A stochastic target approach to the granularity problem Journee de la Chaire

Adrien Nguyen Huu

Université Dauphine, CEREMADE and CREST-ENSAE Paris, France

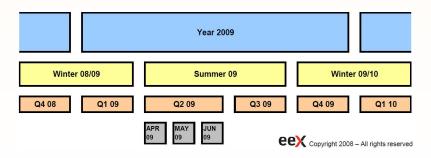
joint work with L. Moreau, N. Oudjane and A. Tamisier

5 décembre 2011

Problem

Definition

The granularity is the progressive apparition of traded futures contracts depending on their maturity and delivery period. The futures contracts 'split' in several contracts with shorter delivery period.



Problem

Definition

The granularity is the progressive apparition of traded futures contracts depending on their maturity and delivery period. The futures contracts 'split' in several contracts with shorter delivery period.

Statement

- The price of X^M has a structural correlation with X^Q .
- The market is incomplete.

Problem

Definition

The granularity is the progressive apparition of traded futures contracts depending on their maturity and delivery period. The futures contracts 'split' in several contracts with shorter delivery period.

Statement

- The price of X^M has a structural correlation with X^Q .
- The market is incomplete.
- Goal : quantify the premium for a level of loss.
- Approach : the stochastic target problem of Bouchard, Elie and Touzi (2009)

Introduction of the shaping factor

By absence of arbitrage :

$$X_t^Q = \frac{h^{M_1} X_t^{M_1} + h^{M_2} X_t^{M_2} + h^{M_3} X_t^{M_3}}{h^{M_1} + h^{M_2} + h^{M_3}}$$

with h^{M_i} = number of hours in month *i* and X^{M_i} = price of contract covering month *i*.

Let [0, T] be the time interval of hedging,
 and t₀ ∈ (0, T) the time of apparition of the month contract.
 We suppose that

$$X_{t_0}^M = \lambda X_{t_0}^Q$$

with λ a \mathcal{F}_{t_0} -measurable variable of law J and support E independent of $X^Q_{t_0}$.

Introduction of the shaping factor

By absence of arbitrage :

$$X_t^Q = \frac{h^{M_1} X_t^{M_1} + h^{M_2} X_t^{M_2} + h^{M_3} X_t^{M_3}}{h^{M_1} + h^{M_2} + h^{M_3}}$$

with h^{M_i} = number of hours in month *i* and X^{M_i} = price of contract covering month *i*.

 Let [0, T] be the time interval of hedging, and t₀ ∈ (0, T) the time of apparition of the month contract. We suppose that

$$X_{t_0}^M = \lambda X_{t_0}^Q$$

with λ a \mathcal{F}_{t_0} -measurable variable of law J and support E independent of $X_{t_0}^Q$.

Empirical analysis of the shaping factor

A study on EEX Power Derivatives market (mid-price) :

- Month and Quarter contracts on 7 years (78 occurrences)
- Daily mid-price (non continuous trading strategy)
- ► Goal : hedge and price a call option on month with quarter.

Empirical analysis of the shaping factor

A study on EEX Power Derivatives market (mid-price) :

- ▶ Month and Quarter contracts on 7 years (78 occurrences)
- Daily mid-price (non continuous trading strategy)
- ► Goal : hedge and price a call option on month with quarter.

Relevant results in the Black-Scholes framework :

- λ is a random parameter (no clear correlation with the price $X_{t_0}^Q$).
- The hedging error due to the estimation is greater than model or discretization error with an error > 10%.
- A reasonably wrong estimation of λ impacts the price significantly.

Empirical analysis of the shaping factor

A study on EEX Power Derivatives market (mid-price) :

- Month and Quarter contracts on 7 years (78 occurrences)
- Daily mid-price (non continuous trading strategy)
- ► Goal : hedge and price a call option on month with quarter.

