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Overview

1. Brief introduction to electricity markets as the prime example
of energy markets

2. Lévy semi-stationary (LSS) models for power spot prices

3. Empirical example from the EEX

4. Derivation of forward prices leading to ambit processes
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Power markets
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• Typically, power markets organize trade in

• Hourly spot electricity, next-day delivery
• Forward and futures contracts on the spot
• European options on forwards

• Examples: Powernext (EPEX), EEX, NordPool in Nordic
region
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The spot market

• An hourly market with physical delivery of electricity

• Participants hand in bids before noon the day ahead

• Volume and price bids for each of the 24 hours next day
• Maximum amount of bids within technical volume and price

limits

• The exchange creates demand and production curves for each
hour of the next day
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• The spot price is the equilibrium
• Price for delivery of electricity at a specific hour next day
• The daily spot price is the average of the 24 hourly prices

• Reference price for the forward market

• Historical spot price at NordPool from the beginning in 1992
(NOK/MWh)
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The forward and futures market

• Contracts with “delivery” of electricity over a period

• Financially settled: The money-equivalent of receiving
electricity is paid to the buyer

• The reference is the hourly system price in the delivery period

• Delivery periods: next day, week, month, quarter, year

• Base and peak load contracts

• European call and put options on these forwards
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Lévy semi-stationary models of power spot prices
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Classical power spot models

• Lucia-Schwartz model for (log-) spot price

S(t) = Λ(t) + X (t) + Y (t)

• Λ(t) seasonality function
• X (t) short-term variations (stationary)
• Y (t) long-term non-stationary variations

dX (t) = −αX (t) dt + σ dB(t) dY (t) = µ dt + η dW (t)
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• Lévy process driving the stationary X (t)
• Cartea and Figueroa

• Multi-factor Lévy driven OU-processes, separating spike and
”normal” variations

• B., Kallsen and Meyer-Brandis

• CARMA-model driven by alpha-stable processes
• Klüppelberg et al.

• For these models

X (t) = X (0)g(t) +

∫ t

0
g(t − s) dL(s)

• g is a known function:

g(t) = exp(−αt) , or g(t) = b′ exp(A(t − s))ep
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Lévy semi-stationary processes

• LSS process:

Z (t) = µ+

∫ t

−∞
g(t − s)σ(s−) dL(s) +

∫ t

−∞
q(t − s)η(s) ds

• µ constant, g , q non-negative deterministic functions,
g(t) = q(t) = 0 for t ≤ 0

• L two-sided Lévy process
• σ, η cadlag processes independent of L

• Integrability assumptions on integrands assumed
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• For σ, η stationary, Z is stationary

• Note that Z is generalizing all the models discussed above (in
stationarity)

• But provides a rich class of new models as well....

• We focus on models with q = 0.

Z (t) = µ+

∫ t

−∞
g(t − s)σ(s−) dL(s)
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Empirical example: EEX
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• Daily peak load spot prices from EEX ranging from
01.01.2002 till 21.10.2008. In total 1775 observations

• Goal: find suitable g , σ and L fitting de-seasonalized data
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• Spot model
S(t) = Λ(t)× Z (t)

• Seasonal function

ln Λ(t) = β0 + β1t + β2 cos

(
τ1 + 2πt

261

)
+ β3 cos

(
τ2 + 2πt

5

)

• Fitting to (log-)prices by least squares
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• The sample mean is approximately 1, and we substract it to
end up with a model

S(t)

Λ(t)
− 1 =

∫ t

−∞
g(t − s)σ(s−) dL(s) := X (t)

• Autocorrelation function (ACF) of X (t)

Corr(X (t),X (t + h)) =

∫∞
0 g(x + h)g(x) dx∫∞

0 g 2(x) dx

• Follows from an assumption of L having mean zero



Power markets LSS models Empirical example: EEX Forward pricing Ambit processes and forwards

• Propose g to be a sum of two exponential functions

g(x) = w exp(−α1x)+(1−w) exp(−α2x) 0 < w < 1, αi > 0

• ACF:

Corr(X (t),X (t + h)) = w∗ exp(−α1h) + (1− w∗) exp(−α2h)

• Note: same ACF as in a 2-factor OU-processes
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• Fitted ACF by a sum of two exponentials

• Note the fast decay for short lags, slow for longer lags
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• Signs of stochastic volatility in squared return data
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• Returns data nicely fitted by the normal inverse Gaussian
(NIG) distribution
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• Two possible models:

1. No stochastic volatility, and choose L to be NIG
2. Model σ(t) as an OU-process with inverse Gaussian stationary

distribution and L = B

• 2nd choice known as the BNS-stochastic volatility model

• Note that we have a one-factor model, explaining the ACF
function by a function g

• ...rather than a mixture of two OU-processes
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Some remarks

• Model under stationarity:

• Today’s spot price S(t) is an observation from the model
• We do not condition on that the dynamics is equal to the

observation today
• Hence, all historical prices are treated equivalently as

observations

• S(t) (or rather Z (t)) is in general not a semimartingale
• It is if g(0) is well-defined and g being differentiable
• The spot is not financially tradeable, so no

”arbitrage-problems” with these models
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Forward pricing
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• Suppose log-price model for spot, i.e.,

S(t) = Λ(t) exp(Z (t))

• Z (t) BSS model

Z (t) =

∫ t

−∞
g(t − s)σ(s) dB(s)

• LSS volatility model (U being a subordinator)

σ2(t) =

∫ t

−∞
h(t − s) dU(s)
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• Forward price F (t,T ) at time t ≤ T for a contract delivering
at time T is

F (t,T ) = EQ [S(T ) | Ft ]

• Q a pricing measure, in general any Q ∼ P

• Introduce Q by Girsanov on B, unchanged σ: for θ a
deterministic function,

dB(t) = dW (t) +
θ(t)

σ(t)
dt

• σ intepreted as volatility, and thus σ > 0
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• Recalling σ independent of B, double conditioning

F (t,T ) = Λ(T )Θ(t,T )

× exp

(∫ t

−∞
g(T − s)σ(s) dW (s)

)
× exp

(
1

2

∫ t

−∞

∫ T

t
g 2(T − v)h(v − s) dv dU(s)

)

• Θ a function involving θ, g , h and the log-moment generating
function of U(1).
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Some properties of the forward price

• Forward price is not explicitly dependent on spot:

ln F (t,T ) ∼
∫ t

−∞
g(T − s)σ(s) dW (s) + ...

ln S(t) ∼
∫ t

−∞
g(t − s)σ(s) dW (s) + ...

• But, forward and spot will be dependent/correlated

• Can represent the (log-)forward as a regression on the
(log-)spot

• Very unlike forward prices for ”all” other one-factor spot
models

• There forward prices are explicit functions of the spot
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• For stationary (mean reverting OU) models, the forward prices
are constant in the long end: for time-to-maturity T − t large,

F (t,T ) ∼ const

• But market prices are not constant

• In our model, one can obtain random forward prices in the
long end by choosing g ”non-stationary”
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• To be more specific, we consider Volterra model for the spot

g(t − s) −→ g(t, s) := g1(t)g2(s)

• All results on forward remain the same, with g(t − s)
substituted by g1(t)g2(s)

• Suppose constant volatility and g1(T )→ g2(∞) > 0 when
T →∞,

lim
T→∞

ln F (t,T )/Λ(T )Θ(t,T ) = (ln S(t)− ln Λ(t))
g1(∞)

g1(t)

• Conclusion: forward prices vary as the spot in the long end
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Affine structure of the forward

Theorem
Forward price is affine in Z (t) and σ2(t) if and only if
g(t, s) = g1(t)g2(s) and h(t, s) = h1(t)h2(s)

• Requires some mild differentiability assumption on g1 and h1

• Proof similar to classical arguments for forward rate models in
fixed-income theory (see Carverhill)
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• A non-example: the Bjerksund-model

