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Bermudan Options

ä Let (Xt , 0 ≤ t ≤ T ) be a Markov process valued in Rd and defined
on a filtered probability space (Ω,F , (Ft )0≤t≤T ,P)

ä Let 0 = t0 < t1 < t2 < . . . < tJ = T be a finite set of exercise
opportunities

Definition
If exercised at time tj , j = 1, . . . , J, the option pays gj(Xtj ), for some
known functions g0,g1, . . . ,gJ mapping Rd into [0,∞).

Notation

Zj := Xtj , j = 1, . . . , J.
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Bermudan Options

ä Let Tj be the set of stopping times taking values in {j , j + 1, . . . , J}

The equilibrium price V ∗j (x) of the Bermudan option at time j in state x
is its value under an optimal exercise policy:

V ∗j (z) = sup
τ∈Tj

E[gτ (Zτ )|Zj = z], z ∈ Rd .

Question
How to compute the fair price of the Bermudan options numerically?
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Dynamic Programming Principle

ä Continuation values

C∗j (z) := E[V ∗j+1(Zj)|Zj = z], j = 0, . . . , J − 1,

satisfy the dynamic programming principle

C∗J (z) = 0,
C∗j (z) = E[max(gj+1(Zj+1),C∗j+1(Zj+1))|Zj = z].

Observation
The use of the d.p.p. is relatively straightforward in low dimensions.
However, many problems arising in practice are high dimensional !
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Nested conditional expectations

ä Problem: How to approximate the nested conditional expectations
in the backward dynamic programming algorithm?

ä Naive approach: Use nested simulations.

Infeasible: Computational cost explodes rapidly with the number of
exercise dates.

Definition
Fast approximation methods (regression methods, stochastic mesh
method and etc.) construct the estimates C1, . . .CJ recursively without
use of nested simulations.

Denis Belomestny (DUE) Multilevel methods Paris, 16 May 2014 5 / 31



Comparison of fast approximation methods

Question
How to compare different fast approximation methods ?

Definition
A method has a complexity C(ε), if it requires C(ε) numerical
operations to estimate V ∗0 with the mean squared error ε.

Observation
Fast approximation methods may have rather large complexity.
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Generic approximation algorithm

Given a sequence of estimates Ck ,j , j = 1, . . . , J, based on k training
paths, we can define

V n,k
0 =

1
n

n∑
r=1

g
τ
(r)
k

(Z (r)

τ
(r)
k

)

with
τ
(r)
k = inf{0 ≤ j ≤ J : gj(Z

(r)
j ) ≥ Ck ,j(Z

(r)
j )}.

1 Construction of the estimates Ck ,j , j = 1, . . . , J, on k training
paths.

2 Construction of the low-biased estimate V n,k
0 by evaluating

functions Ck ,j , j = 1, . . . , J, on each of new n testing trajectories.
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General classification

Assumption (AP)

For any k ∈ N, the estimates Ck ,0(z), . . . ,Ck ,J−1(z) are defined on
some filtered probability space (Ωk ,Fk ,Pk ) which is independent of
(Ω,F ,P).

Assumption (AC)
For any j = 1, . . . ,J , the cost of constructing Ck ,j on k training paths is
of order k × kκ1 for some κ1 > 0 and the cost of evaluating Ck ,j(z) in a
new point z is of order kκ2 for some κ2 > 0.
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General classification

Assumption (AQ)
There is a sequence of positive real numbers γk with γk → 0, k →∞
such that

Pk
(

sup
z∈S

∣∣∣Ck ,j(z)− C∗j (z)
∣∣∣ > η

√
γk

)
< B1e−B2η, η > 0

for any compact set S and some constants B1 > 0 and B2 > 0.
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General classification

Observation
Given (AC), the overall complexity of a fast approximation algorithm is
proportional to

k1+κ1 + n × kκ2 ,

where the first term represents the cost of constructing the estimates
Ck ,j , j = 1, . . . , J, on k training paths and the second one gives the
cost of evaluating the estimated continuation values on n testing paths.
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Example: Global regression

ä Simulate k trajectories of Z all starting from z at j = 0.

ä Suppose that the estimates Ck ,J−1, . . . ,Ck ,j+1 are already
constructed.

