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Electrical Consumption Time series
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Figure : Two weeks of electrical consumption



Intraday load curves

From Sparse Approximation towards Forecast:

20100607—-1——20100620—7
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Figure : Functional data, Intra day load curves



20100607-1
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Intra day load curve, 30" sampling (48 pts),
Y € RF=%8 (Y, 1 < t < 2800)
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x10* Electrical Consumption signals
T T T

25

Intraday load curves for some days.
2003-10-27: dashed dot line, 2003-08-28: solid line, 2003-01-01: dot line,
2003-04-10: dashed line.
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Outline.

From Sparse Approximation towards Forecast:

» |. High dimensional Regression
- Theoretical framework

» |I. Sparse Approximation. Application to the intra day load
curves

- Generic Dictionary, knowledge discovery
- Specific dictionary composed of Climate functional variables

» |Il. Towards Forecast

- Strategies using Expert
- Aggregation of Experts

— Scientific collaboration with RTE "Réseau Transport électrique” who wants to revised its Forecasting model

based on time serie
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Modeling each signal as a function

We investigate the problem in a supervised learning setting.

» We consider each time unit signal
Z,' :(U,', Y,), = 1,...,/7
» The generic consumption signal observed on the time unit:

Y, i=1,....n
» The design (here fixed equi distributed):

» We want to identify f (for each signal) in such a way that the
model

makes sense (has 'small’ errors €;'s).
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Using a dictionary

Consider a dictionary D of functions D = {gi,...gp} and
Assume that f can be well fitted by this dictionary

p
f=> Brg+h

=1

L
where h is a 'small’ function (in absolute value).
The model is

p
Yi=> Bg(U)+h(U) + ¢, i=1,...,n
=1

which coincides with the linear model :
Y=X(+¢ with X(n x p)

putting ¢; = h(U;) + ¢; and G = go(U).
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- more observations than variables n > p

- and weak collinearity between co variables, X7 X invertible

X Lo.X
n 11 1p B
Y2 3
= * 2 +e€
Yn Xpl ... Xpp 5,3
"Thin matrix”

— Unique Solution: 3= (XTX)"1XTy
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High dimensional framework

Solution: (3 = Argmin||Y — Xf||?

- More variables than observations n << p

- ,81 -
i X11 cee e le 52
y2 _ * o oe. + 6
Yn Xn1 -« Xnp

L B |

"Fat matrix”
— Infinity of ﬁ solutions.
— Need more assumptions on 3 to solve the problem
— Ex: Lasso (¢1 penalization), Ridge (¢2)...
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Alternative procedure

» Learning Out of Leaders*: based on 2 Thresholding steps,

» weak complexity, sparse solution,

» Algorithm in 3 steps (X column normalized):

step compute size
1. SELECTION | Find b Leaders | X, (n, b)
(threshold) b<n<<p
2. REGRESSION | on Leaders B =X X)X Y | (1,b)
3. THRESHOLD | the coefficients | 3 (1,5)

(*) MM, D. Picard, K. Tribouley, JRSS B 2012,B Stat. Methodol. vol 74
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LOL - stepl

| 1. SELECTION | Leaders among p | X — X, | (n, b) |

based on a (Y, Xy) "correlation” search and thresholding:

1”
=|=> XuYi (,1</t<
Ke |n; ¢ Yil v p

» Find the set B = {¢, K, > A\1}.
> Theoretical Threshold, i = Tiy/ &2,
T1: constant (o, v, M, cy)
» Data driven choice of \; for practical applications (LOLA)
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Y = X8 +e
Y (nx 1), X (nx p), S non zero coefficients 3

SELECTION Find b Leaders | X,
= (X Xp)IXEY

o

2. REGRESSION | on Leaders

™

THRESHOLD the coefficients
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LOL, step 3: Threshold

v

Threshold (again like step 1) the estimated coefficients to
obtain the final predictor

Bi = Be 1Bl 20}
Threshold A, = Tpy/'€P

n 1

v

v

For some constant T, > 0, T(o,v, M, )
To have:

- Estimation: BA;‘

- Selection: [5; # 0, sparse solution

- Prediction: X5

Data driven choice of A, for pratical applications (LOLA)

v

v
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LOL assumptions, theoretical thresholds

» When:
1. Sparsity:

Bo(S, M) == {8 € B?, S I{|6; # 0} < S, |1Bllngp) < M.
2. Dimension: p < exp(On),

3. Coherence: 7, < O/ &2

» Choose: the thresholds \{, )\

_ log p _ log p
Av =04/ A = 04/ =05

» Approximation, Concentration results: A
- Prediction loss: "7 (Y; —EY;)? = d(8*, B)?

