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Abstract

We analyze the problem of optimal monopoly pricing in social net-
works where agents care about consumption or prices of their neigh-
bors. We characterize the relation between optimal prices and con-
sumers’ centrality in the social network. This relation depends on
the market structure (monopoly vs. oligopoly) and on the type of
externalities (consumption versus price). We identify two situations
where the monopolist does not discriminate across nodes in the net-
work (linear monopoly with consumption externalities and local mo-
nopolies with price externalities). We also analyze the robustness of
the analysis with respect to changes in demand, and the introduction
of bargaining between the monopolist and the consumer.
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1 Introduction

This paper analyzes the optimal pricing strategy of a monopoly in a social
network. Our objective is to understand how discriminatory prices reflect (or
not) the centrality of consumers in the social network. Marketing techniques
to discriminate among consumers based on their social connections have long
been in use. When selling new products or creating an installed base for
products with network externalities, it is not uncommon for firms to offer
“referral bonuses” – discounts or cash to consumers who bring new friends
into the network. In doing so, the firm rewards agents with a large number
of friends, and price discriminates according to the consumer’s number of
neighbors, or degree centrality. In a more systematic fashion, following MCI
in 1990, telecommunication companies have introduced ”friends and family
plans” as a way to discriminate among consumers based on their number of
friends and pattern of calls (Shi, 2003).

With the spectacular emergence of online social networks like Facebook,
Orkut and MySpace, new possibilities for large scale social network based
discriminatory pricing have emerged. Due to a combination of privacy and
technical reasons, this possibility has not yet been exploited, and most of
the monetization of online social networks stems from targeted advertising
using data on consumer characteristics rather than their social connections.
However, the discrepancy between the current revenue of Facebook (between
1.2$ and 2$ billion in 2010) and its value (82.9$ billion reported as of January
29, 2011)(Levy, 2011) suggests that new marketing opportunities based on
social network data will likely be exploited in the near future. In fact, the
agreement between Facebook and the group buying platform Groupon which
allows consumers to sign up on Groupon on their Facebook page points
in that direction. Groupon may exploit the social network of Facebook to
attract new customers, offering deals and coupons to consumers who bring in
new friends, thereby discriminating in favor of consumers with higher degree
centrality in the network.1

While the current social-network based price discrimination strategies
only make use of the consumer’s number of neighbors, it is very likely that
more detailed data on social networks will soon be used in pricing and mar-
keting strategies (Arthur et al. (2009), Hartline et al. (2008)). An important

1The drop in Facebook’s share prices following the initial public offering on May 18,
2012 casts a shadow on the future profitability of Facebook and suggests that the exploita-
tion of social networks in marketing may take longer than initially thought.
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issue is to understand whether the number of neighbors is always the relevant
measure of centrality that should be used for price discrimination. Even in
case where this characteristic is relevant, it is necessary to assess its actual
influence (positive or negative) on the prices that should be offered. In this
paper, we consider price discrimination based on the entire social network,
where each agent receives a price associated to her nodal characteristic. We
consider two channels through which social networks influence a consumer’s
demand. In the first model of local network externalities, consumers bene-
fit from the consumption of the same good by their direct neighbors. This
model captures situations where agents receive discounts if they call friends
who subscribe to the same network, share a common software with their
colleagues or co-authors, or need to reach a critical mass of consumers to
obtain a deal or launch a project. In the second model of aspiration based
reference price, consumers construct a reference price for the good based on
the price charged to their direct neighbors, and experience a positive utility if
the price they receive is below their reference price. This model is applicable
to situations where firms use discriminatory pricing that lacks transparency,
like airline pricing and negotiated pricing.

In both models, our objective is to understand which measure of centrality
is relevant to rank prices charged at different nodes. Are prices increasing or
decreasing in the number of neighbors that a consumer has? Is the structure
of the network at distance two (the number of neighbors of neighbors) a rel-
evant information for optimal monopoly pricing? When does the monopoly
charge uniform prices across nodes? To answer these questions, we consider
a linear model, where consumers pick a random valuation for the object ac-
cording to a uniform distribution. In the model of local network externalities,
a consumer’s utility is positively affected by the consumption of her direct
neighbors ; in the model of aspiration-based price reference, a consumer’s
utility is positively affected by the average price charged to her direct neigh-
bors. Using the analysis pioneered by Ballester, Calvó-Armengol and Zenou
(2006), we characterize the demand of every consumer as a function of her
centrality in the network. We then consider two different market structures:
one where a single monopoly serves all the consumers in the network and one
where oligopolistic firms control a fraction of the nodes in the network. 2

In the local network externalities model, we first obtain a network irrele-

2An example of an oligopoly where firms control a fraction of the nodes in the social
network is given by Apple and Microsoft. Both firms compete to establish exclusive
partnerships with universities. Researchers from two different universities may be forced
to use two different operating systems even though they interact and share files repeatedly.
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vance result: in the linear model, the monopoly optimally chooses a uniform
price in the network. This striking result can be explained as follows. There
are two countervailing effects of the centrality of a node on the optimal price.
On the one hand, a more central node generates more positive externalities
on its neighbors and hence should be subsidized (the classical effect by which
more central agents receive lower prices) ; on the other hand, more central
agents benefit more from the object, and have a higher valuation which can
be captured by the monopolist. In the linear model, these two effects are
exactly balanced, giving rise to a uniform pricing strategy. However, this
exact balance disappears as soon as one moves away from the linear model.
When costs are quadratic, the price at each node is proportional to the Katz-
Bonacich centrality. When influence is directed, so that the social network
is represented by a directed graph, prices are higher for nodes which receive
more influence than they provide. Finally, in an oligopolistic model, the
optimal price depends both on the node centrality and on the competition
structure in the node’s neighborhood. Higher prices are charged to more
central nodes whose neighbors are controlled by competitors.

In the aspiration-based price reference model, we obtain a second network
irrelevance result, this time when every node is served by a different firm.
This irrelevance result, which is robust to changes in the model, stems from
the following observation. If all other firms charge the optimal monopoly
price, a local monopoly cannot benefit from charging a different price. When
all nodes are served by a single monopolist, this reasoning fails as the mo-
nopolist may want to increase the price at some node in order to increase
demand at the neighboring nodes. For example, in a star, the monopoly has
an obvious incentive to charge a high price at the hub in order to increase
demand at peripheral nodes.

We finally discuss two extensions of the model. In the first extension, we
consider general demand schedules and analyze the robustness of our results.
In the second extension, we compute the consumer surplus accruing at each
node. This enables us to analyze the agent’s incentives to form links in the
social network and the formation of prices as a result of a bargaining process
between the monopoly and the consumer.

We now discuss briefly the related literature. The model of local network
externalities finds its origin in the seminal work of Farrell and Saloner (1985)
and Katz and Shapiro (1985) on network externalities. These early papers
eschew the ”network” dimension of network externalities and implicitly as-
sume that consumers are affected by the global consumption of all other
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consumers. Models of local network externalities which explicitly take into
account the graph theoretic structure of social networks have been proposed
by Jullien (2001), Sundarajan (2006), Saaskhilati (2007) and Banerji and
Dutta (2009). Jullien (2001) and Banerji and Dutta (2009) analyze com-
petition between two price-setting firms. While Banerji and Dutta (2009)
consider uniform prices, Jullien (2001) allows for discriminatory pricing at
different nodes, and provides partial results suggesting that firms set lower
prices at nodes with higher degree. Sundarajan (2006) studies monopoly
pricing in a model where consumers make a deterministic choice between
adopting the new product or not. Ghiglino and Goyal (2010) focus instead
on a model of conspicuous consumption, where agents compare their con-
sumption with that of their neighbors and suffer a negative consumption
externality. In the same linear model as the one we consider, they character-
ize the competitive equilibrium prices and allocations and show that identical
consumers located in asymmetric positions in the network choose to trade
and end up at different equilibrium allocations. Finally, in a work which is
independent from ours, Saaskhilati (2007) studies uniform monopoly pricing
on social networks. His main focus is not on discriminatory pricing but on
the relation between the network topology and the uniform price charged
by the monopoly, and he computes optimal prices and consumer surplus for
some specific network structures like symmetric networks and stars.

