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Problem

Definition

The granularity is the progressive apparition of traded futures contracts

depending on their maturity and delivery period. The futures contracts ’split’

in several contracts with shorter delivery period.
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Definition

The granularity is the progressive apparition of traded futures contracts

depending on their maturity and delivery period. The futures contracts ’split’

in several contracts with shorter delivery period.

Statement

- The price of XM has a structural correlation with XQ .

- The market is incomplete.

Goal : quantify the premium for a level of loss.

Approach : the stochastic target problem of Bouchard, Elie and Touzi (2009)



Introduction of the shaping factor

I By absence of arbitrage :

XQ
t =

hM1XM1
t + hM2XM2

t + hM3XM3
t

hM1 + hM2 + hM3

with hMi = number of hours in month i

and XMi = price of contract covering month i .

I Let [0,T ] be the time interval of hedging,

and t0 ∈ (0,T ) the time of apparition of the month contract.

We suppose that

XM
t0

= λXQ
t0

with λ a Ft0-measurable variable of law J and support E

independent of XQ
t0

.
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Empirical analysis of the shaping factor

A study on EEX Power Derivatives market (mid-price) :

I Month and Quarter contracts on 7 years (78 occurrences)

I Daily mid-price (non continuous trading strategy)

I Goal : hedge and price a call option on month with quarter.

Relevant results in the Black-Scholes framework :

I λ is a random parameter (no clear correlation with the price XQ
t0

).

I The hedging error due to the estimation is greater than model or

discretization error with an error > 10%.

I A reasonably wrong estimation of λ impacts the price significantly.

Conclusion : operational need to take the incompleteness into account
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Dynamics and portfolio

The dynamics :

I We denote by Xt,x the price process on [0,T ] starting at (t, x).

Y ν
t,x ,y is the portfolio process starting at (t, y) with the strategy ν.Xt,x(r) = x +

∫ r
t µsXt,x(s)ds +

∫ r
t σsXt,x(s)dWs

Y ν
t,x ,y (r) = y +

∫ r
t νsdXt,x(s)

On [0, t0), X is the price of the quarter contract.

On [t0,T ], λX is the price of the month contract.

The agent’s objective :

I We are endowed with a claim g(λXt,x(T )).

I We introduce the loss function `(z) =
(z−)n

n
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The stochastic target problem

Mathematical formulation :

I Let Ut be the set of controls ν starting at time t.

For a given threshold p ≤ 0, we want to solve the following problem :

v(t, x , p) := inf

{
y ∈ R : ∃ν ∈ Ut such that

E
[
−`
(
Y ν
t,x ,y (T )− g(λXt,x(T ))

)]
≥ p

}

Interpretation :

I Find the minimal capital controlling the level p of loss.

I Focus only on loss with a n moment function (e.g. quadratic

asymmetrical error).

I We do NOT hedge the claim but control its impact (ifp < 0).

I Advantage : we take into account the risk of λ.
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The complete and half complete market cases

(HCM) : we suppose that if λ is known, the market is complete.

Standard case : If t ≥ t0, we know λ and the market is complete.

I We keep the controlled loss approach (consistency of the strategy).

I What link with perfect replication of g(λXt,x(T )) ?

The half-complete market : λ is Ft0-independent and t < t0.

I We study a specific case of claim f (Xt,x(T ), λ)

I Other applications : volume risk, mix finance-insurance claims,...

Question : can we join the two separated problems ?
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The complete market case

I If t ≥ t0, we can write λXt,x(r) = Xt,λx(r).

I Following Bouchard and al. (2009), the stochastic target problem

becomes

v(t, x , p) := inf

{
y ∈ R : ∃(ν, α) ∈ Ut ×At such that

−`
(
Y ν
t,x ,y (T )− g(λXt,x(T ))

)
≥ Pαt,x ,p(T )

}

where Pαt,x ,p(r) = p +
∫ r
t αsP

α
t,x ,p(s)dWs and At is the set of controls α

independent of Ft .

