LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ambit processes in energy markets

Fred Espen Benth

Centre of Mathematics for Applications (CMA) University of Oslo, Norway In collaboration with Ole E. Barndorff-Nielsen and Almut Veraart

Seminar, IHP Paris, May 13, 2011

1. Brief introduction to electricity markets as the prime example of energy markets

- 2. Lévy semi-stationary (LSS) models for power spot prices
- 3. Empirical example from the EEX
- 4. Derivation of forward prices leading to ambit processes

Power	markets
0000	0

LSS models

Empirical example: EE> 0000000000 Forward pricing

Ambit processes and forwards

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Power markets	LSS models	Empirical example: EEX	Fo
0000	00000	000000000	00

Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Typically, power markets organize trade in

- Hourly spot electricity, next-day delivery
- Forward and futures contracts on the spot
- European options on forwards
- Examples: Powernext (EPEX), EEX, NordPool in Nordic region

LSS models

Empirical example: EEX 000000000 Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The spot market

- An hourly market with physical delivery of electricity
- Participants hand in bids before noon the day ahead
 - Volume and price bids for each of the 24 hours next day
 - Maximum amount of bids within technical volume and price limits
- The exchange creates demand and production curves for each hour of the next day

Power markets LSS 00000 000	6 models En 000 00	npirical example: EEX	Forward 000000	oricing A 0000 d	Ambit proc
--------------------------------	-----------------------	-----------------------	---------------------	---------------------	------------

- The spot price is the equilibrium
 - Price for delivery of electricity at a specific hour next day
 - The *daily* spot price is the average of the 24 hourly prices
- Reference price for the forward market
- Historical spot price at NordPool from the beginning in 1992 (NOK/MWh)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

LSS models

Empirical example: EEX

Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The forward and futures market

- Contracts with "delivery" of electricity over a period
 - Financially settled: The money-equivalent of receiving electricity is paid to the buyer
 - The reference is the hourly system price in the delivery period
- Delivery periods: next day, week, month, quarter, year
- Base and peak load contracts
- European call and put options on these forwards

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards 00000000000000

Lévy semi-stationary models of power spot prices

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

LSS models

Empirical example: EEX 000000000 Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical power spot models

• Lucia-Schwartz model for (log-) spot price

 $S(t) = \Lambda(t) + X(t) + Y(t)$

- Λ(t) seasonality function
- X(t) short-term variations (stationary)
- Y(t) long-term non-stationary variations

 $dX(t) = -\alpha X(t) dt + \sigma dB(t) \quad dY(t) = \mu dt + \eta dW(t)$

LSS models

Empirical example: EEX 000000000 Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Lévy process driving the stationary X(t)
 - Cartea and Figueroa
- Multi-factor Lévy driven OU-processes, separating spike and "normal" variations
 - B., Kallsen and Meyer-Brandis
- CARMA-model driven by alpha-stable processes
 - Klüppelberg et al.
- For these models

$$X(t) = X(0)g(t) + \int_0^t g(t-s) \, dL(s)$$

• g is a known function:

$$g(t) = \exp(-\alpha t)$$
, or $g(t) = \mathbf{b}' \exp(A(t-s))\mathbf{e}_{p}$

LSS models

empirical example: EEX

Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lévy semi-stationary processes

LSS process:

$$Z(t) = \mu + \int_{-\infty}^t g(t-s)\sigma(s-) \, dL(s) + \int_{-\infty}^t q(t-s)\eta(s) \, ds$$

- μ constant, g, q non-negative deterministic functions, g(t) = q(t) = 0 for t ≤ 0
- *L* two-sided Lévy process
- σ, η cadlag processes independent of L
- Integrability assumptions on integrands assumed

Power markets 00000	LSS models 0000●	Empirical example: EEX	Forward pricing	Ambit processes and forwards

- For σ, η stationary, Z is stationary
- Note that Z is generalizing all the models discussed above (in stationarity)
 - But provides a rich class of new models as well....
- We focus on models with q = 0.

$$Z(t) = \mu + \int_{-\infty}^{t} g(t-s)\sigma(s-) \, dL(s)$$

Power	markets
0000	0

LSS models

Empirical example: EEX •00000000 Forward pricing

Ambit processes and forwards

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Empirical example: EEX

Power markets 00000	LSS models 00000	Empirical example: EEX 000000000	Forward pricing	Ambit processes and forwards

- Daily peak load spot prices from EEX ranging from 01.01.2002 till 21.10.2008. In total 1775 observations
- Goal: find suitable g, σ and L fitting *de-seasonalized* data

・ロト ・ 一 ト ・ 日 ト ・ 日

Power markets	LSS models	Empirical example: EEX	Forward pricing
00000	00000	00000000	000000000