The study of optimal pricing and marketing strategies in social networks
has recently received attention in the computer science literature. Following
the work on influence maximization of Domingos and Richardson (2001) and
Kempe, Kleinberg and Tardos (2003) which aimed at identifying influential
agents in a network without any reference to price and revenue maximiza-
tion, recent work by Hartline et al. (2008) and Arthur et al. (2009) compute
optimal pricing strategies. They show that a simple two-price strategy (the
”Influence and Exploit Marketing”, where the seller chooses a set of con-
sumers to which the product is sold for free – or at a cashback ”referral
bonus” –) performs very well compared to the optimal marketing strategy
which is NP-hard to compute. The main difference between these approaches
and ours stem from the timing of purchases. Both Hartline et al. (2008) and
Arthur et al. (2009) consider sequential purchases where myopic consumers
base their consumption decision on the number of consumers who have al-
ready bought the product. We consider instead a simultaneous consumption
decision for all consumers in the network who are fully rational.

The model of aspiration based reference price has been studied in mar-
keting (Xia, Monroe and Cox (2004), Mazumdar et al. (2005)) along lines
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developed in social psychology. The theory of social comparison (see Suls and
Wheeler (2000) for a detailed account) posits that most outcomes (like prices
and salaries) are perceived in comparison to other agents’ outcomes, so that
prices are deemed fair or unfair in reference to prices paid by other consumers
in a similar situation. Hence, consumers construct reference prices based on
what their neighbors have been charged, and evaluate the price they receive
by comparison to this reference price.

The rest of the paper is organized as follows. We start by introducing
preliminary definitions and notations in Section 2. In section 3, we discuss
the model of local network externalities. Section 4 is devoted to the model
of aspiration based reference price. Section 5 contains a discussion of the
robustness of the analysis and an extension to bargaining over total surplus.
Section 6 concludes. Most proofs are relegated to the Appendix.

2 Preliminaries

In this Section, we introduce the basic notions on social networks and matrix
algebra which will be used in the analysis. The definitions and notations of
this preliminary section apply both to the models of consumption and price
externalities.

2.1 Social Networks

We consider a set N of consumers, i = 1, 2, ...n who are distributed along a
social network g with adjacency matrix G. For any pair of agents i, j, gij = 1
if there exists an edge between i and j, and gij = 0 otherwise. For most of
the analysis, we assume that the graph is undirected, gij = gji, so that G is
a symmetric matrix.

The vector G1 measures the number of edges at each node of the social
network. The degree of a node i is the number of edges at i, degi = (G1)i =∑

j gij. When the network is directed, we distinguish between the number of
nodes which point towards node i (the in-degree) and the number of nodes
to which i points (the out-degree). Formally, indegi = (1TG)Ti =

∑
j gji and

outdegi = (G1)i =
∑

j gij.
Consider a scalar α such that the matrix I − αG is invertible. The

Katz-Bonacich notion of network centrality (Katz (1953), Bonacich (1987))
is defined as:

b(G, α) = [I− αG]−11.
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In order to interpret this definition, we use the power series expansion
[I − αG]−1 =

∑∞
k=0 α

kGk, to rewrite bi =
∑

j

∑
k αkµ

k
ij, where µkij, the ij

entry of the matrix Gk, counts the number of paths of length k between i
and j. The Katz-Bonacich centrality thus measures the discounted number
of paths originating from any node in the social network.

2.2 Matrix Algebra

Let A be a square n×n matrix. The matrix A is a P-matrix if all its principal
minors are positive. The matrix A is a non-singular M-matrix if A = I−B
for a positive matrix B with largest eigenvalue ρ(B) < 1. The matrix A is
positive definite if xTAx > 0 for any vector x. The matrix A is strictly row
diagonally dominant if |aii| >

∑
j 6=i |aij| for all i = 1, 2, ..n.

By well-known results in matrix algebra, a matrix A is an M-matrix if
and only if it is a P-matrix and aij ≤ 0 for all i 6= j and a matrix A is a
P-matrix if and only if it is a symmetric positive definite matrix (Berman and
Plemmons (1994), Theorem 6.2.3 and Section 10.2). Furthermore, if aii > 0
for all i, and A is a strictly row diagonally dominant matrix, then it is a
P-matrix (Tsatsomeros (2002)).

For any matrix A, and any index set S of rows and columns, we let
AS denote the submatrix formed by the rows and columns in S. For any
vector x ∈ <n, we denote by xS the vector defined by xSi = xi for all i ∈ S
and xi = 0 for all i ∈ N \ S and by xS the subvector of x formed by the
components in S. For two vectors x and x′, we let x ≤ x′ denote the weak
vector order, where xi ≤ x′i for all i.

Finally, we recall that, for two matrices A and B of the same dimension,
the Hadamard product is defined by: C = A ◦ B where cij = aijbij. By
the Schur product theorem (Horn and Johnson (1985), Theorem 7.5.3), the
Hadamard product of two positive definite matrices is positive definite.

3 Local Network Externalities

3.1 The Model

As in Jullien (2001), Saaskhilati (2007) and Banerji and Dutta (2009), we
construct a model of network externalities where consumers only care about
the consumption of a subset of agents determined by an exogenous social
network. Each consumer i has a unit demand for the good, and draws an
intrinsic value θi from the uniform distribution F over [0, 1]. We suppose
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that intrinsic values are independently distributed. Consumers experience
local network externalities in the sense that their value for the good increases
by the constant value α > 0 whenever one of their neighbors consumes the
good. Finally, consumers have positive linear utility for money, so that the
utility of consumer i is expressed by:

Ui = θi − pi + α
∑
j

gij Pr[j buys the good ]. (1)

The timing of events is as follows: the monopoly first chooses a price
vector p = (p1, ..., pn). Each consumer learns her valuation θi and makes
her consumption decision at the interim stage, knowing pi and θi, but not
the valuations θ−i drawn by other consumers. Clearly, if a consumer of type
θi buys the good, so does any consumer of type θ′i > θi. Hence, consumer
i’s optimal purchasing decision is characterized by a threshold rule, θ̃i. As
other consumers also adopt a threshold consumption rule, we can compute
the threshold of consumer i using the following expression:

θ̃i = pi − α
∑
j

gij(1− F (θ̃j)). (2)

where (1−F (θ̃j)) denotes the probability that agent j draws a valuation above
the threshold θ̃j. Alternatively, if we let xi = 1 − F (θ̃i), we characterize a
system of interdependent demands:

xi =


0 if 1− pi + α

∑
j gijxj < 0

1 if − pi + α
∑

j gijxj > 0,

1− pi + α
∑

j gijxj otherwise
(3)

We now solve this system of interdependent demands in order to obtain
the demand of a consumer at node i as a function of the vector of prices,
p = (p1, ..., pn) charged at different nodes. This amounts to finding a vector
x ∈ [0, 1]n such that for each i ∈ {1, 2, .., n}, one of the following holds:

xi = 0, [(1− p)− (I− αG)x]i ≤ 0,

0 < xi < 1, [(1− p)− (I− αG)x]i = 0,

xi = 1, [(1− p)− (I− αG)x]i ≥ 0.

This problem is known as the bounded linear complementarity problem
and is the linear instance of the general mixed complementarity problems
discussed by Simsek, Ozdaglar and Acemoglu (2005). A well-known sufficient
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condition for the existence and uniqueness of a solution to the problem is that
the matrix (I−αG) be a P-matrix. (See also Ballester Calvó-Armengol and
Zenou (2006), Ballester and Calvó-Armengol (2010), and Bramoullé, Kranton
and d’Amours (2011).) In very recent work, Belhaj, Bramoullé and Deroian
(2012) show that, if pi < 1 for all i, the system of interdependent equations
has a unique solution, without any restriction on the matrix I−αG. However,
their proof does not extend to the case pi ≤ 1 for some i, which we allow
here.

