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Problem

Definition
The granularity is the progressive apparition of traded futures contracts
depending on their maturity and delivery period. The futures contracts 'split

in several contracts with shorter delivery period.
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Problem

Definition
The granularity is the progressive apparition of traded futures contracts
depending on their maturity and delivery period. The futures contracts 'split

in several contracts with shorter delivery period.

Statement
- The price of XM has a structural correlation with X@.

- The market is incomplete.



Problem

Definition
The granularity is the progressive apparition of traded futures contracts
depending on their maturity and delivery period. The futures contracts 'split’

in several contracts with shorter delivery period.

Statement

- The price of XM has a structural correlation with X©<.

- The market is incomplete.

Goal : quantify the premium for a level of loss.

Approach : the stochastic target problem of Bouchard, Elie and Touzi (2009)



Introduction of the shaping factor

» By absence of arbitrage :

XQ B h’V’1Xt’V’1 + hMQXtIVIZ + hM3XtM3
£ hMi 4 pM2  pMs

with AMi = number of hours in month i

and XMi = price of contract covering month i.



Introduction of the shaping factor

» By absence of arbitrage :

XQ B hMIXt’V’l + hI\/IQXth + hM3XtM3
£ ML - pM2 | pMs

with "M = number of hours in month i
and XMi = price of contract covering month i.
» Let [0, T] be the time interval of hedging,
and tp € (0, T) the time of apparition of the month contract.
We suppose that
XM = AXE
with X a Fi-measurable variable of law J and support E

independent of Xt?.



Empirical analysis of the shaping factor

A study on EEX Power Derivatives market (mid-price) :
» Month and Quarter contracts on 7 years (78 occurrences)
» Daily mid-price (non continuous trading strategy)

» Goal : hedge and price a call option on month with quarter.
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» The hedging error due to the estimation is greater than model or

discretization error with an error > 10%.

» A reasonably wrong estimation of A impacts the price significantly.



Empirical analysis of the shaping factor

A study on EEX Power Derivatives market (mid-price) :

» Month and Quarter contracts on 7 years (78 occurrences)

» Daily mid-price (non continuous trading strategy)

» Goal : hedge and price a call option on month with quarter.
Relevant results in the Black-Scholes framework :

» X is a random parameter (no clear correlation with the price th).

» The hedging error due to the estimation is greater than model or

discretization error with an error > 10%.
» A reasonably wrong estimation of A impacts the price significantly.

Conclusion : operational need to take the incompleteness into account



Dynamics and portfolio

The dynamics :

» We denote by X;  the price process on [0, T] starting at (t, x).

Y¢ .y is the portfolio process starting at (t,y) with the strategy v.

Xe x(r) = x4+ ftr psXe x(s)ds + ftr 05 Xt x(s)dWs
Ytl:x,y(r) =y+ ftr Vstt,x(S)

On [0, ty), X is the price of the quarter contract.
On [to, T], AX is the price of the month contract.



Dynamics and portfolio

The dynamics :
» We denote by X;  the price process on [0, T] starting at (t, x).
YV

+x.y is the portfolio process starting at (t,y) with the strategy v.

Xex(r)  =x+ [ usXex(s)ds + [[ 0sXex(s)dWs
Ytljx,y(r) =y+ ftr VsdXe x(5)

On [0, ty), X is the price of the quarter contract.

On [to, T], AX is the price of the month contract.

The agent's objective :

> We are endowed with a claim g(AX;(T)).
(z7)"

n

» We introduce the loss function ¢(z) =



The stochastic target problem

Mathematical formulation :

» Let U; be the set of controls v starting at time t.
For a given threshold p < 0, we want to solve the following problem :

y € R : dv € U; such that
v(t,x, p) :=inf .
E [—¢(Y)(T) - 80Xex(T)))] 2



The stochastic target problem

Mathematical formulation :

» Let U; be the set of controls v starting at time t.
For a given threshold p < 0, we want to solve the following problem :

( ) if y € R : dv € U; such that
vit,x,p) :=1In y
E [7£(Yt,x,y(T) - g()‘Xt,x(T)))} Z P

Interpretation :

Find the minimal capital controlling the level p of loss.

v

Focus only on loss with a n moment function (e.g. quadratic

v

asymmetrical error).