Relevant results in the Black-Scholes framework :

- λ is a random parameter (no clear correlation with the price $X_{t_0}^Q$).
- The hedging error due to the estimation is greater than model or discretization error with an error > 10%.
- A reasonably wrong estimation of λ impacts the price significantly. Conclusion : operational need to take the incompleteness into account

Dynamics and portfolio

The dynamics :

We denote by X_{t,x} the price process on [0, T] starting at (t, x).
 Y^ν_{t,x,y} is the portfolio process starting at (t, y) with the strategy ν.

$$\begin{cases} X_{t,x}(r) &= x + \int_t^r \mu_s X_{t,x}(s) ds + \int_t^r \sigma_s X_{t,x}(s) dW_s \\ Y_{t,x,y}^{\nu}(r) &= y + \int_t^r \nu_s dX_{t,x}(s) \end{cases}$$

On $[0, t_0)$, X is the price of the quarter contract. On $[t_0, T]$, λX is the price of the month contract.

Dynamics and portfolio

The dynamics :

We denote by X_{t,x} the price process on [0, T] starting at (t, x).
 Y^ν_{t,x,y} is the portfolio process starting at (t, y) with the strategy ν.

$$\begin{cases} X_{t,x}(r) &= x + \int_t^r \mu_s X_{t,x}(s) ds + \int_t^r \sigma_s X_{t,x}(s) dW_s \\ Y_{t,x,y}^{\nu}(r) &= y + \int_t^r \nu_s dX_{t,x}(s) \end{cases}$$

On [0, t_0), X is the price of the quarter contract. On [t_0 , T], λX is the price of the month contract.

The agent's objective :

• We are endowed with a claim $g(\lambda X_{t,x}(T))$.

• We introduce the loss function $\ell(z) = \frac{(z^{-})^n}{n}$

The stochastic target problem

Mathematical formulation :

Let U_t be the set of controls ν starting at time t.
 For a given threshold p ≤ 0, we want to solve the following problem :

$$v(t,x,p) := \inf \left\{ \begin{array}{l} y \in \mathbb{R} : \exists \nu \in \mathcal{U}_t \text{ such that} \\ \mathbb{E} \left[-\ell \left(Y_{t,x,y}^{\nu}(T) - g(\lambda X_{t,x}(T)) \right) \right] \ge p \end{array} \right\}$$

The stochastic target problem

Mathematical formulation :

• Let \mathcal{U}_t be the set of controls ν starting at time t.

For a given threshold $p \leq 0$, we want to solve the following problem :

$$v(t,x,p) := \inf \left\{ \begin{array}{l} y \in \mathbb{R} : \exists \nu \in \mathcal{U}_t \text{ such that} \\ \mathbb{E} \left[-\ell \left(Y_{t,x,y}^{\nu}(T) - g(\lambda X_{t,x}(T)) \right) \right] \ge p \end{array} \right\}$$

Interpretation :

- ▶ Find the minimal capital controlling the level *p* of loss.
- Focus only on loss with a n moment function (e.g. quadratic asymmetrical error).
- We do NOT hedge the claim but control its impact (if p < 0).
- Advantage : we take into account the risk of λ .

The complete and half complete market cases

(HCM) : we suppose that if λ is known, the market is complete. Standard case : If $t \ge t_0$, we know λ and the market is complete.

- ▶ We keep the controlled loss approach (consistency of the strategy).
- What link with perfect replication of $g(\lambda X_{t,x}(T))$?

The complete and half complete market cases

(HCM) : we suppose that if λ is known, the market is complete. Standard case : If $t \ge t_0$, we know λ and the market is complete.

- ▶ We keep the controlled loss approach (consistency of the strategy).
- What link with perfect replication of $g(\lambda X_{t,x}(T))$?

The half-complete market : λ is \mathcal{F}_{t_0} -independent and $t < t_0$.

- We study a specific case of claim $f(X_{t,x}(T),\lambda)$
- Other applications : volume risk, mix finance-insurance claims,...

The complete and half complete market cases

(HCM) : we suppose that if λ is known, the market is complete. Standard case : If $t \ge t_0$, we know λ and the market is complete.

- ▶ We keep the controlled loss approach (consistency of the strategy).
- What link with perfect replication of $g(\lambda X_{t,x}(T))$?
- The half-complete market : λ is \mathcal{F}_{t_0} -independent and $t < t_0$.
 - We study a specific case of claim $f(X_{t,x}(T),\lambda)$
 - Other applications : volume risk, mix finance-insurance claims,...

Question : can we join the two separated problems?