Proposition 3.1 If αρ(G) < 1, for any vector of prices p = (p1, ..., pn),
there exists a unique set of demands satisfying equation (3). In this solution,
the set of consumers is partitioned into three sets S0, S1 and S = N \(S0∪S1)
such that:

xi =


0 if i ∈ S0

1 if i ∈ S1∑
j∈S aij,S(1− pj + α

∑
k∈S1

gjk) if i ∈ S
(4)

where aij,S is the ij entry of the matrix AS = [(I− αG)]−1
S .

Proposition 3.1 shows that, if the externality parameter α and the largest
eigenvalue of the adjacency matrix, ρ(G), are not too large, the interdepen-
dence between consumer demands at different points in the network results
in a unique system of demands. For an arbitrary price vector, p, as demands
must belong to the bounded interval [0, 1], the description of equilibrium de-
mands involves a partition of the set of nodes into (i) nodes with zero demand,
(ii) nodes where consumers buy with probability one and (iii) nodes where
consumers buy with a probability xi ∈ (0, 1). For consumers at these last
nodes, the coefficients of the demand system ∂xi

∂pj
= aij are exactly the entries

of the matrix [(I− αG)S]−1, which can be interpreted as the Katz-Bonacich
centrality of consumers in S.

3.2 Monopoly pricing

We now analyze the optimal price vector p chosen by a monopolist. We
first consider the baseline linear model, then discuss two variants: (i) one
where the monopoly faces a quadratic cost at each node, and (ii) one where
consumption externalities are directed.
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3.2.1 Optimal monopoly pricing

Suppose that a monopolist chooses the vector of prices p in order to maximize
profit. We assume that the monopoly produces each unit of the good at a
constant cost c < 1, so that the problem of the monopolist is given by:

max
p

Π = (p− c1)Tx(p).

As the system of demand is invertible by Proposition 3.1, we can equivalently
consider the problem where the monopolist chooses quantities,

max
x

Π = (p(x)− c1)Tx. (5)

It is easy to check3 that the monopolist always chooses interior values 0 ≤
xi ≤ 1 for which p(x) = 1 − (I − αG)x. We thus rewrite the profit of the
monopolist as:

Π = [(1− c)1− (I− αG)x]Tx,

and compute the gradient as

∇Π = (1− c)1− 2(I− αG)x.

Because the matrix (I−αG) is a symmetric P-matrix, it is positive definite,
and hence the Hessian matrix ∇2Π is negative semi-definite, so that the first-
order conditions are necessary and sufficient, and the optimal quantities of
the monopolist is characterized by:

x∗ =
1− c

2
(I− αG)−11.

with the corresponding optimal prices:

p∗ = 1− 1− c
2

(I− αG)(I− αG)−11,

=
1 + c

2
1.

Proposition 3.2 Let αρ(G) < 1. The pricing strategy of the monopoly is
to charge a uniform price p∗ = 1+c

2
at each node. Given this pricing strategy,

the expected demand of consumers are given by

x∗ =
1− c

2
(I− αG)−11

3The formal proof is in the Appendix.
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and are proportional to the Katz-Bonacich centrality.

The striking result of Proposition 3.2 is that the monopoly does not ex-
ploit differences in consumer’s centralities to charge discriminatory prices,
but chooses instead instead a uniform monopoly price at each node. She lets
demand adjust at each node in the network according to consumer’s central-
ities, with consumers with higher levels of Katz-Bonacich centrality having
a higher probability of purchasing the good.

The network irrelevance result of Proposition 3.2 is supported by the
following intuition. When choosing the price at node i, the monopoly bal-
ances two effects: a price increase at node i raises profit at that node, but
also reduces demand and profits at all other nodes in the network. This is
a trade-off between rasing the price at more central nodes to ”exploit” the
nodes centrality or lowering the price at more central nodes to maximize ”in-
fluence” on other consumers.4 In the linear model we analyze, this trade-off,
measured by a positive effect

∑
aij(1−pj) and a negative effect

∑
aji(c−pj),

is independent of a node’s centrality. Hence, the monopoly faces the same
trade-off at every node and optimally chooses a uniform pricing rule.

In order to assess the robustness of the network irrelevance result and
to study the trade-off between exploitation and influence at central nodes,
we consider two tractable variants of the basic model. In the first variant,
production costs are quadratic ; in the second variant, the social network is
directed.

3.2.2 Monopoly pricing with quadratic costs

Suppose that the production cost is quadratic at every node, ci(xi) = cx2
i . By

the same argument as in Proposition 3.2, the monopolist will always choose
interior quantities. The profit of the monopolist is thus given by:

Π = [1− ((1 + c)I− αG)x]Tx. (6)

and the gradient of profit is

∇Π = 1− 2((1 + c)I− αG)x. (7)

4This definition of ”influence and exploit” is different from the definition in the com-
puter science literature (Hartline et al. (2008) and Arthur et al. (2009)) where prices are
lower at more central nodes to maximize influence and higher at less central nodes which
are exploited.
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Clearly, as αρ(G) < 1, the matrix ((1+c)I−αG) is a symmetric P-matrix so
that the Hessian matrix ∇2Π is negative definite, and the optimal quantities
are given by the first order condition:

x∗ =
1

2
((1 + c)I− αG)−11,

resulting in optimal prices:

p∗ = 1− 1

2
(I− αG)((1 + c)I− αG)−11.

Proposition 3.3 Let αρ(G) < 1. In the model with quadratic costs, the
optimal pricing strategy of the monopoly is given by:

p∗ = 1− 1

2
(I− αG)((1 + c)I− αG)−11.

or

p∗ =
2c+ 1

2(1 + c)
1 +

1

2

∞∑
k=1

cαk

(1 + c)k+1
Gk.

Proposition 3.3 shows that, when costs are quadratic, prices are propor-
tional to the Katz-Bonacich centrality measure, and nodes which are more
central according to this measure will be charged higher prices. In order to
gain additional intuition, we take α to be small, and approximate the price
at node i by:

p∗i =
2c+ 1

2(1 + c)
+ α

c

2(1 + c)2
degi + α2 c

2(1 + c)3

∑
j

µ2
ij +O(α3),

showing that nodes with higher degree will be charged higher prices, and if
two nodes have the same degree, prices will be higher for the node which
has the most paths of length 2. This characterization is not surprising.
With quadratic costs, the monopolist has less incentives to increase quantities
at central nodes in order to influence neighboring consumers than in the
linear cost model. Hence, the trade-off between influence and exploitation is
resolved in favor of exploitation, and more central nodes are charged higher
prices.
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3.2.3 Monopoly pricing with directed influence

Suppose that the matrix of externalities G is not symmetric so that influences
in the social network are directed. This assumption enables us to consider
other types of social interactions. In the literature on networks, directed
graphs allow for instance to consider situations described as Royal family
types of social interactions (that is, where there exists a sub-set of agents
who are observed by everyone).

With an asymmetric matrix of externalities, the coefficient gij ∈ {0, 1} de-
notes the positive externality enjoyed by player i because of j’s consumption
of the good. As the derivation of the demand system x(p) does not rely on
the symmetry of the matrix G, we can still write the profit of the monopolist
as:

Π = [(1− c)1− (I− αG)x]Tx;

The gradient of the profit is given by

∇Π = (1− c)1− (2I− α(G + GT ))x.

If αρ(G + GT ) < 2, the matrix (2I − α(G + GT ) is a symmetric P-matrix,
which implies that the Hessian ∇2Π is negative definite, and the first order
condition is necessary and sufficient, resulting in optimal quantities

x∗ = (1− c)(2I− α(G + GT ))−11,

and equilibrium prices

p∗ = 1− (1− c)(I− αG)(2I− α(G + GT ))−11.