Ambit processes and forwards

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Spot model

$$S(t) = \Lambda(t) \times Z(t)$$

• Seasonal function

$$\ln \Lambda(t) = \beta_0 + \beta_1 t + \beta_2 \cos\left(\frac{\tau_1 + 2\pi t}{261}\right) + \beta_3 \cos\left(\frac{\tau_2 + 2\pi t}{5}\right)$$

• Fitting to (log-)prices by least squares

Power markets	LSS models	Empirical example: EEX	Forward pricing	Ambit processes and forwards
00000	00000	000000000	000000000	0000000000000

• The sample mean is approximately 1, and we substract it to end up with a model

$$\frac{S(t)}{\Lambda(t)} - 1 = \int_{-\infty}^{t} g(t-s)\sigma(s-) dL(s) := X(t)$$

• Autocorrelation function (ACF) of X(t)

$$\operatorname{Corr}(X(t), X(t+h)) = \frac{\int_0^\infty g(x+h)g(x) \, dx}{\int_0^\infty g^2(x) \, dx}$$

(日) (日) (日) (日) (日) (日) (日) (日)

• Follows from an assumption of L having mean zero

Power markets	LSS models	Empirical example: EEX	Forward pricing	Ambit processes and forward
00000	00000	000000000	000000000	000000000000000000

• Propose g to be a sum of two exponential functions

$$g(x) = w \exp(-\alpha_1 x) + (1 - w) \exp(-\alpha_2 x)$$
 $0 < w < 1, \alpha_i > 0$

• ACF:

 $\operatorname{Corr}(X(t), X(t+h)) = w^* \exp(-\alpha_1 h) + (1-w^*) \exp(-\alpha_2 h)$

(日) (日) (日) (日) (日) (日) (日) (日)

• Note: same ACF as in a 2-factor OU-processes

Power markets 00000	LSS models	Empirical example: EEX	Forward pricing	Ambit processes and forwards

- Fitted ACF by a sum of two exponentials
- Note the fast decay for short lags, slow for longer lags

・ロト ・ 理 ・ ・ ヨ ・ ・

э

Power markets	LSS models	Empirical example: EEX	Forward pricing	Ambit processes and forwards
00000	00000	0000000000	000000000	0000000000000

• Signs of stochastic volatility in squared return data

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Power markets 00000	LSS models 00000	Empirical example: EEX	Forward pricing	Ambit processes and forwards

• Returns data nicely fitted by the normal inverse Gaussian (NIG) distribution

・ロト ・個ト ・モト ・モト

E 990

Power markets	LSS models 00000	Empirical example: EEX	Forward pricing	Ambit processes and forwards

- Two possible models:
 - 1. No stochastic volatility, and choose L to be NIG
 - 2. Model $\sigma(t)$ as an OU-process with inverse Gaussian stationary distribution and L = B

- 2nd choice known as the BNS-stochastic volatility model
- Note that we have a *one*-factor model, explaining the ACF function by a function g
 - ...rather than a mixture of two OU-processes

LSS models

Empirical example: EEX 000000000

Forward pricing

Ambit processes and forwards

Some remarks

- Model under stationarity:
- Today's spot price S(t) is an *observation* from the model
 - We do not condition on that the dynamics is equal to the observation today
 - Hence, all historical prices are treated equivalently as observations
- S(t) (or rather Z(t)) is in general *not* a semimartingale
 - It is if g(0) is well-defined and g being differentiable
 - The spot is not financially tradeable, so no "arbitrage-problems" with these models

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

Forward pricing

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards 00000000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Suppose log-price model for spot, i.e.,

 $S(t) = \Lambda(t) \exp(Z(t))$

• Z(t) BSS model

$$Z(t) = \int_{-\infty}^{t} g(t-s)\sigma(s) \, dB(s)$$

• LSS volatility model (U being a subordinator)

$$\sigma^2(t) = \int_{-\infty}^t h(t-s) \, dU(s)$$

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

 Forward price F(t, T) at time t ≤ T for a contract delivering at time T is

 $F(t,T) = \mathbb{E}_Q\left[S(T) \,|\, \mathcal{F}_t\right]$

- Q a pricing measure, in general any $Q \sim P$
- Introduce Q by Girsanov on B, unchanged σ : for θ a deterministic function,

$$dB(t) = dW(t) + \frac{\theta(t)}{\sigma(t)} dt$$

• σ intepreted as volatility, and thus $\sigma>0$

Power markets	LSS models 00000	Empirical example: EEX	Forward pricing	Ambit processes and forwards

• Recalling σ independent of B, double conditioning

$$F(t, T) = \Lambda(T)\Theta(t, T)$$

$$\times \exp\left(\int_{-\infty}^{t} g(T-s)\sigma(s) \, dW(s)\right)$$

$$\times \exp\left(\frac{1}{2}\int_{-\infty}^{t}\int_{t}^{T} g^{2}(T-v)h(v-s) \, dv \, dU(s)\right)$$