- If $t \ge t_0$, we can write $\lambda X_{t,x}(r) = X_{t,\lambda x}(r)$.
- Following Bouchard and al. (2009), the stochastic target problem becomes

$$\mathsf{v}(t,x,p) := \inf \left\{ egin{array}{l} y \in \mathbb{R} \ : \ \exists (
u, lpha) \in \mathcal{U}_t imes \mathcal{A}_t ext{ such that} \ -\ell \Big(Y^{
u}_{t,x,y}(\mathcal{T}) - g(\lambda X_{t,x}(\mathcal{T})) \Big) \geq P^{lpha}_{t,x,p}(\mathcal{T}) \end{array}
ight\}$$

where $P_{t,x,p}^{\alpha}(r) = p + \int_{t}^{r} \alpha_{s} P_{t,x,p}^{\alpha}(s) dW_{s}$ and A_{t} is the set of controls α independent of \mathcal{F}_{t} .

• $P_{t,p}^{\alpha}$ being a martingale, we have

$$\mathbb{E}\left[-\ell\Big(Y_{t,x,y}^{\nu}(T)-g(\lambda X_{t,x}(T))\Big]\geq p\right]$$

Similar to a superreplication problem of function

$$\Psi^{-1}(X_{t,x}(T), P^{\alpha}_{t,p}(T)) = g(X_{t,x}(T)) - (nP^{\alpha}_{t,p}(T))^{1/n}$$

Following Bouchard and al. (2009), we have that v_∗ is a viscosity supersolution on [t₀, T) × ℝ₊ × ℝ_− of

$$\begin{cases} -\partial_t \varphi + \sup_{(u,a) \in \mathcal{N}_0} \mathcal{L}^{u,a} \varphi \ge 0 , & \text{ on } [t_0, T) \times \mathbb{R}_+ \times \mathbb{R}_- \\ v_* - [g(x) - (np)^{1/n}] \ge 0 , & \text{ on } \{T\} \times \mathbb{R}_+ \times \mathbb{R}_- \end{cases}$$

with $\mathcal{N}_0 := \{(u, a) : \sigma_t x u - \sigma_t x \partial_x \varphi - a p \partial_p \varphi = 0\}$ and $\mathcal{L}^{u, a} \varphi := u x \mu_t - [\mu_t x \partial_x \varphi + \frac{1}{2} \sigma_t^2 x^2 \partial_{xx} \varphi + \frac{1}{2} a^2 p^2 \partial_{pp} \varphi + \sigma_t x a \partial_{xp} \varphi]$

 \triangleright v_* being convex in p, we can explicit (u, a) and obtain :

$$-\partial_t \varphi - \frac{1}{2} \sigma_t^2 x^2 \partial_{xx} \varphi + \frac{(\mu_t / \sigma_t \partial_p \varphi - \sigma_t x \partial_{xp} \varphi)^2}{2 \partial_{pp} \varphi} \ge 0$$

Using the Fenchel transform u(t, x, q) = sup_p(pq - v(t, x, p)) we have that u is a subsolution of

$$\begin{cases} \varphi_t + \frac{1}{2}\sigma_t^2 x^2 \partial_{xx} \varphi + \frac{1}{2}\frac{\mu_t}{\sigma_t} q^2 \partial_{qq} \varphi + \mu_t x q \partial_{xq} \varphi \le 0 , & \text{on } [t_0, T) \\ \varphi(T, x, q) - (1 - \frac{1}{n})q^{\frac{1}{1-n}} - g(x) \le 0 , & \text{on } \{T\} \end{cases}$$

By the Feynman-Kac formula, u is smaller than

$$\begin{split} \bar{u} &:= \mathbb{E}^{Q_{t,x,q}}[(1-\frac{1}{n})q^{\frac{1}{1-n}} - g(X_{t,x}(T))]\\ \text{with} \left\{ \begin{array}{l} dX_{t,x}(s) &= \sigma_t X_{t,x}(s) dW_s^{Q_{t,x,q}}\\ dQ_{t,x,q}(s) &= \frac{\mu_t}{\sigma_t} Q_{t,x,q}(s) dW_s^{Q_{t,x,q}} \text{ and } Q_{t,x,q}(t) = q \end{array} \right. \end{split}$$