Proposition 3.4 Let αρ(G) < 1 and αρ(G + GT ) < 2. In the model with
directed influence, the optimal pricing strategy of the monopoly is given by:

p∗ = 1− (1− c)(I− αG)(2I− α(G + GT ))−11.

or

p∗ =
1 + c

2
1 +

1− c
2

∞∑
k=1

αk

2k
(G−GT )(G + GT )k−11.

Proposition 3.4 shows that whenever the matrix G is not symmetric (G 6=
GT ), optimal prices are not uniform across nodes, and prices depend on the
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difference between the two matrices, G − GT . When α is small, we can
compute an approximation of the price charged at node i as

pi =
1 + c

2
+
α

4
(1− c)(indegi − outdegi) +O(α2).

We thus observe that the price charged to node i depends on the difference
between the in-degree and out-degree. This difference reflects the difference
between the number of neighbors who influence agent i and the number
of neighbors that agent i influences. More influential agents, for whom this
difference is negative, face lower prices, reflecting the fact that the monopolist
reduces his price in order to increase the consumption of influential agents.
Agents who have more influential neighbors will be charged lower prices.
This result suggests that the monopolist should charge low prices to critics,
gurus and ”royal families” – agents who are likely to influence many other
agents, without being influenced themselves.

3.3 Oligopoly pricing

In this subsection, we suppose that K firms compete in the network. Each
firm k controls a subset of nodes Nk, and prices arise as an equilibrium of a
non-cooperative pricing game rather than as the optimal choice of a multi-
product monopolist. Let D be a square matrix which indicates whether two
nodes i and j are controlled by the same firm, with dij = 1 if and only if i
and j are controlled by the same firm, and dij = 0 otherwise.

As a first step in the analysis, we show that the solution to the demand
system (3) is monotonic in prices. In order to prove monotonicity, we assume
that I− αG satisfies strict row diagonal dominance, 1 > α

∑
j gij for all i, a

condition which is stronger than assuming that I − αG is a P-matrix.5 We
prove:

Lemma 3.5 Assume that I − αG satisfies strict row diagonal dominance.
Suppose that p′ ≥ p, and let x∗ (respectively, x∗

′
) be the solution to the

system of equations (3) for price p (respectively, price p′). Then x∗ ≥ x∗
′
.

When Lemma 3.5 holds, the demand vectors x are non-increasing in prices
p. This implies that firms will never choose prices which lead to zero demand,

5To the best of our knowledge, there does not exist any general monotonicity result for
the solutions of linear complementarity problems. Murty (1972) shows that an increase in
pi results in a decrease in xi, but his result does not extend to the entire vector x. Cottle
(1972) considers a different problem, and shows that, starting from any price vector p ≤ 1,
any move along a particular direction q results in a monotonic change in the solution x.
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as a decrease in any price results in a weak increase in demand at all nodes.
Hence, under monotonicity of demand, an oligopolistic firm will optimally
set prices so that demands are interior. The maximization problem of firm
k can thus be expressed as:

max
pN(k)

Πk = ((p− c1)N(k))T (I− αG)−1(1− p).

Computing the gradient of Πk with respect to pN(k),

∇Πk = ((I− αG)−1(1− p))N(k) − ((D ◦ (I− αG)−1)(p− c1))N(k),

And the Hessian is given by:

∇2Πk = −2((I− αG)−1 + D ◦ (I− αG)−1)N(k).

We prove in the Appendix that the Hessian is negative definite so that the
best response function of firm k is given by the condition:

p∗N(k) = ((I−αG)−1+D◦(I−αG)−1)−1((I−αG)−11+c(D◦(I−αG)−1)1)N(k)

(8)
and the Nash equilibrium of the pricing game is characterized by

p∗ = ((I−αG)−1 +D◦(I−αG)−1)−1((I−αG)−11+c(D◦(I−αG)−1)1) (9)

Equation (9)gives an exact characterization of the equilibrium prices, but
involves a complex transformation of the adjacency matrix G, with two ma-
trix inversions. In order to gain intuition on the relation between prices and
the centrality of nodes in the social network, we compute an approximation
formula which is valid for low values of the externalities parameter α.

Proposition 3.6 Suppose that the matrix I − αG satisfies strict row diag-
onal dominance. The oligopolistic pricing game admits a unique equilibrium
characterized by:

p∗ = ((I− αG)−1 + D ◦ (I− αG)−1)−1((I− αG)−11 + c(D ◦ (I− αG)−1)1)

In addition, there exists α such that, for all α ≤ α,

p =
1 + c

2
1 +

α

4
(G−D ◦G)1

+
α2

8
(G2 − (D ◦G)G + (D ◦G)2 −D ◦G2)1 +O(α3).
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Proposition 3.6 describes equilibrium prices for all possible market struc-
tures on the social network. If a single monopolist serves all nodes, the
matrix D is the identity matrix for the Hadamard product, and prices are
uniform. If every node is served by a different firm, the matrix D is the
identity matrix, and D ◦G = [0]. Furthermore, the diagonal entries of G2

are the degrees of the nodes, so that (D◦G2)1 = G1. Hence, in that special
case, the approximation formula reduces to

p∗ = c1 +
1− c

2
1 + α

1− c
4

G1 + α2 1− c
8

(G21−G1) +O(α3).

We can also express the approximation formula at every node i:

pi =
1 + c

2
+
α

4
(degi −

∑
j|dij=1

gij) +O(α2).

This formula shows that prices are high for nodes with high degree and whose
neighbors are served by other firms, and low for nodes with low degree and
whose neighbors are served by the same firm. In other words, firms have
an incentive to reduce the prices at nodes which are surrounded by nodes
that they control in order to internalize the consumption externalities. They
have instead an incentive to increase prices at nodes which are surrounded by
nodes controlled by their competitors. In order to judge the accuracy of the
approximation formula, we ran a sensitivity analysis, by generating random
networks and computing, for each network, the threshold value of α for which
the ranking of equilibrium prices in our approximation coincides with the
exact ranking of equilibrium prices for local monopolies when D = I.6 The
results are given in the following table, which lists for different numbers of
agents (n = 6, 7, 8, 9, 10, 15 and 20), the minimal, maximal and mean values
of the threshold value of α over 1000 randomly generated networks.

n 6 7 8 9 10 15 20
αmin 0.19 0.14 0.01 0.01 0.005 0.01 0.01
αmax 1 1 0.38 0.38 0.305 0.15 0.11
αmean 0.301 0.248 0.213 0.188 0.160 0.108 0.082

Table 1: Simulations for price rankings

6We are immensely grateful to Sebastian Bervoets who wrote the computer program
and ran the simulations.
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As expected, the threshold value of α decreases with the number of agents,
but remains surprisingly high, showing that the approximation is reasonably
accurate in order to compare equilibrium prices charged at different nodes.

4 Aspiration Based Reference Price

4.1 The model

We now consider a model where externalities do not result from consumption
but from prices. Following the literature on social comparisons, we assume
that agents compare the price they receive with the prices received by their
neighbors, and enjoy positive utility if they receive a lower price than the
prices charged to other consumers in their neighborhood. We assume that
utilities are defined over the average price charged to a consumer’s neighbor:

Ui = θi − pi + α
1

di

∑
j

gijpj. (10)

where θi is a taste parameter uniformly distributed on [0, 1]. Prices are as-
sumed to be bounded, 0 ≤ pi ≤ p for all i. As in the case of local network
externalities, prices are announced before consumers learn their random val-
uation, and a consumer located at node i buys the good if and only if

θi ≥ pi − α
1

di

∑
j

gijpj. (11)

Notice that in the model of aspiration based reference price, a consumer’s
decision is independent of the consumption choices of other consumers, so
agents do not need to learn the valuations of their neighbors. Furthermore,
as opposed to the case of consumption externalities, we do not need to invert
the demands to obtain the system of demands as a function of the price
vector. Instead, the demand at node i is directly given by:

xi =


0 if 1− pi + α

di

∑
j gijpj < 0,

1 if 1− pi + α
di

∑
j gijpj > 1,

1− pi + α
di

∑
j gijpj otherwise

We denote by H the row-stochastic matrix with typical element hij =
gij
di

.
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4.2 Monopoly pricing

We compute the optimal prices p charged by a monopolist. Notice that in
the price externalities model, the monopolist does not necessarily have an
incentive to serve all nodes. It could instead choose to set very high prices
at some nodes, resulting in no sale at these nodes but increasing the profit
made at neighboring nodes. We do not believe that this phenomenon is likely
to happen and assume instead that the monopolist always has an incentive
to sell the good and that the following sufficient condition holds:

(1− c)2

2
≥ α

∑
j

gij
1

degj
p

To understand this formula, notice that the profit at any node is at least
equal to the profit a monopolist would make if that node were isolated,
(1−c)2

2
. On the other hand, the increase in profit that a price p can generate

is bounded above by the increase in profit on neighboring nodes when the
quantity sold is 1, α

∑
j gij

1

degj
p. If externalities are low enough so that the

sufficient condition holds, any firm will have an incentive to serve all nodes,
and demand will be given by

x = (1− (I− αH)p).