4e="" for 2 > DS[y/ IO% V 7]

1 for n? < DS[4/ IO% V 7]

(*) MM, D. Picard, K. Tribouley, JRSS B 2012,B Stat. Methodol. vol 74

sup P (d(5,8) > n) <

Bge BO(SvM)
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Illustration on simulated data, LOL step 1

X iid. N(0,1), B* ~N(2,1), §=10
The leaders are:
B={l K> \}, with \y =T k’% Applications: adaptive A\;

n=250,p=1000 —p=2=002545=1-12=075
card(B) =170 >> S
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Ex1: X iid. N(0,1), B*

=250, 510, p=1000b=2 SNR=5

=N(2,1),5 = 10, (Leaders b =170)

12250, 5-10,p=10000-2 SNR=5

e RN

..............................

n = 250,p = 1000

— p=0.04, 5§ =0.75

p—
S —

S
20
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Another example Ex2: X i.i.d. N(0,1),, S =20, p=0.08, 6 =0.75

n=250, 5220, p=1000,b=2,SNR=5

b - 4
2 -
-
- ==
ol - 4
a, =
20 20 B3 50 100 ) a0 160 T80
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From Sparse Approximation towards Forecast:

» |. High dimensional Regression
- Theoretical framework

» |I. Sparse Approximation. Application to the intra day load
curves

- Generic Dictionary, knowledge discovery
- Specific dictionary composed of Climate functional variables

» |ll. Towards Forecast

- Strategies using Expert
- Aggregation of Experts
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8 years of data:
from January 15t 2003 to August 31" 2010
T = 2800 intra day load curves (n = 48)

20/43



Approximation using a Generic Dictionary

v

Each day t, | Y: = X8, + ¢
with Dictionary of p functions D = {g1,...8,} Gir = g(U)

v

v

For daily load curves, a good choice happened finally to be a
mixture of the Fourier basis and the Haar basis, p = 62.

1. (1:1) constant function (1)

2. (2:24) cosine functions (with increasing frequencies) (23)
3. (25:47) sine functions (with increasing frequencies)(23)
4. (48:62) Haar functions (with increasing frequencies)(15)

v

Approximation: p =7, Epape = 1.4%
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S =12, MAPE = 0.0057 = 0.57%.
MAPE = 1327~ |Y; = Vil /Y

x10° Electrical consumy ption 20071118 x10° 20071118 Dictionnary coefficients (12)

Figure : 2007 11 18

left: observed signal - red line, approximated signal -blue line
right: S coefficients on the dictionary
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S =5, MAPE = 0.0147

x10° Electrical consumption 20090617 x10° 20090617 Dictionnary coefficients (6)

i

Figure : 2003 04 30

left: observed signal - red line, approximated signal -blue line
right: S coefficients on the dictionary
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Comparison between various dictionaries:
MAPE and sparsity average

Dictionary £ (%) MAPE (%) S
Haar 0.218 3.66 8
Fourier 0.041 1.60 6
DB7 0.192 2.6 9
Mixed 0.034 1.43 7
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Support for all coefficients

#20 using the mixte dictionary (Fourier, Haar)

o.o

o8

o7

o.e

o.s

o.a

o=
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Segmentation of the intra-day load curves
using Sparse Approximation on a Generic Dictionary

8 years of data:
from January 15t 2003 to August 13" 2010
T = 2800 intra day load curves (n = 43)

>

Sparse approximation of the intra day load curves(S = 7,
same support)

using a clustering algorithm in 2 steps (k-means algorithm)

Segmentation of the daily signals in clusters

From Cluster to Groups using calendar interpretation
Patterns defined by Group Centroids
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5 5

a 4
3[_ cluster1-(606) ] 3[__cluster 2-(1073) 3[__ cluster 3-(620) 3[_ cluster a-(s01)
o 10 20 o 10 20 o 10 20 o

Figure : T = 2800 intra day load curves of size n = 48 (clustering using
S =7 approximated coefficients)

Remarque: stability study for the 4 main clusters

27/43



Mining the clusters ...

over days (1...7) and months (1..12) exhibits specific consumption

periods
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to Groups

From clusters:

it AW

To groups: calendar interpretation of the clusters
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From Sparse Approximation towards Forecast:

» |. High dimensional Regression
- Theoretical framework

» |I. Sparse Approximation. Application to the intra day load
curves

- Generic Dictionary, knowledge discovery
- Specific dictionary composed of Climate functional variables

» Ill. Towards Forecast

- Strategies using Expert
- Aggregation of Experts
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Spot of Temperatures, Cloud Cover and Wind information

Figure : Temp., Cloud Cover spots (#39) and wind data (#293)
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Intraday Specific Dictionary: high dimensional model

> Eachday t,|Ye = X8 +e|  with Xe = [Pr M,]

» First model: p =94
» #2, P; = [C:B:] (Ci: group centroid, By = Y;_7)
» 192, M;, Meteorogical information
(Temperature, Cloud Cover, wind Indicators (min, max, med,

std) computed over the 39 meteorological spots and
95% PCA (80: T:5/N:25/W:50).

