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Control	and	Power	Research	Group

Four	research	themes
• Power	systems	and	energy
• Power	electronics
• Control	theory	and	applications
• Smart	grids	[integration	of	other	activities]

Maurice	Hancock Smart	Energy	Lab
• Reconfigurable	8-node	network	
2x90kVA	programmable	voltage	
supplies

• Rapid	prototyping	control	system	
(Simulink/Labview)
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Outline

1. Introduction

2. Response	to	dynamic	time-of-use	tariffs
• Peak	shaving	response
• Household	responsiveness

3. Controlling	smart	refrigerators
• Stochastic	controller
• Aggregation

4. Final	remarks
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The	case	for	flexibility

electricity	grid
in=out

££
£

CO2
CO2

CO2
thermal	generators
balance	the	system

+-

Business	as	usual	approach	limits	the	uptake	of	renewable	generation

flexibility

To	achieve	carbon	emission	and	reliability	targets	in	a	cost-effective	manner	
we	must	increase	and	exploit	flexibility

+flexibility+flexibility
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Flexibility	and	the	optimal	energy	mix

“Value	of	Flexibility	in	a	Decarbonised	Grid	and	System	Externalities	of	Low-Carbon	Generation	Technologies”	
Report	by	Imperial	College	and	NERA	Consulting	for	the	UK	Committee	on	Climate	Change

Flexibility-enabled	savings:	approx.	£5bn/annum
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The	flexibility	spectrum

Flexible	
generators

Grid	scale	
storage

Industrial	and	
commercial	DR

+-

residential	DR

10-100MW 1-1000MW 100kW	- 1MW 10W	– 1kW

source

individual	
magnitude

number 100 10	- 1000 1000	- 10000 10s	of	millions

‘Long	tail’	of	
demand	response
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Unlocking the long	tail

Constraints/challenges
• Flexibility	is	a	by-product	of	other	activities,	which	will	affect	service	

availability.	
• Small	per-device	flexibility	contribution,	so	cost	and attention	budget	

is	small
• Significant	heterogeneity

Opportunities
• Very	large	number	of	devices	(at	least	at	regional/national	levels),	so	

large-number	statistics	apply.
• Regular	consumption	patterns	allow	for	aggregate	prediction.
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Control	approaches

Indirect	control

Decentralised response	to	non-
local	control	signals	(e.g.	prices)

Real	time	dispatch	of	
resources

• Requires	real-time	communication
• Limited	autonomy
• Privacy	concerns

• Does	it	work?

Direct	control

V • Accountability

?

V • Autonomy
• Low	cost

two	examples
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DYNAMIC	TIME-OF-USE	TARIFFS
CHARACTERISING RESPONSIVENESS

User-mediated	
demand	response
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The	Low	Carbon	London	
demand	response	trials	(2013)

5536	households	with	smart	meters	
(30-min	kWh	measurements)

1119	households	took	part	in	a	dynamic	
time	of	use	trial:
• Day	ahead	notification	of	prices	via	SMS	

and	in-home	displays
• Three	price	levels

• Default:	£0.1176/kWh
• Low:	£0.0399/kWh
• High:	£0.672/kWh



93	supply	following	events
• 45	high	price	events

(3-12	hours)
• 48	low	price	events

(3-24	hours)

13	constraint	management	
events
• high	price,	flanked	by	low	

prices
• primarily	targeted	at	evening	

peaks
• 1-3	consecutive	days	

(21	days	in	total)
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Measured	response	to	events

Dataset	can	be	downloaded	from	UK	Data	Service	
www.ukdataservice.ac.uk ;	search	for	“Low	Carbon	London”
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Analysis	through	aggregation

single	event many	events

single	
household

many	
households

Topic	2:
Analysis	of	household	
responsiveness

Topic	1:
Analysis	of	aggregate	
response
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Baselines	to	measure	demand	response

𝐵	# =% 𝛼'𝑑),# + 𝛽)𝐴./.01/2#𝑑),# + 𝛾𝑚 + 𝛿𝑇#
7

)89

non-ToU group
consumption

weekly	profile trend	line

temperature	factor

Construct	a	linear	regression	model	for	the	baseline,	trained	on	non-event	days.	
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Example	of	measured	response
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How	good	is	the	baseline	model?

Bootstrap	procedure
1. Resample	the	training	data	𝑁;<=>?@A< times	by	selecting	random	

days	with	replacement.
2. Train	a	baseline	model	for	each	resampled	data	set.
3. Compute	the	average	out-of-bag	error	for	each	30min	settlement	

block.