The maximization problem of the monopoly is given by

max
p

(p− c1)T (1− (I− αH)p),

resulting in a gradient:

∇Π = −(2I− α(H + HT ))p + 1 + c(I− αHT )1.

and a Hessian:

∇2Π = −(2I− α(H + HT )).

As long as αρ(H+HT ) < 2, the matrix (2I−α(H+HT )) is positive definite,
so that the optimal price is given by the first order condition

p∗ = (2I− α(H + HT ))−11 + c(2I− α(H + HT ))−1(I− αHT )1.

Summarizing,

18



Proposition 4.1 Suppose that αρ(H + HT ) < 2. The optimal pricing strat-
egy of the monopoly is to charge prices

p∗ = (2I− α(H + HT ))−11 + c(2I− α(H + HT ))−1(I− αHT )1.

Given this pricing strategy, the equilibrium demand of consumers at each
node is given by

x∗ = 1− (I− αH)p∗.

Proposition 4.1 characterizes the equilibrium prices as a function of the
Katz-Bonacich centrality with respect to the matrix H+HT

2
. When c = 0,

prices are proportional to this Katz-Bonacich centrality measure. Using the
power series formula for (2I−α(H+HT ))−1 and taking α small, we compute
the approximation:

pi =
1 + c

2
+

1 + c

4
α(1 +

∑
j

gij
1

degj
) +O(α2)

showing that prices are higher for nodes which have a large number of neigh-
bors with small degrees. In particular, when the social network is a star,
the monopolist has an incentive to charge a very high price to the hub of
the star in order to influence the valuations of the peripheral agents. This
ranking of prices in the star is very intuitive: by raising the price in the hub,
the monopoly is able to increase demand at all peripheral nodes, whereas
an increase in the price of the peripheral node only increases demand at the
hub. Hence the indirect positive effect of a price increase is higher for the hub
than for a peripheral agent, implying that the optimal price will be higher
at the hub.

4.3 Oligopoly pricing

We now suppose that K firms compete in the network, and that prices result
from a Nash equilibrium of the pricing game played by oligopolists in the
network. The maximization problem of firm k is given by:

max
pN(k)

Πk = ((p− c1)N(k))T (1− (I− αH)p).

Computing the gradient of πk with respect to pN(k),

∇Πk = (1− (I− αH)p))Nk
− ((I− αD ◦HT )(p− c1))Nk

,

And the Hessian is given by:
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∇2Πk = −(2I− α(H + D ◦HT )).

If αρ(H+D◦HT ) < 2, the Hessian is negative definite, and we can char-
acterize the Nash equilibrium of the pricing game by the system of equations:

p∗ = (2I− α(H + D ◦HT ))−11 + c(2I− α(H + D ◦HT ))−1(I− αD ◦HT )1.

Summarizing the analysis,

Proposition 4.2 Let αρ(H+D◦HT ) < 1
2
. In the model of aspiration based

reference price, there exists a unique equilibrium of the oligopoly pricing game
characterized by

p∗ = (2I− α(H + D ◦HT ))−11 + c(2I− α(H + D ◦HT ))−1(I− αD ◦HT )1.

Proposition 4.2 characterizes the equilibrium prices for all market struc-
tures and admits as special cases the single monopolist (when D is the unit
matrix of the Hadamard product) and the situation where every node is
served by a different firm (when D = I). In the latter case, D ◦HT = 0 and,
as H is row-stochastic, Hk1 = 1 for all k, so that

p∗ =
1 + c

2− α
1,

uniformly across nodes. Hence, even though all firms charge the same price,
social comparisons enable firms to extract a surplus above the monopoly sur-
plus, as the equilibrium price p∗ is above the monopoly price 1+c

2
. As opposed

to Proposition 3.2, this network irrelevance result is robust to changes in the
model. It is easy to check that, when all nodes are served by different firms,
given any demand function x(p), there exists an equilibrium where all firms
charge the uniform price

p∗ = argmaxp(p− c)x(p(1− α)).

Hence, when every node is served by a different local monopolist, there ex-
ists generally an equilibrium where all firms charge the same price so that
consumers do not experience any price externality.

5 Extensions

In this Section, we discuss two extensions of the model of monopoly pricing
with consumption externalities: optimal pricing with general distributions
(sub-section 5.1) and bargaining between the monopolist and consumers on
the division of the surplus (sub-section 5.2).
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5.1 General Distribution Functions

In the analysis so far, we have restricted attention to linear demands gener-
ated by a uniform distribution of valuations. This restriction is motivated by
tractability considerations. With linear demands, optimal prices are charac-
terized as the solution to a system of linear equations, allowing for a study of
the relation between prices and node centrality in arbitrary network topolo-
gies. Furthermore, with uniform distributions, the marginal effect of a change
in prices on demand is independent of the price level, eliminating the com-
plexity which would result from the curvature of the demand function. How-
ever, we are aware of the fact that the assumption of uniform distribution
is restrictive, and we discuss in this extension partial results on monopoly
pricing obtained under general distribution functions.

We consider a general distribution of valuations F over a compact interval
[θ, θ] ⊂ <+ with continuous and bounded density f . We assume that F

satisfies the familiar monotone hazard rate condition: f(θ)
1−F (θ)

is monotonically
increasing in θ. As a first step, we analyze conditions under which a unique
demand vector can be computed for each p. Consider the general mixed
complementarity problem

xi = θ, Ψi(θ) ≤ pi,

0 < xi < 1, Ψi(θ) = pi,

xi = θ, Ψi(θ) ≥ pi.

where Ψi(θ) ≡ θi + α
∑

j gij(1 − F (θj)). Following Simsek, Ozdaglar and
Acemoglu (2005), a sufficient condition for the existence and uniqueness of a
solution to the mixed complementarity problem is that the Jacobian matrix
JΨ be a P-matrix. A simple computation shows that

JΨ = I− αE ◦G,

where E is a square matrix with entry eij = f(θj). Hence, a sufficient
condition for the invertibility of the demand system is that αρ(E ◦G) < 1
for all θ. Using the same arguments as in the proof of Proposition 3.2, we can
show that the monopolist chooses prices which generate interior demands so
that we restrict attention to Ψi(θ) = pi for all θ, and write the optimization
problem of the monopolist as:

max
θ

Π(θ) = [1− F (θ)]T (Ψ(θ)− c1).
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Define the mapping Φ : <n → <n by:

Φi(θ) ≡ (1− F (θi))− f(θi)[θi + 2α
∑

gij(1− F (θj))− c].