» Approximation performance:
» LOL adaptive
» 5=13,
> EMAPE = 0.34%

To remind: Mixte Generic dictionnary: MAPE=1.34%, S =7

32/43



Intraday Specific Dictionary: low dimensional model

» Each day t, ‘ Y: = XefBe + et‘ Xe = [Pr M]
Selected model, p = 14.
1. P; = [C;: B:] Patterns: #2 group centroid, B; = Y:_7
2. M; Meteorological data 12 (Temperature, Cloud Cover, Wind)

» Approximation performance:
» LOL adaptive
» $=25[28],
> Enare = 1.5% [min 0.002; max0.05]
» LOL fixed sparsity
> S=5158],
> Enmare = 0.8% [min 0.0017; max 0.05]
To remind: Mixte Generic dictionnary: MAPE=1.34%, S =7
—: Nice MAPE and Sparsity for approximation



Outline.

From Sparse Approximation towards Forecast:

» |. High dimensional Regression
- Theoretical framework

» |I. Sparse Approximation. Application to the intra day load
curves

- Generic Dictionary, knowledge discovery
- Specific dictionary composed of Climate functional variables

» |ll. Towards Forecast

- Experts dedicated to strategies
- Aggregation of Experts
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From Sparse approximation to Forecast:

Y, Approximation for day t:

> S\/t— = XtBt =+ 6t W|th Xt = [Pt, Mt] Pt = [Ct, Bt]

» withn=48, p=14=2+3x4

Forecast Expert:

Y/t = Xt Bt

» X; = [P:; My] is supposed to be known

> Bt :Bt*

» Plug in estimated coefficients at time t* = S(t) << t,

» with Strategy S
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Specialized Experts focus on

Different Strategies

1.

IS e o

10.

Time depending (t-1, t-7) (2)

(Meteorological configuration of the day (Temperature) 2)

Constrained meteorological configuration of the day (Temperature/Cloud Covering)
Group constraint meteorological configuration of the day (Temperature/group)
Meteorological configuration of the day constrained by the type of the day (Temperature/day)

Meteorological configuration of the day constrained by a calendar group (Temperature/calendar)

Meteorological configuration of the day (Cloud cover)

group constraint meteorological configuration of the day (Cloud Cover/group)

Meteorological configuration of the day constrained by the type of the day (Cloud Cover/day)
Meteorological configuration of the day constrained by a calendar group (Cloud Cover/calendar)

K =12
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Experts hits

Frequencies for the expert to perform at best:

Winning Expert frequencies

1 tm7 T Tm /N Tm/N /G T/d T/c  NsS/IG  N/id | N/c

data: form September 1t 2010 to August 31" 2010

— The expert are daily competitive
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Experts performances

data: form September 15t 2010 to August 31" 2010

Names mean median std
Naive 0.0634 0.0415 0.0514
Oracle 0.0183 0.0151 0.0151
tY 0.0323 0.0262 0.0262
tW 0.0303 0.0239 0.0239
T 0.0305 0.0242 0.0242
Tm 0.0321 0.0264 0.0264
T/N  0.0328 0.0258 0.0258
Tm/N 0.0321 0.0248 0.0248
T/G 0.0337 0.0247 0.0247
T/d 0.0330 0.0257 0.0257
T/c 0.0314 0.0249 0.0249
N/G  0.0297 0.0230 0.0230
N/d 0.0281 0.0219 0.0219
N/c 0.0288 0.0224 0.0224
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Aggregation and performances

All experts participate to forecast modulated by their performance
of approximation given the strategy at S = t*.

with
> W] = exp

>t = Ss(t)

A

Yt:

2sem WYY

ZsEM W?

—|Yt;«—§’%\§/9
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Aggregation performance

Names mean median std
Naive 0.0634 0.0415 0.0514
Oracle 0.0183 0.0151 0.0151
tY 0.0323 0.0262 0.0262
tW 0.0303 0.0239 0.0239
T 0.0305 0.0242 0.0242
Tm 0.0321 0.0264 0.0264
T/N  0.0328 0.0258 0.0258
Tm/N 0.0321 0.0248 0.0248
T/G 0.0337 0.0247 0.0247
T/d 0.0330 0.0257 0.0257
T/c 0.0314 0.0249 0.0249
N/G  0.0297 0.0230 0.0230
N/d 0.0281 0.0219 0.0219
N/c 0.0288 0.0224 0.0224
AGG  0.0230 0.0197 0.0122
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Some nice intra day forecasting for different periods:

a0 20100821-1 x10* 200010235
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Conclusion and perspectives

» Universal approach for functional data (with "intra day”
pattern)
» Sparse approximation using
» a Generic dictionary for compression and pattern extraction
» Intra day specific dictionaries for approximation and prediction
» Forecasting
» Various experts for prediction
» Agregation using exponential weights
» Competitive approach compared to usual time serie analysis

with much less parameters.
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Thanks for your attention!

More information on:
sites.google.com /site/mougeotmathilde/research

I
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