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Stochastic optimization and sample average approximation

min
x∈S

E [Φ(x , ξ)]

S ⊂ Rn: the feasible set, assumed to be a convex polyhedron

ξ(ω): a random vector taking values in a set Ξ ⊂ Rd

Φ: a function from Rn × Ξ to R

Evaluating E [Φ(x , ξ)] for a given x is often impractical. A common
approach is to solve the sample average approximation (SAA) problem:

min
x∈S

N−1
N∑
i=1

Φ(x , ξi (ω))

where ξ1, · · · , ξN are i.i.d. random variables with distribution same as ξ



Example: Norm-constrained minimum variance portfolio selection
The true problem1

min
x

1

2
xTΣx s.t. eT x = 1, ‖x‖1 ≤ c

The SAA problem:

min
x

1

2
xTΣNx s.t. eT x = 1, ‖x‖1 ≤ c

x ∈ Rp: portfolio allocations among p assets

e ∈ Rp: vector of all one’s

c ≥ 1: a constant controlling the amount of short sales allowed

Σ ∈ Rp×p: the true covariance matrix of the random return R

ΣN ∈ Rp×p: the sample covariance matrix of the random return,
computed from independently and identically distributed sample
data {rij}pj=1, i = 1, . . .N

1It can be written as minx∈S g(E [Φ(x ,R)]



Stochastic variational inequalities2 and sample average approximation

−E [F (x , ξ)] ∈ NS(x) (TRUE-VI)

S ⊂ Rn: the feasible set, assumed to be a convex polyhedron

ξ: a random vector taking values in a set Ξ ⊂ Rd

F : a function from Rn × Ξ to Rn

NS(x): the normal cone to S at x

NS(x) = {v ∈ Rn | 〈v , s−x〉 ≤ 0 for each s ∈ S}

Let ξ1, · · · , ξN be i.i.d. random variables with distribution same as ξ.
The SAA problem is

−N−1
N∑
i=1

F (x , ξi (ω)) ∈ NS(x) (SAA-VI)

2See [Chen, Wets and Zhang 2012], [Rockafellar and Wets 2016] for
alternative SVI formulations



Stochastic optimization related to stochastic variational inequalities

If the objective function of the stochastic optimization problem

min
x∈S

E [Φ(x , ξ)]

is differentiable at a local minimizer x0, then x0 satisfies the first-order
necessary condition

−∇xE [Φ(x0, ξ)] ∈ NS(x0).

The above condition becomes a stochastic variational inequality, when

∇xE [Φ(x0, ξ)] = E [∇xΦ(x0, ξ)]



Example: stochastic equilibria in energy markets

4 gas producers (i = 1, · · · , 4) decide the amount of gas (x tij) to
ship to 6 markets (j = 1, · · · , 6) in 4 time periods (t = 1, · · · , 4)

Each producer i tries to maximize its own profit E [Φi (x , ξ)]

xi ∈ argmax
xi∈R24

+

E [Φi (x , ξ)]

xi = [x tij ]tj : variables of producer i
x = [x tij ]tij : the vector of all variables
Φi : the profit function of producer i . It depends on xj for
j 6= i , since the total amount of production affects gas price
ξ = [ξt ]t : the random oil price

This Cournot-Nash equilibrium problem can be reformulated as a
stochastic variational inequality:

0 ∈ −E

∇x1 Φ1(x , ξ)
...

∇x4 Φ4(x , ξ)

+ NR96
+

(x)



The inference question

In practice, we often solve the SAA problem to find the SAA
solution, xN

How does data uncertainty affect the reliability of the SAA solution?

One way to answer this question is by building confidence regions
and intervals for the true solution, x0, based on knowledge about xN

An asymptotically exact confidence region C (xN) is a set in Rn that
depends on xN and satisfies

lim
N→∞

P (x0 ∈ C (xN)) = 1− α

We build confidence regions and intervals by utilizing the
asymptotic distribution of SAA solutions