Then

∇Π = Φ,

and the second order conditions are satisfied if the Jacobian matrix JΦ is neg-
ative semi-definite.7 The first order conditions Φ(θ) = 0 enable us to study
the robustness of Proposition 3.2 with respect to changes in the distribution.
Define the auxiliary function:

G(θ) ≡ 1− F (θ) + f(θ)θ

f(θ)
=

1− F (θ)

f(θ)
+ θ. (12)

When the distribution F (θ) is uniform, the function G(θ) is identically equal
to zero. In general, the discussion of the optimal pricing rules differs when
G(θ) is increasing and decreasing. We provide a partial comparison of optimal
prices, considering two nodes i and j such that the neighborhood of i is
contained in the neighborhood of j.

Proposition 5.1 Consider two nodes i and j such that gik = 1 ⇒ gjk = 1.
Then, for any distribution, θi ≥ θj. If G(θ) is decreasing, pj ≥ pi ; if G(θ)
is increasing, pi ≥ pj.

We illustrate Proposition 5.1 by considering a parameterized family of
distributions covering both increasing and decreasing functions G(θ).

Example 5.2 Suppose that n = 3 and g12 = g23 = 1, g13 = 0. Let F (θ) =
θ2(3β

2
− 1

2
) + 3

2
(1− β) for β, θ ∈ [0, 1]

Notice that, for β < 1
3
, the function G(θ) is increasing, for β > 1

3
, the

function G(θ) is decreasing, and for β = 1
3
, the distribution F is uniform.

Let p be the optimal price charged at the peripheral nodes 1 and 3 and q
the price charged at the central node 2. The following table lists the optimal
prices for different values of β with α = 0.1:

7There is no simple sufficient condition on the distribution function F (·) to guarantee
that the matrix JΦ is negative semi-definite. However, the condition is verified when F (·)
is a uniform distribution and the matrix of external effects satisfies αρ(G) < 1 and, by
continuity, the condition is also satisfied for any distribution which is close to the uniform
distribution.
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β 0 0.2 0.4 0.6 0.8 1.0
p 0.408 0.457 0.517 0.555 0.580 0.598
q 0.397 0.448 0.522 0.572 0.608 0.636

Table 2: Optimal prices for different distributions

Table 2 shows that, in accordance with proposition 5.1, the ranking of
prices at the central and peripheral node varies with β: when β < 1

3
and

G(θ) is increasing, the price charged at the peripheral nodes is higher than
at the central nodes. When β > 1

3
and G(θ) is decreasing, the price charged

at the central node is higher than at the peripheral nodes.

5.2 Bargaining

In the previous sections, we assumed that the monopoly supplier had all the
bargaining power. We now allow consumers at each node to exercise bargain-
ing power, and briefly discuss the outcome of a bargaining process between
the monopoly and the suppliers. In order to avoid complications due to asym-
metric information, we assume that bargaining takes place before consumers
learn their valuations. At that point, at every node, the consumer and the
monopoly bargain over the expected surplus, and agree on an unconditional
transfer of the good to the customer. The main difficulty in the bargaining
process arises from the externalities created by trade at neighboring nodes.

5.2.1 Nash bargaining

We first discuss a simple Nash bargaining problem. Suppose that the monop-
olist first selects a set of nodes M , for which bargaining surplus is positive,
and then bargains simultaneously with every consumer at every node in M .
If bargaining fails at some node i, the surplus is reduced at every node j in M
such that gij = 1. Assuming equal bargaining power between the monopoly
and the consumer, we thus compute disagreement points at node i as:

di = 0 for consumer i,

dm =
∑

j|j∈M,jneqi

umj − α
∑

j|j∈M gij

2
for the monopoly.
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where umj denotes the utility of the monopolist in the transaction with con-
sumer j, and the surplus to be divided between the two agents is8:

Si = E(θ)− c+ α
∑
j∈M

gij,

=
1

2
− c+ α

∑
j∈M

gij.

Proposition 5.3 In the Nash bargaining problem with equal bargaining power,
disagreement points (di, dm) and surplus Si, the utility of the consumer at
node i is given by:

ui =
1

4
− c

2
+

3

4
α
∑
j∈M

gij

and the profit of the monopolist as

Π =
∑
i∈M

1

4
− c

2
+

3

4
α
∑
j∈M

gij.

Proposition 5.3 characterizes the bargaining shares obtained by the mo-
nopolist and consumers at every node. As ui = E(θ) + α

∑
j∈M gij − pi, the

implicit price paid by a consumer i is given by

pi =
1

4
+
c

2
+

1

4
α
∑
j∈M

gij.

Hence, consumers with higher degree enjoy a larger surplus, and face a higher
implicit price. The intuition for this result is easy: consumers with a more
central position generate a higher surplus, which is shared among consumers
and the monopolist. The share accruing to the monopolist is directly related
to the price.

5.2.2 Alternating offer bargaining

Finally, we consider the outcome of a non-cooperative bargaining process
based on Rubinstein (1982)’s alternating-offers game. Suppose that the mo-
nopolist simultaneously bargains with all consumers according to the follow-
ing procedure. At time t = 1, the monopolist makes offers (x1

1, ..., x
1
n) to all

8Notice that this surplus is not necessarily positive. Hence, the monopolist first chooses
a set M of nodes for which this surplus is positive
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consumers. The consumers simultaneously decide whether to accept or reject.
If a subset S of consumers reject, one time period elapses, and consumers
in S simultaneously and independently make offers to the monopolist, y2

j for
all i ∈ S, etc. Consumers observe the outcome of the bargaining but not the
offers made to other consumers. All players discount the future at a constant
rate δ. A state s in the game at period t is a list of the consumers who are
still active at period t, and of the current offers. If it is the consumer’s time
to respond, (t is odd), they only know their individual offer xti. At even pe-
riods, the monopolist observes all offers ytj. A stationary perfect equilibrium
is a list of stationary strategies for the monopolist and the consumers such
that, at any period t, all agents act optimally.

Proposition 5.4 Let M be the set of consumers who have an expected pos-
itive surplus. The non-cooperative bargaining procedure admits a stationary
subgame perfect equilibrium where all consumers in M accept the monopoly’s
offer in the first period. In this equilibrium, at odd periods t, the monopolist
makes offers xti to every consumer i in M , and at even periods t, consumer
i in M makes an offer yti to the monopolist, where

xti = δ[δt(
1

2
− c+ α

∑
j∈M

gij)− yti ],

yti = δ[δt(
1

2
− c+ α

∑
j∈M

gij)− xti],

Proposition 5.4 shows that, in the Rubinstein bargaining game, there
exists a stationary perfect equilibrium where all consumers anticipate that
other consumers will accept the offer, and consumer i obtains a share of the
surplus given by:

ui =
δ

1 + δ
(
1

2
− c+ α

∑
j∈M

gij).

As δ goes to one, the expected utility of a consumer converges to

ui =
1

4
− c

2
+

1

2
α
∑
j∈M

gij

and, as ui = 1
2

+ α
∑

j∈M gij − pi, the implicit price paid by a consumer i is
given by

pi =
1

4
+
c

2
+

1

2
α
∑
j∈M

gij.
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so that consumers who are more central are again charged a higher price. This
result simply stems from the fact that the surplus generated by consumers
who are more central is higher, resulting in larger bargaining shares for the
monopolist and the consumer.

6 Conclusions

This paper contributes to an emerging literature which tries to understand
how a monopolist optimally discriminates in a social network according to
consumer’s centrality. As opposed to some recent contributions in computer
science, which focus on sequential consumption decisions among myopic con-
sumers, we consider simultaneous consumption choices among perfectly ra-
tional agents. We show that in a model of local network externalities where
consumers are positively affected by the consumption of their neighbors, a
single monopolist does not discriminate across the network. However, in vari-
ants of the model with quadratic costs and directed influence, the network
irrelevance result disappears, and optimal prices depend on the centrality of
consumers in the social network. With quadratic costs, more central agents
are charged a higher price. In directed networks, agents with more influence
are charged a lower price. When the network is served by different firms,
equilibrium prices also differ at different nodes. When consumers compare
the price they receive with the average price in their social neighborhood, a
single monopolist has an incentive to charge a higher price to a node which
has many neighbors of small degree, like the hub of a star. Local monopolies
do not internalize the price externalities and in equilibrium charge a uniform
price across the network.