Θ a function involving θ, g, h and the log-moment generating function of U(1).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

Some properties of the forward price

• Forward price is *not* explicitly dependent on spot:

$$\mathsf{n} F(t,T) \sim \int_{-\infty}^{t} g(T-s)\sigma(s) \, dW(s) + ...$$

 $\mathsf{ln} S(t) \sim \int_{-\infty}^{t} g(t-s)\sigma(s) \, dW(s) + ...$

- But, forward and spot will be dependent/correlated
- Can represent the (log-)forward as a regression on the (log-)spot
 - Very unlike forward prices for "all" other one-factor spot models
 - There forward prices are explicit functions of the spot

• For stationary (mean reverting OU) models, the forward prices are constant in the long end: for time-to-maturity T - t large,

 $F(t, T) \sim \text{const}$

- But market prices are not constant
- In our model, one can obtain random forward prices in the long end by choosing g "non-stationary"

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

• To be more specific, we consider Volterra model for the spot

$$g(t-s) \longrightarrow g(t,s) := g_1(t)g_2(s)$$

- All results on forward remain the same, with g(t s) substituted by g₁(t)g₂(s)
- Suppose constant volatility and $g_1(T) o g_2(\infty) > 0$ when $T o \infty$,

 $\lim_{T \to \infty} \ln F(t, T) / \Lambda(T) \Theta(t, T) = (\ln S(t) - \ln \Lambda(t)) \frac{g_1(\infty)}{g_1(t)}$

• Conclusion: forward prices vary as the spot in the long end

LSS models

mpirical example: EEX

Forward pricing

Ambit processes and forwards

Affine structure of the forward

Theorem

Forward price is affine in Z(t) and $\sigma^2(t)$ if and only if $g(t,s) = g_1(t)g_2(s)$ and $h(t,s) = h_1(t)h_2(s)$

- Requires some mild differentiability assumption on g_1 and h_1
- Proof similar to classical arguments for forward rate models in fixed-income theory (see Carverhill)

Power markets 00000	LSS models 00000	Empirical example: EEX 0000000000	Forward pricing	Ambit processes and forwards

- A non-example: the Bjerksund-model
- Choose constant volatility and g(x) = a/x + b
 - Steep increase in ACF close to maturity
- Forward is not affine

(日)、

- 3

LSS models

Empirical example: EEX

Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Forward price dynamics

• Dynamics of F(t, T)

$$\frac{dF(t,T)}{F(t-,T)} = g(T,t)\sigma(t) \, dW(t) + \frac{1}{2} \int_t^T g^2(T,s)h(s,t) \, ds \, d\widetilde{U}(t)$$

•
$$d\widetilde{U}(t) = dU(t) - \frac{d}{dx}\phi_U(x)|_{x=0} dt$$

- Theoretical implication: spot has continuous paths, while forward has jumps from volatility
- Note the "Samuelson effect" in the volatility of the forward price

LSS models

Empirical example: EE> ୦୦୦୦୦୦୦୦୦ Forward pricing

Ambit processes and forwards •000000000000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Ambit processes and forward price modelling

LSS models

Empirical example: EEX 000000000 Forward pricing

Ambit processes and forwards

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition of ambit process

$$Y(t,x) = \int_{-\infty}^{t} \int_{\mathbb{R}_{+}} k(t-s,x,y) \sigma(s,y) L(ds,dy)$$

- L is a Lévy basis
- k non-negative deterministic function, k(u, x, y) = 0 for u < 0.
- Stochastic volatility process σ independent of L, stationary

- L is a Lévy basis on \mathbb{R}^d if
 - 1. the law of L(A) is infinitely divisible for all bounded sets A
 - 2. if $A \cap B = \emptyset$, then L(A) and L(B) are independent
 - 3. if A_1, A_2, \ldots are disjoint bounded sets, then

$$L(\cup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}L(A_i),a.s$$

We restrict to zero-mean, and square integrable Lévy bases

Power markets 00000	LSS models 00000	Empirical example: EEX 0000000000	Forward pricing	Ambit processes and forwards

- Stochastic integration in ambit process: use the Walsh-definition
 - Extension of Itô integration theory to temporal-spatial setting

- In time: integration "as usual"
- In space: exploit independence and additivity properties
- Isometry by square-integrability hypothesis
- Suppose k and σ integrable
 - Essentially square-integrability in time and space

LSS models

Empirical example: EEX 000000000 Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Forward modelling by ambit processes

• Extension of the HJM approach

- by direct modelling rather than as the solution of some dynamic equation
- Simple arithmetic model could be (in the risk-neutral setting)

$$F(t,x) = \int_{-\infty}^{t} \int_{0}^{\infty} k(t-s,x,y)\sigma(s,y)L(dy,ds)$$

• x is "time-to-maturity"