The normal map formulation of variational inequalities3

The normal map associated with a function f : S → Rn and a set S ⊂ Rn is a
function fS : Rn → Rn, defined as

fS(z) = f (ΠS(z)) + z − ΠS(z) for each z ∈ Rn

where ΠS(z) is the Euclidean projection of z on S

−f (x) ∈ NS(x)

z=x−f (x)−−−−−−→
←−−−−−
x=ΠS (z)

fS(z) = 0

ΠS is piecewise affine

The normal manifold of S : the
polyhedral subdivision of Rn

corresponding to ΠS

fS is piecewise smooth if f is smooth,
and is piecewise affine if f is affine
3Details about normal maps can be found in [Robinson 1992], [Ralph 1993],

[Facchinei and Pang 2003], [Scholtes 2012] and references therein



The true problems and SAA problems

Define the true function as f0(x) = E [F (x , ξ)] and the SAA function

fN(x) = −N−1
N∑
i=1

F (x , ξi (ω))

Write (TRUE-VI) as
−f0(x) ∈ NS(x)

and (SAA-VI) as
−fN(x) ∈ NS(x)

Their corresponding normal map formulations are

(f0)S(z) = 0 (SVI-NM) and (fN)S(z) = 0 (SAA-NM)

Let z0 = x0 − f0(x0) and zN = xN − fN(xN) be solutions to the
normal map formulations



Convergence of SAA solutions to the true solution4

Under certain Assumptions

For a.e. ω, (SAA-VI) has a locally unique solution xN for N large
enough, with limN→∞ xN = x0

The corresponding solution zN to (SAA-NM) is also locally unique,
with limN→∞ zN = z0 almost surely

Let Σ0 be the covariance matrix of F (x0, ξ), and N (0,Σ0) be a
normal r.v. in Rn with zero mean and covariance matrix Σ0. Then,

√
NLK (zN − z0)⇒ N (0,Σ0) (Conv-Dist-z)

√
N(xN − x0)⇒ ΠK ◦ (LK )−1(N (0,Σ0)) (Conv-Dist-x)

where L = ∇xE [F (x0, ξ)], K = TS(x0) ∩ E [F (x0, ξ)]⊥, LK is the
normal map associated with L and K , and (LK )−1 is its inverse

LK is a piecewise linear approximation of the normal map (f0)S
around z0

4See related results in [Dupacova and Wets 1988], [King and Rockafellar
1993], [Gürkan, Özge and Robinson 1999], [Demir 2000], [Shapiro, Dentcheva
and Ruszczyński 2009], [Gürkan and Pang 2009], [Xu 2010] etc.



Assumptions

Assumption 1: Implies the continuous differentiability of f0 on O, the
almost sure convergence fN → f0 as an element of C 1(X ,Rn) for any
compact set X ⊂ O, and the weak convergence of

√
N(fN − f0)

(a) E‖F (x , ξ)‖2 <∞ for all x ∈ O, where O is an open set in Rn.
(b) The map x 7→ F (x , ξ(ω)) is cont diff on O for a.e. ω ∈ Ω.
(c) There exists a square integrable random variable C such that
‖F (x , ξ(ω))−F (x ′, ξ(ω))‖+‖dF (x , ξ(ω))−dF (x ′, ξ(ω))‖ ≤ C (ω)‖x−x ′‖,
for all x ′, x ∈ O and a.e. ω ∈ Ω.

Assumption 2: Guarantees the existence, local uniqueness, and stability
of the true solution under small perturbation of f0

Suppose that x0 ∈ O solves (SVI). Let z0 = x0 − f0(x0), L = df0(x0),
K = TS(x0)∩ {z0 − x0}⊥, and assume that the normal map LK induced by
L and K is a homeomorphism from Rn to Rn



Properties of the limiting distributions

(LK )−1(N (0,Σ0))
limiting distribution of

√
N(zN−z0)

and ΠK ◦ (LK )−1(N (0,Σ0))
limiting distribution of

√
N(xN−x0)

For a given q ∈ Rn, ΠK ◦ (LK )−1(q) is the solution h of a linear VI:

−Lh + q ∈ NK (h)

and when L is symmetric it is the unique solution of the QP

min
h∈K

1

2
hTLh − qTh

(LK )−1(q) = h − Lh + q

If K is a subspace, ΠK ◦ (LK )−1(q) and (LK )−1(q) are linear
functions of q, and xN and zN are asymptotically normal

If K is a polyhedral convex cone but not a subspace, then
ΠK ◦ (LK )−1(q) and (LK )−1(q) are piecewise linear functions with
multiple pieces, and xN and zN are not asymptotically normal