Using the Fenchel again, we obtain

$$v(t,x,p) = \mathbb{E}^{Q_{t,x,1}}[g(X_{t,x}(T)] - (-np)^{\frac{1}{n}} \exp\left\{\frac{1}{2(n-1)} \int_{t}^{T} \frac{\mu_{s}^{2}}{\sigma_{s}^{2}} ds\right\}$$

The complete market case allows to obtain explicit formulae for μ and σ constant :

$$P_{t,p}^{\alpha}(s) = p(\frac{X_{t,x}}{x})^{-\frac{n}{\mu}}(n-1)\sigma^2 \exp(\frac{n}{(n-1)}(\frac{n-2}{n-1}-\mu)(s-t))$$

$$u_s = \Delta(s, X_{t,x}(s)) + rac{\mu}{(n-1)x\sigma^2}(-np)^{1/n}\exp(rac{1}{2(n-1)}(rac{\mu^2}{\sigma^2}(T-s)))$$

With a moment loss function, we separate the claim and the level of loss.

- ▶ ⇒ : the diffusion of $P_{t,p}^{\alpha}$ depends only on $X_{t,x}$ (not the claim).
- \blacktriangleright \Rightarrow : the value function is the Black Scholes price minus a premium.
- When $\mu = 0$, the strategy is the Black Scholes delta hedging.
- The agent can choose judiciously $n \ge 2$ and $p \le 0$.

1

When the contract appears

Idea : by definition, $v(t_0^-, x, p)$ shall verify

$$\mathbb{E}\left[-\ell(Y^\nu_{t_0^-,x,\nu(t_0^-,x,p)}(\mathcal{T})-g(\lambda X_{t_0^-,x}(\mathcal{T})))\right]\geq p \text{ for some }\nu\in\mathcal{U}_{t_0^-}$$

so that we shall find $\nu(\lambda) \in \mathcal{U}_{t_0}$ for each λ such that

$$\mathbb{E}\left[\int_{E} -\ell(Y_{t_0^-,x,v(t_0^-,x,\rho)}^{\nu(\lambda)}(T) - g(\lambda X_{t_0^-,x}(T))J(d\lambda)\right] \geq \rho$$

Proposition

For $(t, x, p) \in [0, t_0) imes \mathbb{R}_+ imes \mathbb{R}^-$, we have

$$v(t,x,p) = \inf \left\{ y \in \mathbb{R} \ : \ \exists \nu \in \mathcal{U}_t \ s.t. \ \mathbb{E} \left[\Xi(X_{t,x}(t_0), Y_{t,x,y}^{\nu}(t_0)) \right] \geq p \right\}$$

with $\Xi(x, y) := \int_E \sup \{ p : v(t_0, \lambda x, p) \le y \} J(d\lambda)$

Interpretation : we have a piecewise problem. For $t < t_0$, we are in the **(HCM)** framework.

When the contract appears

Facts and hints

- If we compute Ξ from v(t₀,.), the market is complete and we can use the DPP.
- Here, $\Xi(x, y)$ has not an explicit solution in general.
- If λ is constant, we retrieve the Black Scholes strategy.
- Otherwise, we weight the strategy by losses induced by λ .

Numerical procedure comes now...

- We suppose that λ follows a Beta law.
- We compute the expectation wrt $J(d\lambda)$ numerically by iid simulations.

The half complete case

In the case of $t < t_0$, we have in our case

▶ $P_{t,p}^{\alpha}$ is an explicit function of $X_{t,x}$ ($P_{t,p}^{\alpha}$ is markov if μ, σ constant).

$$\blacktriangleright \Rightarrow v(s, X_{t,x}(s), P^{\alpha}_{t,p}(s)) = u_0(s, X_{t,x}(s)).$$

regularity assumptions

Dynamic Programming Principle + martingale representation theorem $\Rightarrow v(t, x, p)$ is the superhedging price of $u_0(t_0^-, X_{t,x}(t_0^-))$.

$$\begin{cases} v(s, X_{t,x}(s), P_{t,p}^{\alpha}(s)) = \mathbb{E}[u_0(t_0^-, X_{t,x}(t_0^-)) | X_{t,x}(s)] \\ \\ \nu(s, X_{t,x}(s)) = \frac{\partial \mathbb{E}[u_0(t_0^-, X_{t,x}(t_0^-)) | X_{t,x}(s)]}{\partial X} . \end{cases}$$