I Pαt,p being a martingale, we have

E
[
−`
(
Y ν
t,x ,y (T )− g(λXt,x(T ))

]
≥ p

I Similar to a superreplication problem of function

Ψ−1(Xt,x(T ),Pαt,p(T )) = g(Xt,x(T ))− (nPαt,p(T ))1/n



The complete market case

I Following Bouchard and al. (2009), we have that v∗ is a viscosity

supersolution on [t0,T )× R+ × R− of{
−∂tϕ+ sup(u,a)∈N0

Lu,aϕ ≥ 0 , on [t0,T )× R+ × R−
v∗ − [g(x)− (np)1/n] ≥ 0 , on {T} × R+ × R−

with N0 := {(u, a) : σtxu − σtx∂xϕ− ap∂pϕ = 0}
and Lu,aϕ := uxµt − [µtx∂xϕ+ 1

2σ
2
t x

2∂xxϕ+ 1
2a

2p2∂ppϕ+ σtxa∂xpϕ]

I v∗ being convex in p, we can explicit (u, a) and obtain :

−∂tϕ−
1

2
σ2
t x

2∂xxϕ+
(µt/σt∂pϕ− σtx∂xpϕ)2

2∂ppϕ
≥ 0



The complete market case

I Using the Fenchel transform u(t, x , q) = supp(pq − v(t, x , p)) we have

that u is a subsolution of{
ϕt + 1

2σ
2
t x

2∂xxϕ+ 1
2
µt
σt
q2∂qqϕ+ µtxq∂xqϕ ≤ 0 , on [t0,T )

ϕ(T , x , q)− (1− 1
n )q

1
1−n − g(x) ≤ 0 , on {T}

I By the Feynman-Kac formula, u is smaller than

ū := EQt,x,q [(1− 1

n
)q

1
1−n − g(Xt,x(T ))]

with

{
dXt,x(s) = σtXt,x(s)dW

Qt,x,q
s

dQt,x ,q(s) = µt
σt
Qt,x ,q(s)dW

Qt,x,q
s and Qt,x ,q(t) = q

I Using the Fenchel again, we obtain

v(t, x , p) = EQt,x,1 [g(Xt,x(T )]− (−np)
1
n exp

{
1

2(n − 1)

∫ T

t

µ2
s

σ2
s

ds

}



The complete market case

I The complete market case allows to obtain explicit formulae for µ and σ

constant :

Pαt,p(s) = p(
Xt,x

x
)−

n
µ (n − 1)σ2 exp(

n

(n − 1)
(
n − 2

n − 1
− µ)(s − t))

νs = ∆(s,Xt,x(s)) +
µ

(n − 1)xσ2
(−np)1/n exp(

1

2(n − 1)
(
µ2

σ2
(T − s))

I With a moment loss function, we separate the claim and the level of loss.

I ⇒ : the diffusion of Pαt,p depends only on Xt,x (not the claim).

I ⇒ : the value function is the Black Scholes price minus a premium.

I When µ = 0, the strategy is the Black Scholes delta hedging.

I The agent can choose judiciously n ≥ 2 and p ≤ 0.



When the contract appears

Idea : by definition, v(t−0 , x , p) shall verify

E
[
−`(Y ν

t−0 ,x ,v(t−0 ,x ,p)
(T )− g(λXt−0 ,x

(T )))
]
≥ p for some ν ∈ Ut−0

so that we shall find ν(λ) ∈ Ut0 for each λ such that

E
[∫

E
−`(Y ν(λ)

t−0 ,x ,v(t−0 ,x ,p)
(T )− g(λXt−0 ,x

(T ))J(dλ)

]
≥ p

Proposition

For (t, x , p) ∈ [0, t0)× R+ × R−, we have

v(t, x , p) = inf
{
y ∈ R : ∃ν ∈ Ut s.t. E

[
Ξ(Xt,x(t0),Y ν

t,x ,y (t0))
]
≥ p

}
with Ξ(x , y) :=

∫
E sup {p : v(t0, λx , p) ≤ y} J(dλ)

Interpretation : we have a piecewise problem. For t < t0, we are in the

(HCM) framework.