The paper thus shows that an unregulated monopolist chooses to price
discriminate by trading off ”influence” and ”exploitation”. According to
the specific model, this trade-off either leads the monopolist to charge lower
prices at more central nodes in order to maximize influence over neighboring
nodes, or to charge higher prices at more central nodes in order to exploit
the higher valuation of more central consumers. Our study of bargaining
also suggests that, because more central consumers enjoy a larger valuation,
they should face higher prices in equilibrium. It is difficult to draw precise
recommendations for public intervention from the analysis. One immediate
conclusion from our model is that price discrimination in a model of local
network externalities is desirable, as it allows to increase the total surplus.
The exact shape of the socially optimal price discrimination strategy is not
easy to characterize and remains an open question for future research.
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Finally, we would like to mention two other open problems that deserve
further study. First, the study of endogenous formation of the social network
requires a detailed analysis of the marginal value of additional links that we
would like to undertake in future research. Second, as in any model of price
discrimination, consumers located at different nodes in the social network
end up paying different prices for the good, and could resell the good to one
another. The study of models of resale along social networks is obviously an
important area for future research.
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8 Proofs

Proof of Proposition 3.1: Simsek, Ozdaglar and Acemoglu (2005) show
that the linear instance of a mixed complementarity problem admits a unique
solution if the matrix (I−αG) is a P-matrix (Simsek, Ozdaglar and Acemoglu
(2005), Theorem 4).

By the definition in Berman and Plemmons (1984) (Chapter 6), if αρ(G) <
1, (I − αG) is a nonsingular M-matrix. Any non-singular M-matrix is a P-
matrix (Berman and Plemmons (1984), Theorem 6.2.3), so that the sufficient
condition of Simsek, Ozdaglar and Acemoglu (2005) is satisfied by I− αG.
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Once existence and uniqueness are obtained, the characterization of equi-
librium is easy. We partition the set of agents into agents for whom xi = 0,
for whom xi = 1 and for whom 0 < xi < 1. To characterize the interior val-
ues xi we focus attention on the agents in the index set S and compute the
S-dimensional square matrix (I− αG)S which is the restriction of (I− αG)
to the rows and columns in S. We also take into account the fact that all
agents in S1 have a demand of one, by writing the linear complementarity
problem of agents in S as:

(I− αG)SxS = uS,

where

u = 1− p+ αG1S1 .

The solution follows from standard arguments, as in Ballester and Calvó-
Armengol (2010), Theorem 2, p. 401.

Proof of Proposition 3.2:

Step 1: At the optimal price p∗, F(x∗) ≡ (1−p∗)−(I−αG)x∗ = 0. Suppose

first that there exists a node i such that Fi(x
∗) > 0 and x∗i = 1. As Fi is

continuous in pi, there exists ε > 0 such that Fi(x
∗, p∗i + ε) > 0, so that (x∗)

remains a solution to the bounded linear complementarity problem under the
new price vector p = (p∗i +ε, p∗j , j 6= i). The profit of the monopolist increases
from Π = (p∗ − c1)x∗ to Π′ =

∑
j 6=i(p

∗
j − c)x∗j + (p∗i + ε− c) = Π + ε > Π.

Next, suppose that there exists a node i such that Fi(x
∗) < 0 and x∗i =

0. We construct a new vector of prices p and show that the profit of the
monopolist is strictly higher under that new price vector. Consider first
agent i. Because Fi is a continuous strictly decreasing function of pi, and,
at pi = c, Fi = (1 − c) + α

∑
j gijx

∗
j > 0, there exists pi > c such that

1 > xi = 1− pi + α
∑

j gijx
∗
j > 0. Pick this price pi for agent i, and we will

construct prices pj for all other agents j 6= i, in such a way that x∗j remains
a solution to the bounded linear complementarity problem under the new
prices p.

Consider first a node j ∈ S0. Pick a price pj >> 1 so that 1 − pj +
α(

∑
k 6=i,j gjkx

∗
k + gkixi) < 0.

Second, consider a node j ∈ S1, keep the price pj = p∗j . Then,

1− pj + α(
∑
k 6=i,j

gjkx
∗
k + gkixi)) ≥ 1− pj + α

∑
k 6=i,j

gjkx
∗
k,

> 0.
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Finally, consider a node j ∈ S, define:

pj ≡ p∗j + αgjixi ≥ p∗j .

By construction,

1− pj + α(
∑
k 6=i,j

gjkx
∗
k + gkixi)) = 1− p∗j + α

∑
k 6=i,j

gjkx
∗
k,

= 0.

Hence, under the new price vector p, (xi, x
∗
j) is a solution to the mixed

complementarity problem. As the problem admits a unique solution, this
is in fact the unique solution to the problem. The profit of the monopolist
under the new price vector p is:

Π = (pi − c)xi +
∑
j∈S

(pj − c)x∗j +
∑
j∈S1

(pj − c),

>
∑
j∈S

(p∗j − c)x∗j +
∑
j∈S1

(p∗j − c),

= Π.

Step 2: The optimal price chosen by the monopolist is given by: p∗ = 1+c
2

1.
The proof of Step 2 can be found in the text.

Proof of Proposition 3.3: As a first step, we show that prices are chosen
so that demand are always interior. The only difference with the proof of
Proposition 3.2 stems from the case where Fi(x

∗) < 0 and x∗i = 0. Because
Fi is a continuous strictly decreasing function of pi, and, at pi = 0, Fi =
1 + α

∑
j gijx

∗
j > 0, there exists pi > 0, xi > 0 such that 1 > xi = 1 − pi +

α
∑

j gijx
∗
j > 0. Furthermore, for all ε > 0, xi < ε ⇒ pi > 1 − ε. Hence,

we can pick a price pi and a quantity xi so that pixi > cxi
2. Next define, as

in the proof of Proposition 3.2, prices at other nodes, pj, j 6= i so that the
quantities demanded remain constant, xj = x∗j . The rest of the argument
follows.

The computations leading to the formula

p∗ = 1− 1

2
(I− αG)((1 + c)I− αG)−11.
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are given in the text. For the approximation formula, expand the power
series

((1 + c)I− αG)−1 =
1

1 + c

∞∑
k=0

αk

(1 + c)k
Gk,

so that

1

2
(I− αG)((1 + c)I− αG)−1 =

1

2(1 + c)
(I−

∞∑
k=1

cαk

(1 + c)k
Gk).

yielding the desired formula.

Proof of Proposition 3.4: The proof is identical to the proof of Proposition
3.2 with the exception of the following step, which yields the power series
formula:

(I− αG)(2I− α(G + GT ))−1 =
1

2
(I− αG)

∞∑
k=0

αk

2k
(G + GT )k,

=
1

2
I +

1

2

∞∑
k=1

αk

2k
((G + GT )k −G(G + GT )k−1)

=
1

2
I +

1

2

∞∑
k=1

αk

2k
((GT −G)(G + GT )k−1)

yielding the desired formula.

Proof of Lemma 3.5 By Proposition 3.1, we know that the system of
equations (3) admits a unique solution under both prices p and p′. Now
partition the set of agents into S = {i|x∗i < x∗

′} and T = {i|x∗i ≥ x∗
′}. For

any i ∈ S, by definition of the bounded linear complementarity problem, we
must have:

(1− p′i)− x∗
′

i + α
∑
j 6=i

gijx
∗′
j ≥ (1− pi)− x∗i + α

∑
j 6=i

gijx
∗
j .

or

(pi − p′i)− (x∗
′

i − x∗i ) + α
∑
j 6=i

gij(x
∗′
j − x∗j) ≥ 0.

Now, for any j ∈ T , (x∗
′
j − x∗j) ≤ 0, so that
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(pi − p′i)− (x∗
′

i − x∗i ) + α
∑

j 6=i,j∈S

gij(x
∗′
j − x∗j) ≥ (pi − p′i)− (x∗

′

i − x∗i ) + α
∑
j 6=i

gij(x
∗′
j − x∗j),

≥ 0.