Result: Relative	errors	are	normally	distributed

DR	block St Dev

30	mins 3.5%

3	hours 2.5%

6	hours 2.0%

relative	error
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Consider	21	constraint	management events	(peak	shaving)
• High	price	at	peak	(evening,	morning,	weekend	noon)
• Low	price	on	either	side	of	peak

Procedure
• Estimate	DR	using	baseline	model	(averaged	over	block)
• Estimate	error	using	baseline	error	model

Analysis	of	peak	shaving	events
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Towards	predictive	modelling

1. Select	simplest	consistent	model

2. Model	uncertainty	=	confidence	of	parameter	fit
demand	reduction	between	7.1-8.8%	of	baseline	demand	(95%	confidence)

3. Uncertainty	of	next	measurement	=	model	uncertainty	+	baseline	variability
demand	reduction	between	4-12%	of	baseline	demand	(95%	confidence)

𝑅CDE<?>FE = −0.079	×	 baseline	demand + (random	variation)
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Analysis	through	aggregation

single	event many	events

single	
household

many	
households

Topic	2:
Analysis	of	household	
responsiveness

Topic	1:
Analysis	of	aggregate	
response
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How	to	identify	‘responsive’	households?

Naive	approach:	Change	in	bills
Compare	actual	bill	with	hypothetical	bill	on	a	flat	tariff
- Only	measures	success,	but	not	the	intent
- Does	not	account	for	natural	differences	in	consumption	magnitude,	

flexibility and	pattern

Proposed	approach:	resampling
1. Compute	the	actual	bill	𝑏∗ using	the	actual	price	signal	𝑝# and	

consumption	𝑐#:

𝑏∗ =% 𝑝#𝑐#
`

#89
2. Generate	randomised bills	tariffs	by	permuting	daily	price	signals

𝐵 =% 𝑝a(#)𝑐#
`

#89
3. Compare	the	true	and	hypothetical	bills

James	Schofield,	Simon	Tindemans,	Goran	Strbac,	arXiv:1605.08078
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A	nonparametric	responsiveness	measure

𝐵 is	approximately	normal	[combinatorial	CLT;	Hoeffding,	1951].
Define	a	measure	of	responsiveness

𝜑 = Pr	(𝐵 > 𝑏∗)

• Intuitive	interpretation	as	a	signal-to-noise	measure.	
• Provides	a	confidence	ranking	across	households	that	correlates	

highly	with	stated	actions	(more	so	than	DR	measurements).

𝐵	~ random	bill	distribution
𝑏∗ =	actual	bill
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Interpreting	per-household	responsiveness

What	makes	a	household	‘responsive’?
1. Deliberate	demand	response
2. ‘Accidental’	demand	response	

(both	variable	and	constant)
3. Price	signal	bias,	relative	to	the	population’s	

consumption	pattern	(e.g.	high	prices	that	
target	winter	peaks)	

eliminate

quantify

We	can	dig	deeper	using	data	from	a	control	group
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Correcting	for	price	signal	bias

Evidence	of	price	signal	bias Evidence	of	significant	demand	response

Use	control	group	to	create	a	new	coordinate	that	corrects	for	price	bias
𝜓 = 𝐹hiF#;iA 𝜑
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Quantifying	household	responsiveness

Divide	participants	into	responsive	and	non-responsive	sub-populations

62%	of	households	are	responsive	- but	there	is	no	need	to	state	which	is	
which.

Basis	for	a	probabilistic	assessment	of	household	responsiveness:

Pr 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒 𝜓 =
𝑓 𝜓; 𝜆 − 𝜆
𝑓 𝜓; 𝜆

corrected	responsiveness	(𝝍)	distribution

=0.38



25
Summary	and	outlook:	dToU data

single	event many	events

single	
household

many	
households

Significant	event-to-event	variation	in	DSR	peak	shaving
4-12%	reduction	for	the	next	event	(95%	confidence)

Nonparametric	method	to	quantify	
responsiveness
62%	of	participants	were	responsive

online	learning	from	
business	as	usual	data
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SMART	REFRIGERATORS
DESIGNING	A	DECENTRALISED CONTROLLER

Automated	
demand	response
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Refrigerator	hysteresis	controller	
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Flexible	refrigeration:	from	‘what’	to	‘how’

The	opportunity
• Refrigerators	represent	5-15%	of	

system	load	(est.	2-3GW	in	GB)*
• Load	shifting	for	~30	minutes	is	

free*	secondary	use

0

20000

40000

60000

potential	zero	cost	flexibility!