We do NOT hedge the claim but control its impact (ifp < 0).

v

Advantage : we take into account the risk of A.

v



The complete and half complete market cases

(HCM) : we suppose that if A is known, the market is complete.

Standard case : If t > tg, we know A and the market is complete.
» We keep the controlled loss approach (consistency of the strategy).

» What link with perfect replication of g(AX;«(T))?
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The half-complete market : X is Fz-independent and t < tg.
» We study a specific case of claim f(X¢x(T), )

» Other applications : volume risk, mix finance-insurance claims,...



The complete and half complete market cases

(HCM) : we suppose that if A is known, the market is complete.
Standard case : If t > tg, we know A and the market is complete.

» We keep the controlled loss approach (consistency of the strategy).
» What link with perfect replication of g(AX;x(T))?
The half-complete market : X is Fz-independent and t < tg.
» We study a specific case of claim f(X¢x(T), )
» Other applications : volume risk, mix finance-insurance claims,...

Question : can we join the two separated problems?



The complete market case

If t > to, we can write AX¢ x(r) = Xeax(r).
Following Bouchard and al. (2009), the stochastic target problem

becomes
( ) = inf y € R : I(v,a) € U x Ay such that
v(t,x,p):=1In y o
~0(Yy(T) = g(WXen(T))) = P o(T)

where P2, (r) = p+ [/ asPg, ,(s)dWs and Aq is the set of controls o
independent of F;.

P{, being a martingale, we have

E [V, (T) - g0Xen(T)] > p
Similar to a superreplication problem of function

W (Xe(T), PES(T)) = g(Xen(T)) = (nPEL(THY"



The complete market case

» Following Bouchard and al. (2009), we have that v, is a viscosity

supersolution on [ty, T) x Ry x R_ of

—0tp + sup(y a)en, £L9% >0, on [to, T) x Ry x R_
v — [g(x) = (np)¥/" >0, on {T} xRy x R_

with Mg := {(u,a) : owxu — o¢xOxp — apOpp = 0}
and L% = uxps — [uexOxp + %agx28XX<p + %azpzappw + o¢xalxp ]

> v, being convex in p, we can explicit (v, a) and obtain :

(Mt/gtap‘p - UtXaxpSO)Z >0

1
—Orp — Zo2x%0 w+ >
t XX 2app§0

2



The complete market case

> Using the Fenchel transform u(t, x, q) = sup,(pq — v(t, x, p)) we have

that v is a subsolution of
ot + 02 20, +3 L ’“ 28qq<p + 1exq0xqp <0, on [ty, T)
1
(TaX7q)_(1_E)q17"_g( )SO, on {T}

» By the Feynman-Kac formula, u is smaller than

- g(Xt,x( T))]

1
g = E%xa[(1 - Z)qT
n

ith dXLX(S) = O'j_-Xt X( )dWQth
wi

th,x,q( ) thq( ) Wthq and thq( ) q
> Using the Fenchel again, we obtain

L T 2
V(e p) = E@ g (o T = (-o)i exp {5t [ s
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The complete market case

The complete market case allows to obtain explicit formulae for i and o

constant :
PEy() = P22 H (0~ Do expl s (=5 — (s = 1)
2
vs = A(s, Xex(s)) + m(—np)”” exp(m(%(T ~s))

With a moment loss function, we separate the claim and the level of loss.
= : the diffusion of P{, depends only on X; » (not the claim).

= : the value function is the Black Scholes price minus a premium.
When p = 0, the strategy is the Black Scholes delta hedging.

The agent can choose judiciously n > 2 and p < 0.



When the contract appears

Idea : by definition, v(t;, x, p) shall verify

[ (Y- (T)—g()\XtO—’X(T))) > p for some v €U,

ty X,v(ty ,x,p)

so that we shall find () € Uy, for each A such that

B [ o T) = 60X (TN 2 5

t‘0 ,xvto X,P

Proposition

For (t,x,p) € [0,ty) x Ry x R™, we have
v(t,x,p) =inf{y eR : v el st. E[Z(Xex(t0), Yy, (t0))] = p}

with =(x,y) :== [gsup{p : v(to, Ax,p) <y} J(dN)
Interpretation : we have a piecewise problem. For t < ty, we are in the
(HCM) framework.