Example: a linear complementarity problem

F : R2 × R6 → R2 given by F (x , ξ) =

[
ξ1 ξ2

ξ3 ξ4

] [
x1

x2

]
+

[
ξ5

ξ6

]
ξ uniformly distributed on [0, 2]× [0, 1]× [0, 2]× [0, 4]× [−1, 1]× [−1, 1]

Then f0(x) = E [F (x , ξ)] =

[
1 1/2
1 2

]
x

Let S = R2
+. The SVI is an LCP:

−f0(x) ∈ NR2
+

(x),

which has a unique solution x0 = 0, and
z0 = x0 − f0(x0) = 0 is the unique
solution for (SVI-NM)

Here, L =

[
1 1/2
1 2

]
and K = S = R2

+



In the example: scatter plots for zN
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Left: solutions to 200 SAA problems with N = 10; Right: N = 30

Curves are boundaries of sets

{z ∈ R2 | N
[
LK (z − z0)

]T
Σ−1

0

[
LK (z − z0)] ≤ χ2

N(α)}

which contain zN with (approximately) probability 1− α for
α = 0.1, · · · , 0.9



A computable, asymptotically exact confidence region for z0

From
√
NLK (zN − z0)⇒ N (0,Σ0), an asymptotically exact

(1− α)100% confidence region for z0
5 is{

z ∈ Rn | N
[
LK (zN − z)

]T
Σ−1

0

[
LK (zN − z)

]
≤ χ2

n(α)
}

(CR0)

However, (CR0) is not computable as Σ0 and LK are unknown

Interestingly, an asymptotically exact, and computable, confidence
region is given by{
z ∈ Rn | N

[
d(fN)S(zN)(z − zN)

]T
Σ−1

N

[
d(fN)S(zN)(z − zN)] ≤ χ2

n(α)
}

(CR1)

d(fN)S(zN)(z − zN): the directional derivative of (fN)S at zN for the
direction z − zN
ΣN : the sample covariance matrix of F (xN , ξ)6

With high probability, d(fN)S(zN) is linear and (CR1) is an ellipsoid

5χ2
n(α) satisfies P(U > χ2

n(α)) = α for a χ2 r.v. U with n deg of freedom
6Different from ΣN in the portfolio selection example



In the example: Confidence regions for z0 computed from z10

An SAA for the LCP (N=10): −
[

0.93 0.54
0.75 2.11

]
x+

[
0.13
0.29

]
∈ NR2

+
(x)

A unique solution x10 = (0.08, 0.11) = z10 marked as × +: z0 = 0

[
0.42 0.01
0.01 0.19

]
Σ10

[
0.93 0.54
0.75 2.11

]
d(f10)R2

+
(z10)

{
z

∣∣∣∣10(z − z10)T
[

4.88 9.34
9.34 24.26

]
(z − z10) ≤ χ2

2(α)

}
(1−α)100% confidence region for z0

Shown in the figure:
confidence regions for z0

at levels 0.1, · · · , 0.9

90% simultaneous
confidence intervals:
(z0)1: [-0.52, 0.68]
(z0)2: [-0.16, 0.38]
(x0)1: [0, 0.68]
(x0)2: [0, 0.38]
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Individual confidence intervals for z0 and x0 (target level: 90%)

Consider cells in the normal manifold of R2
+:

{0}, {0} × R+,R+ × {0}, {0} × R−,R− × {0},R2
+,R2

−,R+ × R−,R− × R+,

CiN : the cell with the smallest dimension, among all cells that intersect
the 95% region. Here it is {0}
PN : the 2-dim cell that contains zN in its interior. Here it is R2

+

Let z̃iN be any point in riCiN , and KN = cone(PN − z̃iN ). Here it is R2
+

With limiting probability ≥ 95%, KN gives the cone that contains zN in
the polyhedral subdivision of R2 corresponding to LK

Let M = (d(fN)S(zN))−1Σ
1/2
N , and compute a number `N such that

Pr (|(MZ)j | ≤ `N , and MZ ∈ KN)

Pr (MZ ∈ KN )
= 0.95, where Z ∼ N (0, I )

lim infN→∞ Prob
(√

N|(zN − z0)j | ≤ `N
)
≥ 0.90

90% individual confidence intervals for z0 and x0 (computation of
intervals for x0 is analogous)