ä Let αk
j = (αk

j,1, . . . , α
k
j,L) be a solution of

arginf
α∈RL

k∑
i=1

[
ζj+1,k (Z (i)

j+1)− α1ψ1(Z (i)
j )− . . .− αLψL(Z (i)

j )
]2

with ζj+1,k (z) = max {gj+1(z),Ck,j+1(z)} .
ä Define

Ck,j (z) = αk
j,1ψ1(z) + . . .+ αk

j,LψL(z), z ∈ Rd .
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ä It holds comp(αk
j ) ∼ k · L2 + comp(αk

j+1), since Bαk
j = b with

Bp,q =
1
k

k∑
i=1

ψp(Z (i)
j )ψq(Z (i)

j )

and

bp =
1
k

k∑
i=1

ψp(Z (i)
j )ζk ,j+1(Z (i)

j+1),

p,q ∈ {1, . . . ,L}. Hence

comp(αk
j ) ∼ (J − j) · k · L2.

ä The estimates Ck ,0(z), . . . ,Ck ,J−1(z) satisfy (AQ) under some
conditions. In order to guarantee (AQ) with γk = k−µ for some
µ > 0, one has to take L � kθ for some θ > 0, i.e., κ1 = 2θ and
κ2 = θ in (AC).
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Example: Stochastic Mesh Method

Broadie and Glasserman (2004):

Ck ,j(z) =
1
k

k∑
i=1

ζj+1,k (Z (i)
j+1) · wij(z),

ä Weights

wij(z) =
pj(z,Z

(i)
j+1)

1
k
∑k

i=1 pj(Z
(i)
j ,Z (i)

j+1)
,

ä pj(x , y) is the transition density from Zj = x to Zj+1 = y .

Observation
The complexity of computing Ck ,j(z) for any fixed z is of order k,
provided the transition density pj(x , y) is analytically known.
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Example: Stochastic Mesh Method

1 2 3 4 5 6 7 8 9 10

κ1 = 1 and κ2 = 1 in (AC)
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Lower bound for V ∗0 via Ckj

ä A suboptimal stopping rule:

τk = min
{

0 ≤ j ≤ J : Ck ,j(Zj) ≤ gj(Zj)
}

with Ck ,J ≡ 0 by definition.
ä Fix two natural numbers N and K , and define

V N,K
0 =

1
N

N∑
r=1

g
τ
(r)
K

(Z (r)

τ
(r)
K

).

Observation

V N,K
0 is low biased, i.e., E[V N,K

0 ] ≤ V ∗0 .

Idea

Compare different f. a. methods in terms of E[(V N,K
0 − V ∗0 )2].
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Complexity of V N,K
0

Exsercise boundary or margin assumption:

Assumption (AM)
There exist constants A > 0, δ0 > 0 and α > 0 such that

P
(
|C∗j (Zj)− gj(Zj)| ≤ δ

)
≤ Aδα

for all j = 0, . . . , J, and all δ < δ0.

Remark
ä Assumption (AM) characterises the behaviour of Z near the

exercise boundary ∂E with

E =
{

(j , x) : gj(x) ≥ C∗j (x)
}
.
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Boundary assumption
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Complexity of V N,K
0

Proposition

Let γk = k−µ, k ∈ N for some µ > 0. Then for any ε > 0 the choice

k∗ = ε
− 2
µ(1+α) , n∗ = ε−2

leads to
E
[
V n∗,k∗

0 − V ∗0
]2
≤ ε2,

and the complexity of the estimate V n∗,k∗

0 is bounded from above by
Cn∗,k∗(ε) with

Cn∗,k∗(ε) . ε
−2·max

( κ1+1
µ(1+α) , 1+

κ2
µ(1+α)

)
, ε→ 0.
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Discussion

ä The complexity of V N,K
0 can be as large as ε−q for any q > 2.

ä The smaller is the margin parameter α, the larger is the
complexity.

Remark
To compare: the complexity of computing E[g(XT )] by Monte Carlo is
of order ε−2.

Question

Is it possible to reduce the complexity of V N,K
0 ?
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Multilevel idea

ä Fix L ∈ N and k = (k1, . . . , kL) ∈ NL with k1 < . . . < kL.

ä Let hk be a sequence of positive numbers tending to 0.