The	challenge
• Maintain	cooling	performance: Secondary	use	(flexibility)	should	not	

compromise	the	primary	use	(cooling)	of	devices.
• Robustness	and	scalability:	Reliance	on	real-time	communication	

may	result	in	bottlenecks	and	single	points	of	failure
• Controllability:	Ensure	sufficient	control	over	power	consumption,	

and	avoid	unwanted	interactions.
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“Semi-autonomous control”

Our	approach:	semi-autonomous	control
• Collective	goals are	set	centrally
• Actions are	decided	locally,	adapted	to	

expected	group	behaviour

Indirect	control

Decentralised actions	on	the	
basis	of	a	non-local	control	
signals

Goals	and	actions	are	
decided	centrally,	or	in	a	
distributed	fashion

Direct	control
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High-level	approach

Aggregator

Aggregate	load	dispatchModel	of	collective	
flexibility
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High-level	approach

Aggregator

Aggregate	load	dispatchModel	of	collective	
flexibility
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𝐸 𝑃> 𝑡 = 𝑃x>×Π(𝑡)

Control	through	the	law	of	large	numbers

control	intent
modulates	power	
consumption	of	all	
appliances
Π 𝑡 = 1 for	steady	state

steady	state	power	consumption	
of	appliance	a

power	consumption
of	appliance	a (a	random	process)

𝑃#i#>A = %𝑃>(𝑡)
�

>

= 𝑃x#i#>A×Π 𝑡 + 𝒪(𝑁09/~)
Π(𝑡)

Simon	Tindemans,	Vincenzo	Trovato,	Goran	Strbac,	“Decentralised control	of	thermostatic	loads	for	
flexible	demand	response.”,	IEEE	Transactions	on	Control	Systems	Technology,	(2015)
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Aggregate	convergent	response

0 1000 2000 3000
t

Π(t)

Collectively,	fridges	track	
the	reference	signal	𝚷 𝐭 –
even	when	each	appliance	
is	different!	

N=1000	domestic	refrigerators
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Controller	implementation
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2. Construct	a	homogeneous ’virtual	
population’	with	random	temperatures.

4. Determine	device-specific	actions,	
based	on	the	actual	device	temperature
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T [°C]

0.05

0.10

0.15

0.20

3. Manipulate	the	‘virtual	population’	
to	control	its	(virtual)	power	
consumption	in	line	with	Π 𝑡 .	

𝑑𝑇(𝑡)
𝑑𝑡 = � −𝛼(𝑇(𝑡) − 𝑇iF)

−𝛼(𝑇(𝑡) − 𝑇>?��<F#)
				
(on)
(off)

1. Each	appliance	knows	its	
state and	model

Π(𝑡)
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Controller	implementation
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4. Determine	device-specific	actions,	
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3. Manipulate	the	‘virtual	population’	
to	control	its	(virtual)	power	
consumption	in	line	with	Π 𝑡 .	

𝑑𝑇(𝑡)
𝑑𝑡 = � −𝛼(𝑇(𝑡) − 𝑇iF)

−𝛼(𝑇(𝑡) − 𝑇>?��<F#)
				
(on)
(off)

1. Each	appliance	knows	its	
state and	model

Π(𝑡)
Each	appliance	considers	itself	as	a	random	

representative	of	a	population...

...and	takes	individual	actions	in	
line	with	population	objectives
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Analytical	solution

(sub-)population	avg temperature

rate	of	heating/cooling

switching	rates
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High-level	approach

Aggregator

Aggregate	load	dispatchModel	of	collective	
flexibility
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The	leaky	storage	unit

Six-parameter	model	to	describe	the	flexibility	
of	a	homogeneous	population	

𝑑𝑆(𝑡)
𝑑𝑡 = 𝑃(𝑡) − 𝛼𝑆 𝑡

with	constraints:

𝑃?�F ≤ 𝑃 𝑡 ≤ 𝑃?>�
𝑆?�F ≤ 𝑆(𝑡) ≤ 𝑆?>�

� 𝑆 𝑡 𝑑𝑡 = 𝑆x
`

x

P(t)

αS(t)

Smax

S0
Smin

S(t)

preserve	
the	food!

Vincenzo	Trovato,	Simon	Tindemans,	Goran	Strbac,	IET	Generation,	Transmission	&	Distribution (2016)
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Aggregation	of	leaky	storage	units

Heterogeneousmodels	are	merged	
into	a	conservative	envelope	
flexibility	model.

The	model	is	sufficient	and	linear,	
for	easy	embedding	in	dispatch	
models.	

Clustering can	be	used	to	match	
similar	appliances.