LSS models 00000 Empirical example: EEX 000000000 Forward pricing

Ambit processes and forwards

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Martingale condition

- Forwards are tradeable
- $t \mapsto F(t, T t)$ must be a martingale

Theorem F(t, T - t) is a martingale if and only if

$$k(t-s, T-t, y) = \widetilde{k}(s, T, y)$$

Example: exponential damping function (motivated by OU spot models)

$$k(u, x, y) = \exp\left(-\alpha(u + x + y)\right)$$

• Satisfies the martingale condition

$$k(t-s, T-t, y) = \exp\left(-\alpha(y+T-s)\right) =: \widetilde{k}(s, T, y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Power markets	LSS models	Empirical example: EEX	Forward pricing	Ambit processes and forwards

• Another example: the Musiela SPDE specification

- L = W, Wiener case for simplicity
- No spatial dependency in W

$$df(t,x) = \frac{\partial f(t,x)}{\partial x} dt + h(t,x) dW(t)$$

Solution of the SPDE

$$f(t,x) = f_0(x+t) + \int_0^t h(s,x+(t-s)) \, dW(s)$$

• Note: forward price f(t, x) is an ambit process

Power markets	LSS models 00000	Empirical example: EEX	Forward pricing	Ambit processes and forwards
---------------	---------------------	------------------------	-----------------	------------------------------

• Letting
$$x = T - t$$
,

$$f(t, T-t) = f_0(T) + \int_0^t h(s, T-s) \, dW(s)$$

◆□ > < @ > < E > < E > E のQ @

• Martingale condition is satisfied

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

- Simulation example: Forward prices in Musiela parametrization f(t, x)
- Spot-implied model vs. HJM model
- Parameters taken from EEX study
 - Random field generated as conditional Gaussian field, with variance given by inverse Gaussian
 - Exponential spatial correlation

イロト イポト イヨト イヨト

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions

• Used LSS processes to model spot prices of energy

- General class, encompassing existing models
- Provides a flexible framework for modelling
- Analytically tractable
- Model "in stationarity"
- Empirical example on EEX data
- Derivation of forward prices
 - Assumed "non-stationary" Volterra form of kernel
 - Classified affine structures
 - · Long-term behaviour of forward prices analysed

Power markets	LSS models 00000	Empirical example: EEX 0000000000	Forward pricing	Ambit processes and forwards
---------------	---------------------	--------------------------------------	-----------------	------------------------------

• Direct modelling of forward prices using ambit processes

- An explicit form of HJM modelling
- Derived martingale condition
- Future work
 - Empirical studies of forward prices
 - Deeper investigations into stochastic volatility in spots and forwards

• Simulation and estimation of ambit processes

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

(日) (同) (三) (三) (三) (○) (○)

References

- Barndorff-Nielsen, Benth and Veraart (2010). Modelling energy spot prices by Lévy semistationary processes. Preprint, CREATES, University of Aarhus.
- Barndorff-Nielsen, Benth and Veraart (2010). Modelling electricity forwar dmarkets by ambit fields. Preprint, CREATES, University of Aarhus.
- Benth, Kallsen and Meyer-Brandis (2007). A non-Gaussian Ornstein-Uhlenbeck process for electricity spot price modelling and derivatives pricing. Appl. Math. Finance 14, 153-169.
- Benth, Saltyte Benth and Koekebakker (2008). Stochastic Modelling of Electricity and Related Markets, World Scientific
- Bernhardt, Kluppelberg and Meyer-Brandis (2008). Estimating high quantiles for electricity prices by stable linear models. J. Energy Markets 1, 3–19.
- Bjerksund, Rasmussen and Stensland (2000). Valuation and risk management in the Nordic electricity market. Preprint, Norwegian School of Economics and Business, Bergen.
- Cartea and Figueroa (2005). Pricing in electricity markets: a mean reverting jump-diffusion model with seasonality. Appl. Math. Finance 12, 313-335.
- Carverhill (2003). An affine model of long maturity forward rates, with predictable risk premium. Working
 paper, School of Business, Unversity of Hong Kong
- Lucia and Schwartz (2002). Electricity prices and power derivatives: evidence from the Nordic power exchange. Rev. Derivatives Research 5, 5-50.
- Walsh (1986). An Introduction to Stochastic Partial Differential Equations. Lecture Notes in Mathematics 1180, Ecole d'Eté de Probabilités de SaintFlour XIV 1984, Springer

Power	markets
0000	0

LSS models

Empirical example: EEX 0000000000 Forward pricing

Ambit processes and forwards

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Coordinates:

- fredb@math.uio.no
- folk.uio.no/fredb/
- www.cma.uio.no