢(9€,p) = g(x)]l{p>0}'



On the terminal condition (formally)

For the Quantile Hedging (Bouchard Elie Touzi (2009))

U(z,y) = Liy>g()}

leads to

¢(9€,p) = g(x)]l{p>0}'

Discontinuous in p, we hedge or not!!



On the terminal condition (formally)

For the Quantile Hedging (Bouchard Elie Touzi (2009))

U(z,y) = Liy>g()}

leads to

Y(z,p) = g(x)L{p>0y-

Discontinuous in p, we hedge or not!!
= If v is convex in its p-variable

U(T,x,p) = Conv W(%P)) = pg(.CU).



On the terminal condition (formally)

We may generalize it :
If v is convex in its p-variable

(T, z,p) = Conv (¢(x,p)) .



On the terminal condition

Proposition Assume that for all (¢, zy, Yn, Pn, Vn) S-t.
(tn, Tny Yn,pn) — (T, x,y,p), there exists a sequence of P-absolutely
continuous probability measure (Qy,),>1 defined by dc(% = H" s.t.

lim sup E@» [Ytl;’}xmyn] <y
n—oo

limsupE [|H" D} (X{7,  pn) — Dy (@n, pn)|] = 0
n—oo

liminf E [H"¢ (X", (T),pn)] = ¥(2,p).

Then v, (T, z,p) > ¥(x,p), with ¥ = convip(z, p).



On the terminal condition
Proof We take (t,, zpn,pn) = (T, 2,p) s.t. v(tn, Tn, pn) — v«(T, z,p), and
Yn = V(tn, Tn, pn) + n~L. We may find vy, an, X such that

Y™(T) > o (X™(T), P"(T))
H"Y™(T) > H") (X"(T), P"(T)).
By convexity of v in its p variable (we omit the T")

H"Y™ > H")(X"™, pa) + H"y (X", pn) (P" — pn)
> H™§(X",pn) + H" G (X", pn) (P™ = pn) + & (T, pn) (P" — P™)
> H"(X", p,) + P" (H"@(X”mn) — E;(wn,pn»

+ %y (0, pn)P™ — H"y (X", pp)
> H"§(X", pn) = M |H"J (X", pa) = B (2, o)

+ Py (Tn, ) P™ — H", (X", pn)pn

Taking the expectation and sending n — oo leads to the required result. [
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and Touzi recover the dual problem, which is a control problem
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» In the B&S model and a complete market, using the Fenchel-Legendre
transform of v with respect to the p-variable in the PDE, Bouchard, Elie
and Touzi recover the dual problem, which is a control problem
In incomplet markets, we recover in the same way a control problem, but
we need a comparison theorem to conclude as they do.
= Specify a model ?

» There is work to do on the numerical scheme



Conclusion

When the image of U is of the form [m, M|, with m and/or M are
finite, we proved boundary conditions at p = m and/or p = M.

In the B&S model and a complete market, using the Fenchel-Legendre
transform of v with respect to the p-variable in the PDE, Bouchard, Elie
and Touzi recover the dual problem, which is a control problem

In incomplet markets, we recover in the same way a control problem, but
we need a comparison theorem to conclude as they do.

= Specify a model ?

There is work to do on the numerical scheme

Some work has been done for a comparison theorem, in particular cases
(Bouchard and Vu, Bouchard and Dang)
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