When the contract appears

Facts and hints

I If we compute Ξ from v(t0, .), the market is complete and we can use

the DPP.

I Here, Ξ(x , y) has not an explicit solution in general.

I If λ is constant, we retrieve the Black Scholes strategy.

I Otherwise, we weight the strategy by losses induced by λ.

Numerical procedure comes now...

I We suppose that λ follows a Beta law.

I We compute the expectation wrt J(dλ) numerically by iid simulations.



The half complete case

In the case of t < t0, we have in our case

I Pαt,p is an explicit function of Xt,x (Pαt,p is markov if µ, σ constant).

I ⇒ v(s,Xt,x(s),Pαt,p(s)) = u0(s,Xt,x(s)).

I regularity assumptions

Dynamic Programming Principle + martingale representation theorem

⇒ v(t, x , p) is the superhedging price of u0(t−0 ,Xt,x(t−0 )).
v(s,Xt,x(s),Pαt,p(s)) = E[u0(t−0 ,Xt,x(t−0 )) |Xt,x(s)]

ν(s,Xt,x(s)) =
∂E[u0(t−0 ,Xt,x(t−0 )) |Xt,x(s)]

∂X
.



The half complete case

Procedure

I We compute numerically Xt,x(t−0 ) and v(t0, λXt,x(t0),Pt,p(t0))

I We then obtain u0(t−0 ,Xt,x(t−0 )) (optimization).

I We compute ν (the derivative) with tangent processes.

I We compute the conditional expectations with regressions (on 3

monomials).

Benchmark : we compare v(0, x , p) to the Black-Scholes approach.

I on call options price and loss (OTM, ATM, ITM)

I Black Scholes price is computed with E [λ].



Numerical procedure

Main initial data :

I λ has a standard deviation of 0.081.

I S0 = 50.89.

I Loss function `(Y − g(X )) = ((Y − g(x))−)2.

Simulations :

I 10000 trajectories

I 10000 simulations of λ (Calibrated Beta law).



Price Vs Loss :ITM

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

10.5

11

11.5

12

12.5

13

13.5

 Shortfall Risk

  I
ni

tia
l C

ap
ita

l

 

 

 SR Hedging
 BS Hedging

Figure: For K = 0.80× S0. BS price = 11.27 eur.



Price Vs Loss :ATM

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
3.5

4

4.5

5

5.5

6

 Shortfall Risk

  I
ni

tia
l C

ap
ita

l

 

 

 SR Hedging
 BS Hedging

Figure: For K = S0. BS price= 4.91 eur.



Price Vs Loss :OTM
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Figure: For K = 1.20× S0. BS price= 1.75 eur.



Suming up the results

Loss = % of Loss Reduction with BS Price (CBS(X ) = v(0,X , p))

Price = % of Price Reduction compared to BS Loss (same p).

Strike (1− 20%)S0 S0 (1 + 20%)S0

BS price (eur) 11.27 4.91 1.75

Loss 3.49% 8.70% 18.68%

Price 1.16% 5.12% 21.30%
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Figure: For K = 0.80× S0. BS price = 11.27 eur.
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CVar comparison :OTM
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Conclusions

The stochastic target approach :

I minimizes a given criteria till a threshold p.

I reduces the CVaR Risk with the same initial capital as BS.

I reduces the initial capital needed to achieve the same Loss as BS.

What remains to be done :

I Present results on real data.

I Develop the general continuous semimartingale framework.

I give a comprehensive interpretation of the differences between SR and

BS strategy.

I calibrate new objects : p, n (preferences) and λ (statistics).