P(t)

αS(t)

Smax

S0
Smin

S(t)

P(t)

αS(t)

Smax

S0
Smin

S(t)

P(t)

αS(t)

Smax

S0
Smin

S(t)

P(t)

αS(t)

Smax

S0
Smin

S(t)

P(t)

αS(t)

Smax

S0
Smin

S(t)
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Aggregator
Aggregate	load	dispatchModel	of	collective	
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Communication	requirements
Robust	‘semi-autonomous’	operation

aggregator

response	design	cycle

operational	cycle

1. Measure	temperature
2. Update	model
3. Switch	on/off

real	
time

ahead	of	
time

Significant	changes	in:
• thermal	model
• constraints

real-time	control	
signal	Π(𝑡)

or

power	response	
model
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Example:	optimal	allocation	of	flexibility
59,524	refrigerators	(1MW);	24-hour	allocation

simulation
of	heterogeneous	

refrigerators
(60,000)

Using	refrigerators	to	provide	energy	arbitrage	and	frequency	services,	making	
optimal	use	of	device	flexibility

delivery	of	
frequency	
response
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Example:	
Optimal	use	of	different	device	classes

domestic commercial

Service	allocations	reflect	physical	
characteristics:
• Slow	thermal	time	constants	

are	good	for	energy	arbitrage	
• Low	duty	cycles	in	domestic	

appliances	leave	headroom	for	
high	frequency	response.
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Summary	and	outlook:	Smart	refrigerators

Summary	so	far
• We	have	developed	a	stochastic	control	scheme	that	is	

nondisruptive,	decentralised and	accurate.
• Semi-autonomous	control separates	the	communication	and	

operation	time	scales,	and	is	robust	to	perturbations	and	
heterogeneity.	

New	developments
• Implementation	(Lab	tests	starting	soon)
• Testing	and	proving	robustness against	‘things	going	wrong’	(model	

misspecification,	user	actions,	etc)
• Optimal	control	of	‘leaky	storage’	units
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FINAL	REMARKS
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Residential	DR:	research	challenges

• The	long	tail	of	demand	response	is	substantial,	but	
there	are	restrictions	on	control.

• Modelling	and	quantification	of	uncertainty	is	essential.
• Diversity	should	be	used	as	an	asset,	not	a	hindrance.	

Understand	response	to	control	signals	
• Data-driven	modelling	to	quantify	and	predict response
• Design	of	experiments	for	automated	model	testing	

and	improvement	in	a	business	as	usual	environment

Develop	purpose-built	decentralised	controllers
• Guarantee local	service	quality	and	quantify system	

service	quality
• Ensure	fairness	of	outcomes
• Analyse	robustness	against	disturbances

Design	subject	to	
risk	and	fairness	
constraints

Quantify	and	
mitigate	risks
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The	(near)	future:	analysing	complexity

• Peer-to-peer	communication	(aka	‘the	energy	internet’)	will give	rise	
to	unexpected	emergent	behaviour.	

• Do	we	need	to	develop	‘grid	safety	certification’	for	smart	energy	
appliances?

• Lab	tests	and	demonstrators	will	not	be	sufficient;	we	need	
simulations	and	basic	analysis.	

May	6	2010:	‘flash	crash’



49

This	research	was	supported	by	a	Marie	Curie	Intra	European	Fellowship
within	the	7th	European	Community	Framework	Programme and	by	
National	Grid.

“Low	Carbon	London”	was	funded	through	the	Low	Carbon	Networks	
Fund	programme,	administered	by	the	UK	Regulator,	Ofgem.

Funders



50
Want	to	know	more?

s.tindemans@imperial.ac.uk

• Low	Carbon	London	Project:	Data	from	the	Dynamic	Time-of-Use	Electricity	Pricing	Trial,	2013	
James	Schofield,	Richard	Carmichael,	Simon	Tindemans,	Mark	Bilton,	Matt	Woolf,	Goran	Strbac.	
(2016).	UK	Data	Service.	SN:	7857

• A	baseline-free	method	to	identify	responsive	customers	on	dynamic	time-of-use	tariffs	
James	Schofield,	Simon	Tindemans,	Goran	Strbac
arXiv:1605.08078

• Resilience	performance	of	smart	distribution	networks	
Simon	Tindemans,	Predrag Djapic,	James	Schofield,	Tatiana	Ustinova and	Goran	Strbac
Report	D4	for	the	“Low	Carbon	London”	LCNF	project,	2014.

• Residential	consumer	responsiveness	to	time	varying	pricing
James	Schofield,	Richard	Carmichael,	Simon	Tindemans,	Matt	Woolf,	Mark	Bilton	and	Goran	Strbac
Report	A3	for	the	“Low	Carbon	London”	LCNF	project,	2014.

• Decentralised	control	of	thermostatic	loads	for	flexible	demand	response.
Simon	Tindemans,	Vincenzo	Trovato,	Goran	Strbac
IEEE	Transactions	on	Control	Systems	Technology (2015)

• The	Leaky	Storage	Model	for	optimal	multi-service	allocation	of	thermostatic	loads.	
Vincenzo	Trovato,	Simon	Tindemans,	Goran	Strbac
IET	Generation,	Transmission	&	Distribution	(2016)

• Nondisruptive decentralized	control	of	thermal	loads	with	second	order	thermal	models
Simon	Tindemans,	Goran	Strbac
2016	IEEE	PES	General	Meeting,	Boston.