ä Write a telescopic sum

E
[
gτkL

(
ZτkL

)]
= E

[
gτk0

(
Zτk0

)]
+

L∑
l=1

E
[
gτkl

(
Zτkl

)
− gτkl−1

(
Zτkl−1

)]
with

τ
(r)
k = inf

{
0 ≤ j ≤ J : gj(Z

(r)
j ) > Ck ,j(Z

(r)
j )
}
.
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Multilevel approach

Fix n = (n1, . . . ,nL) ∈ NL and simulate nl trajectories of the process Z
to approximate E

[
gτkl

(
Zτkl

)
− gτkl−1

(
Zτkl−1

)]
.

Define

V n,k
0 =

1
n0

n0∑
r=1

g
τ
(r)
k0

(
Z (r)

τ
(r)
k0

)

+
L∑

l=1

1
nl

nl∑
r=1

[
g
τ
(r)
kl

(
Z (r)

τ
(r)
kl

)
− g

τ
(r)
kl−1

(
Z (r)

τ
(r)
kl−1

)]

with
τ
(r)
k = inf

{
0 ≤ j ≤ J : gj(Z

(r)
j ) > Ck ,j(Z

(r)
j )
}
.
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Multilevel approach: complexity

Proposition

Under the choice k∗l = k0 · θl , l = 0,1, . . . ,L, with θ > 1,

L =

⌈
2

µ(1 + α)
logθ

(
ε−1 · k−µ(1+α)/2

0

)⌉
and

n∗l = ε−2

(
L∑

i=1

√
k (κ2−µα/2)

i

)
·
√

k (−κ2−µα/2)
l

the complexity of the estimate V n,k
0 is bounded, up to a constant, from

above by
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Multilevel approach: complexity

Cn∗,k∗(ε) .



ε
−2·max

( κ1+1
µ(1+α) ,1

)
, 2 · κ2 < µα

ε
−2· κ1+1

µ(1+α) , 2 · κ2 = µα and κ1+1
µ(1+α) > 1

ε−2 · (log ε)2 , 2 · κ2 = µα and κ1+1
µ(1+α) ≤ 1

ε
−2·max

( κ1+1
µ(1+α) ,1+

κ2−µα/2
µ(1+α)

)
, 2 · κ2 > µα

Observation
The MLMC is superior to the standard MC as long as µ > 1/(1 + α).
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Multilevel approach: complexity gain

For κ1 = κ2 = κ,

ε
−2·min

(
κ

µ(1+α) ,1−
1

µ(1+α)

)
, 2 · κ < µα

ε
−2·

(
1− 1

µ(1+α)

)
, 2 · κ = µα and κ+1

µ(1+α) > 1

ε
−2· κ

µ(1+α) , 2 · κ = µα and κ+1
µ(1+α) ≤ 1

ε
−2·min

(
1− 1

µ(1+α) ,
µα/2
µ(1+α)

)
, 2 · κ > µα

Conclusion

The largest complexity gain is of order ε−1.
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A two period Bermudan option:

ä C0(z) = E[g1(Z1)|Z0 = z] is monotone increasing in z.

ä g0(z) has a “digital” structure:

g0(z) =

{
C0(z0) + δ0, z < z0,

C0(z0)− δ0, z ≥ z0

with some z0 ∈ R and δ0 < C0(z0).

Observation
It holds

P(0 < |C0(X0)− g0(X0)| ≤ δ0) = 0

and therefore α =∞.
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Numerical example

ä X = (X 1, . . . ,X d ) with

dX i
t = (r − δ)X i

t dt + σX i
t dBi

t ,

ä Payoff:
h(Xt ) = e−rt (max(X 1

t , ...,X
d
t )− κ)+.

ä Benchmark parameters: d = 2, r = 0.05, δ = 0.1, tj = jT/J,
j = 0, ..., J, with T = 3 and J = 9.

ä We apply stochastic mesh method.
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Numerical example

Variance reduction effect of the ML approach: the ratio of variances
(σ∗L)2/(σ∗0)2 for L = 0,1,2.
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Outlook

ä The complexity of the fast approximation methods can be rather
large (> ε−2).

ä The margin parameter α plays a crucial role in the complexity
analysis.

ä The complexity of the fast approximation methods can be
significantly reduced using the proposed multilevel algorithm
(sometimes up to the order ε−1).
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Open questions

ä Are there other alternative approaches to reduce a complexity ?

ä Is a further reduction of complexity possible ?

ä What happens if g1, . . . ,gL are not Lipschitz ?
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