The half complete case

Procedure

- We compute numerically $X_{t,x}(t_0^-)$ and $v(t_0, \lambda X_{t,x}(t_0), P_{t,p}(t_0))$
- We then obtain $u_0(t_0^-, X_{t,x}(t_0^-))$ (optimization).
- We compute ν (the derivative) with tangent processes.
- We compute the conditional expectations with regressions (on 3 monomials).
- Benchmark : we compare v(0, x, p) to the Black-Scholes approach.
 - on call options price and loss (OTM, ATM, ITM)
 - Black Scholes price is computed with $\mathbb{E}[\lambda]$.

Numerical procedure

Main initial data :

- λ has a standard deviation of 0.081.
- $S_0 = 50.89$.
- Loss function $\ell(Y g(X)) = ((Y g(x))^{-})^{2}$.

Simulations :

- 10000 trajectories
- 10000 simulations of λ (Calibrated Beta law).

Price Vs Loss :ITM

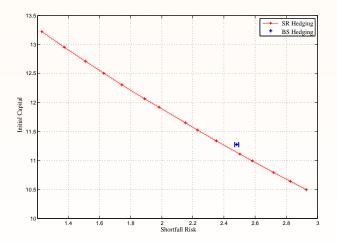


FIGURE: For $K = 0.80 \times S_0$. BS price = 11.27 eur.

Price Vs Loss :ATM

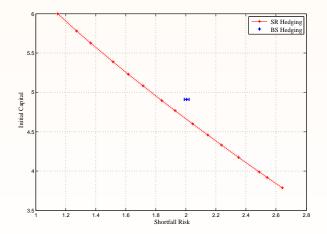
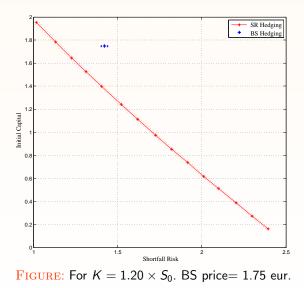


FIGURE: For $K = S_0$. BS price= 4.91 eur.

Price Vs Loss :OTM



Suming up the results

Loss = % of Loss Reduction with BS Price $(C^{BS}(X) = v(0, X, p))$ Price = % of Price Reduction compared to BS Loss (same p).

Strike	$(1-20\%)S_0$	S_0	$(1+20\%)S_0$
BS price (eur)	11.27	4.91	1.75
Loss	3.49%	8.70%	18.68%
Price	1.16%	5.12%	21.30%

CVar comparison :ITM

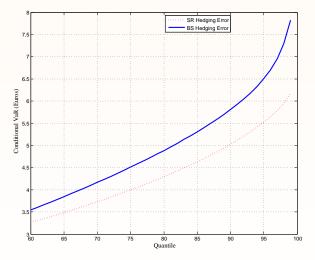


FIGURE: For $K = 0.80 \times S_0$. BS price = 11.27 eur.

CVar comparison :ATM

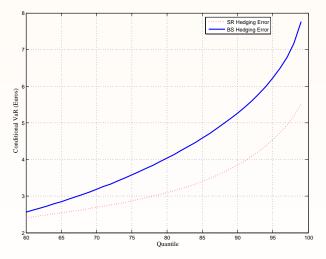


FIGURE: For $K = S_0$. BS price= 4.91 eur.

CVar comparison :OTM

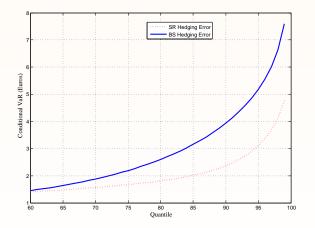


FIGURE: For $K = 1.20 \times S_0$. BS price= 1.75 eur.

Conclusions

The stochastic target approach :

- minimizes a given criteria till a threshold p.
- reduces the CVaR Risk with the same initial capital as BS.
- reduces the initial capital needed to achieve the same Loss as BS.

What remains to be done :

- Present results on real data.
- Develop the general continuous semimartingale framework.
- give a comprehensive interpretation of the differences between SR and BS strategy.
- calibrate new objects : p, n (preferences) and λ (statistics).