• Choose constant volatility and g(x) = a/x + b
• Steep increase in ACF close to maturity

• Forward is not affine
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Forward price dynamics

• Dynamics of F (t,T )

dF (t,T )

F (t−,T )
= g(T , t)σ(t) dW (t)+

1

2

∫ T

t
g 2(T , s)h(s, t) ds dŨ(t)

• dŨ(t) = dU(t)− d
dxφU(x)|x=0 dt

• Theoretical implication: spot has continuous paths, while
forward has jumps from volatility

• Note the ”Samuelson effect” in the volatility of the forward
price
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Ambit processes and forward price modelling
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Definition of ambit process

Y (t, x) =

∫ t

−∞

∫
R+

k(t − s, x , y)σ(s, y) L(ds, dy)

• L is a Lévy basis

• k non-negative deterministic function, k(u, x , y) = 0 for
u < 0.

• Stochastic volatility process σ independent of L, stationary
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• L is a Lévy basis on Rd if

1. the law of L(A) is infinitely divisible for all bounded sets A
2. if A ∩ B = ∅, then L(A) and L(B) are independent
3. if A1,A2, . . . are disjoint bounded sets, then

L(∪∞i=1Ai ) =
∞∑
i=1

L(Ai ) , a.s

• We restrict to zero-mean, and square integrable Lévy bases
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• Stochastic integration in ambit process: use the
Walsh-definition

• Extension of Itô integration theory to temporal-spatial setting
• In time: integration ”as usual”
• In space: exploit independence and additivity properties
• Isometry by square-integrability hypothesis

• Suppose k and σ integrable
• Essentially square-integrability in time and space
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Forward modelling by ambit processes

• Extension of the HJM approach
• by direct modelling rather than as the solution of some

dynamic equation

• Simple arithmetic model could be (in the risk-neutral setting)

F (t, x) =

∫ t

−∞

∫ ∞
0

k(t − s, x , y)σ(s, y)L(dy , ds)

• x is ”time-to-maturity”
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Martingale condition

• Forwards are tradeable

• t 7→ F (t,T − t) must be a martingale

Theorem
F (t,T − t) is a martingale if and only if

k(t − s,T − t, y) = k̃(s,T , y)
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• Example: exponential damping function (motivated by OU
spot models)

k(u, x , y) = exp (−α(u + x + y))

• Satisfies the martingale condition

k(t − s,T − t, y) = exp (−α(y + T − s)) =: k̃(s,T , y)
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• Another example: the Musiela SPDE specification
• L = W , Wiener case for simplicity
• No spatial dependency in W

df (t, x) =
∂f (t, x)

∂x
dt + h(t, x) dW (t)

• Solution of the SPDE

f (t, x) = f0(x + t) +

∫ t

0
h(s, x + (t − s)) dW (s)

• Note: forward price f (t, x) is an ambit process
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• Letting x = T − t,

f (t,T − t) = f0(T ) +

∫ t

0
h(s,T − s) dW (s)

• Martingale condition is satisfied
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• Simulation example: Forward prices in Musiela
parametrization f (t, x)

• Spot-implied model vs. HJM model

• Parameters taken from EEX study
• Random field generated as conditional Gaussian field, with

variance given by inverse Gaussian
• Exponential spatial correlation



Power markets LSS models Empirical example: EEX Forward pricing Ambit processes and forwards

Conclusions

• Used LSS processes to model spot prices of energy
• General class, encompassing existing models
• Provides a flexible framework for modelling
• Analytically tractable
• Model “in stationarity”

• Empirical example on EEX data

• Derivation of forward prices
• Assumed “non-stationary” Volterra form of kernel
• Classified affine structures
• Long-term behaviour of forward prices analysed
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• Direct modelling of forward prices using ambit processes
• An explicit form of HJM modelling
• Derived martingale condition

• Future work
• Empirical studies of forward prices
• Deeper investigations into stochastic volatility in spots and

forwards
• Simulation and estimation of ambit processes
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