When the contract appears

Facts and hints

» If we compute = from v(tp, .), the market is complete and we can use
the DPP.

» Here, =(x, y) has not an explicit solution in general.

» If X\ is constant, we retrieve the Black Scholes strategy.

» Otherwise, we weight the strategy by losses induced by .
Numerical procedure comes now...

» We suppose that A follows a Beta law.

» We compute the expectation wrt J(d\) numerically by iid simulations.



The half complete case

In the case of t < tg, we have in our case

» Pg, is an explicit function of X; x (P, is markov if ji, o constant).

t7p
> = v(s, Xex(s), Ptofp(s)) = up(s, Xex(s)).
> regularity assumptions

Dynamic Programming Principle + martingale representation theorem
= v(t, x, p) is the superhedging price of ug(ty , X x(ty))-

v(s, Xex(s), Prp(s)) = Eluo(ty s Xex(tg)) [ Xex(s)]

_ OB[uo(ty , Xex(t ) [ Xex(s)]

v(s, Xex(5)) %




The half complete case

Procedure
» We compute numerically X; «(t;) and v(to, AX¢x(to), Pe,p(to))
» We then obtain wug(t;, X¢x(ty )) (optimization).
» We compute v (the derivative) with tangent processes.

» We compute the conditional expectations with regressions (on 3

monomials).
Benchmark : we compare v(0, x, p) to the Black-Scholes approach.
» on call options price and loss (OTM, ATM, ITM)
» Black Scholes price is computed with E [}].



Numerical procedure

Main initial data :

» X has a standard deviation of 0.081.

» So = 50.89.

» Loss function £(Y — g(X)) = (Y — g(x))7)%.
Simulations :

» 10000 trajectories

» 10000 simulations of A (Calibrated Beta law).
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Initial Capital

Price Vs Loss :ITM

T
—+— SR Hedging
+  BSHedging

2 22
Shortfall Risk

24

26 28 3

F1GURE: For K = 0.80 x Sy. BS price = 11.27 eur.



Initial Capital
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451

Price Vs Loss :ATM

35
1

T T
—— SR Hedging
+  BSHedging

12 14 16 22 24 26 28

F1GURE: For K = Sp. BS price= 4.91 eur.



Price Vs Loss :0OTM

—+— SR Hedging
+  BSHedging

Initial Capital

I I
o 15 2 25
Shortfall Risk

F1GURE: For K = 1.20 x Sy. BS price= 1.75 eur.




Suming up the results

Loss = % of Loss Reduction with BS Price (CB3(X) = v(0, X, p))
Price = % of Price Reduction compared to BS Loss (same p).

Strike (1-20%)So | So (14 20%)So
BS price (eur) 11.27 491 1.75

Loss 3.49% 8.70% 18.68%

Price 1.16% 5.12% 21.30%




CVar comparison :ITM

8 T T T T T
“++ SR Hedging Error
BS Hedging Error

Conditional VaR (Euros)

|
60 65 70 75 80 85 £ 95 100
Quantile

F1GURE: For K = 0.80 x Sy. BS price = 11.27 eur.



Conditional VaR (Euros)

CVar comparison :ATM

T
*+++ SR Hedging Error
BS Hedging Error

80 85 90
Quantile

F1GURE: For K = Sp. BS price= 4.91

95

eur.



CVar comparison :0OTM

*++ SR Hedging Error
BS Hedging Error

Conditional VaR (Euros)

I
60 65 70 75 80 85 9 95 100
Quantile

F1GURE: For K = 1.20 x Sy. BS price= 1.75 eur.



Conclusions

The stochastic target approach :

> minimizes a given criteria till a threshold p.

» reduces the CVaR Risk with the same initial capital as BS.

» reduces the initial capital needed to achieve the same Loss as BS.
What remains to be done :

» Present results on real data.

» Develop the general continuous semimartingale framework.

> give a comprehensive interpretation of the differences between SR and

BS strategy.

» calibrate new objects : p, n (preferences) and A (statistics).