Summing up over all agents in S, we obtain:

(p− p′)TS1S + ((I− αG)S(x∗ − x∗
′
)TS1S ≥ 0, (13)

As (I− αG) satisfies strict row diagonal dominance, so do all principal sub-
matrices of (I − αG) and in particular the S × S submatrix of (I − αG)
restricted to the set S. Hence, for all positive vector xS, (I − αG)SxS ≥ 0
and (I− αG)SxS 6= 0. Hence,

((I− αG)S(x∗ − x
′∗)TS1S < 0.

Furthermore, by assumption, (p− p′)S1S ≤ 0, so that

(p− p′)TS1S + ((I− αG)S(x∗ − x∗
′
)TS1S < 0,

contradicting equation (13).

Proof of Proposition 3.6: Fix the prices pi for i ∈ N \N(k). We first show
that firm k optimally chooses prices such that Fi = 0 for all i ∈ N(k). If
Fi > 0 and x∗i = 1, as in the proof of Proposition 3.2, firm k can increase its
profit by raising the price of node i to p∗i + ε without changing the demands.

Next, suppose that there exists a node i such that Fi(x
∗) > 0. Then,

x∗i = 0. Because Fi is a continuous strictly decreasing function of pi, and,
at pi = c, Fi = (1 − c) + α

∑
j gijx

∗
j > 0, there exists pi > c such that

1 > xi = 1 − pi + α
∑

j gijx
∗
j > 0. Pick this price pi for node i, and let all

other prices remain fixed. By Lemma 3.5, when pi decreases, all solutions
x∗1, .., x

∗
n of the bounded linear complementarity problem weakly increase to

x1
∗, ...xn

∗.
The profit of firm k at this new price vector is given by
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Πk = (pi − c)xi∗ +
∑

j∈N(k),j 6=i

pjxj
∗,

>
∑

j∈N(k),j 6=i

pjxj
∗,

≥
∑

j∈N(k),j 6=i

pjx
∗
j ,

= Πk,

so that firm k has an incentive to deviate.

Next, define A ≡ (I − αG)−1. We first check that the Hessian ∇2Πk =
−2(A+D◦A)N(k) is negative definite. Recall that if (I−αG) satisfies strict
row diagonal dominance, it is a symmetric P-matrix and hence is positive
definite. As the inverse of a positive definite matrix is also positive definite,
A is positive definite. To show that the matrix D is positive semi-definite,
compute the leading principal minors |Dk|. Either there exist two columns
in Dk corresponding to two nodes controlled by the same firm, and then
the column vectors are identical and the determinant |Dk| is zero, or all
nodes are controlled by different firms in which case Dk is a diagonal matrix,
and the determinant is |Dk| = 1. By the Schur product theorem, D ◦ A
is positive semi-definite, and (A + D ◦ A) is positive definite, as the sum
of one positive definite and one positive semi-definite matrix. The principal
submatrix of a symmetric positive definite matrix is also positive definite,
so that (A + D ◦A)N(k) is positive definite, establishing that the Hessian is
negative definite.

We now compute the approximation formula. Recall that equilibrium
prices are characterized by the first order condition

[(A1 + c(D ◦A)1)− (A + D ◦A)p] = 0.

To compute an approximation formula for this system of equations, we go
through the following algebraic steps:
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(A + D ◦A)p = A1 + c(D ◦A)1,

(A + D ◦A)(p− c1) = (1− c)A1,

(I + A−1(D ◦A)))(p− c1) = (1− c)1,
1

2
(I + A−1(D ◦A)(p− c1) =

1

2
(1− c)1,

(I− 1

2
(I−A−1(D ◦A)))(p− c1) =

1

2
(1− c)1.

Assume that α is small enough so that

1

2
ρ(I− (I− αG)(D ◦ (I− αG)−1)) < 1.

Then we can invert (I− 1
2
(I−A−1(D ◦A))) to obtain:

(p− c1) =
1

2
(1− c)(I− 1

2
(I−A−1(D ◦A)))−11.

Next recall that

A = (I− αG)−1 =
∞∑
k=0

αkGk.

Hence,

A−1(D ◦A) = (I− αG)
∞∑
k=0

αk(D ◦Gk),

=
∞∑
k=0

αk(D ◦Gk))−
∞∑
k=0

αk+1G(D ◦Gk).

and

1

2
(I−A−1(D ◦A)) =

1

2

∞∑
k=1

αk(G(D ◦Gk−1)− (D ◦Gk))).

so that

[I− 1

2
(I−A−1(D ◦A))]−1 =

∞∑
l=0

[
1

2

∞∑
k=1

αk(G(D ◦Gk−1)− (D ◦Gk))]l.
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In order to expand this power series, we look for a sequence of matrices Cm

such that

∞∑
l=0

[
1

2

∞∑
k=1

αk(G(D ◦Gk−1)− (D ◦Gk))]l =
∞∑
m=0

αmCm.

The solution to this problem is given by a combinatorial formula, known as
the Faà di Bruno formula on the composition of power series.9 To express
this formula, consider the composition of two power series:∑

l

(
∑
k

akαk)
l =

∑
cmα

m,

For any integer m, let P(m) denote the set of all partitions of the integer m,
i.e., sets of integers k1, ..kR such that

∑
r kr = m. Then, the Faà di Bruno

formula states that:

cm =
∑

k1,...,kR∈P(m)

ak1ak2 ...akR .

Applying the formula, we find:

Cm =
1

2m

∑
k1,k2,...,kR|

∑
kr=m

∏
G(D ◦Gkr−1)− (D ◦Gkr). (14)

The first terms of the sequence can be computed as

C0 I
C1

1
2
(G−D ◦G)

C2
1
4
(G2 − (D ◦G)G + (D ◦G)2 −D ◦G2)

resulting in the approximation formula:

p =
1 + c

2
1 +

α

4
(G−D ◦G)1

+
α2

8
(G2 − (D ◦G)G + (D ◦G)2 −D ◦G2)1 +O(α3).

Proof of Proposition 4.1: In the text.

Proof of Proposition 4.2: In the text.

9See Johnson (2002) for an historical account of the formula and its uses and variants.
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Proof of Proposition 5.1: Consider two nodes i and j such that gij = 0
and gjk = 1 whenever gik = 1. By the first order conditions,

(
1− F (θj)

f(θj)
−θj−αgijF (θj))−(

1− F (θi)

f(θi)
−θi−αgijF (θi))) = 2α

∑
k 6=i,j

(gjk−gik)(1−F (θk)) ≥ 0.

By the monotone likelihood ratio property, 1−F (θ)
f(θ)

is a decreasing function,
so that θi ≥ θj. By the first order condition, at the optimum,

pi = θi + α
∑
j

gij(1− F (θj)) =
G(θi) + c

2
,

establishing the Proposition.

Proof of Proposition 5.3: In the text.

Proof of Proposition 5.4: Consider a period t at which S consumers are
active in the game and it is the monopolists’s time to make an offer (t is
odd). Suppose that all consumers j, j ∈ S, j 6= i accept the monopolists’s
offer. Then the bargaining surplus generated by trade with consumer i is
given by: 1

2
− c + α

∑
j∈M gij. Following Rubinstein (1982) and Shaked and

Sutton (1986), in equilibrium offers of the consumer and the monopolist
are given by the stationary formulae xti and yti , and consumer i accepts the
monopolists’s offer immediately. Hence, there exists an equilibrium where
all consumers in S accept the monopolists’ offer immediately, and the offers
xti and yti are equilibrium offers for all i. If t is even and it is the consumer’s
time to make an offer, notice that, if the monopolist rejects a subset S ′ of
offers, next period he will make offers xt+1

i to all i ∈ S ′. Given that yti is
computed so that the monopolist is indifferent between accepting yti today
or obtaining xt+1

i tomorrow for all i ∈ S, the monopolist has no incentive to
reject any offer.
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