(z0)1: [-0.16, 0.32], (z0)2: [0, 0.22], (x0)1: [0, 0.32], (x0)2: [0, 0.22]



An alternative method

Under additional assumptions, zN converges to z0 at an exponential
rate

At zN we can define a function ΦN(zN) : Rn × Rn so that

lim
N→∞

Prob

[
sup
h∈Rn

‖ΦN(zN)(h)− LK (h)‖
‖h‖

<
φ

N1/3

]
= 1

Replacing LK by ΦN(zN) in the weak convergence results gives a
different method for computing confidence regions and intervals



Portfolio selection example: Confidence intervals and coverage rates

A = {j : (x0)j 6= 0}
200 replications

Avgcov: average coverage; Medcov: median coverage

Avglen: average length

1− α = 90% Our method Normal estimation
N and p Avgcov A Medcov A Avglen A Avgcov A Medcov A Avglen A

N=200 p=30 0.937 0.94 0.163 0.887 0.89 0.13
N=500 p=30 0.94 0.94 0.101 0.883 0.88 0.085
N=600 p=100 0.896 0.89 0.125 0.862 0.85 0.104

N=1000 p=100 0.928 0.94 0.099 0.89 0.89 0.083

1− α = 95% Our method Normal estimation
N and p Avgcov A Medcov A Avglen A Avgcov A Medcov A Avglen A

N=200 p=30 0.965 0.965 0.210 0.94 0.94 0.183
N=500 p=30 0.97 0.96 0.129 0.945 0.91 0.112
N=600 p=100 0.97 0.96 0.083 0.945 0.89 0.073

N=1000 p=100 0.972 0.97 0.065 0.945 0.935 0.057



Energy market equilibrium example: Coverage rates (α = 0.05)

υ.05
j : Normal estimation

h̃.04
j : The presented method with α1 = 0.01, α2 = 0.04

h̃.025
j : The presented method with α1 = 0.025, α2 = 0.025

2000 replications

N = 200 N = 2, 000

Percentile υ.05
j h̃.04

j h̃.025
j υ.05

j h̃.04
j h̃.025

j
MIN 88.20 % 88.70% 89.05 % 94.60 % 95.70 % 97.20 %
Q1 94.75 % 95.70 % 97.08% 94.85 % 96.00 % 97.50 %

MEDIAN 94.90 % 95.83 % 97.45% 95.30 % 96.25 % 97.95 %
Q3 95.05% 95.95 % 97.60% 95.40 % 96.5 % 98.35 %

MAX 100 % 100 % 100 % 100 % 100 % 100 %



Summary

Development and justification of methods to build computable
confidence regions and intervals for the true solutions of the
expected-value formulation of stochastic variational inequalities

Applied to stochastic Cournot-Nash production/distribution
problems, sparse-penalized statistical regression and portfolio
selection

This presentation is mainly based on the following papers:

Lamm, Lu. 2016. Generalized conditioning based approaches to compute
confidence intervals for stochastic variational inequalities. Submitted

Lamm, Lu and Budhiraja. 2016. Individual confidence intervals for solutions to
expected value formulations of stochastic variational inequalities. Mathematical
Programming B

Lu. 2014. Symmetric confidence regions and confidence intervals for normal
map formulations of stochastic variational inequalities. SIAM Journal on
Optimization. Vol. 24, No. 3, pp. 1458-1484

Lu and Budhiraja. Confidence regions for stochastic variational inequalities.
Mathematics of Operations Research, 2013, Vol. 38, No. 3, pp. 545-568



Derivation of (CR1)

A key observation: zN in a neighborhood
of z0 satisfies

dΠS(z0)(zN − z0) + dΠS(zN)(z0− zN) = 0

where dΠS(z0)(zN − z0) is the directional
derivative of ΠS at z0 for the direction
zN − z0

This property holds, as long as z0 and zN
are contained in a common n-cell

With
√
NLK (zN − z0)⇒ N (0,Σ0) and LK = d(f0)S(z0), it can be

shown
−
√
Nd(fN)S(zN)(z0 − zN)⇒ N (0,Σ0)

which implies (CR1) is an asymptotically exact confidence region for
z0


	Stochastic optimization and stochastic variational inequalities

