Mathematical Challenges of the Emission Markets

René Carmona

ORFE, Bendheim Center for Finance Princeton University

Laboratoire FiME, Paris, June 29, 2010

Schematic of the Talk

- Descriptive Introduction
 - Zoology of the Carbon Markets: EU ETS, and those soon to exist in the US (wishful thinking)
 - Lessons learned from the EU Experience
- First Mathematical (Equilibrium) Models
 - Joint Price Formation for Production Goods and Emission Allowances
 - Costs associated to a Cap-and-Trade scheme
 - Design of Cap-and-Trade Schemes: the Allocation Mechanism
 - Multi-periods, Multi-markets Models & the CDM
- Reduced Form Models
 - Information Flows and jumps
 - First Models for EUA Option Prices
- Partial Equilibrium Models & BSDEs
 - BSDE Formulaiton
 - Mathematical Pathologies of Singular BSDEs
 - More Option Pricing

First Emission Trading Market

- Established in the United States Clean Air Act of 1990
- Acid Rain Program
- Program to reduce the primary causes of acid rain
 - sulfur dioxide (SO₂)
 - nitrogen oxides (NO_x)
- Program based on BOTH
 - regulatory approach
 - market mechanisms
- To achieve this goal at the lowest cost to society
- SOx and NOx Trading: Great learning experience!
 - Liquidity and Price Collapse Issues
 - They did not create Pollution Hot Spots?
- TOO SMALL a scale (Montgomery flip-flop)

Kyoto Protocol

- Kyoto Conference 1997
- Assign MANDATORY Green House Gas (GHG) emission limits to signatory nations
 - Reduce emissions of CO₂ and 5 other gases in 2008 2012
 - Target level: 95% of 1990 levels
- Set up Cap & Trade for Green House Gases
- Clean Development Mechanism (CDM) and Joint Initiative (JI)
- ENFORCEMENT? (theory of self-enforced treaties)

Flexible Mechanisms of Kyoto Protocol

- Stimulate sustainable development and emission reductions, when and where it is cheapest to do
- Projects must qualify through a rigorous and public registration and issuance process
 - Ensure real, measurable and verifiable emission reductions
 - Additional to what would have occurred without the projects
- Clean Development Mechanism (CDM)
 - Projects located in developing countries
- Joint Initiative (JI)
 - Projects located in economies in transition
- We'll use same mathematical models!
- Approved projects earn Certified Emission Reduction (CER)

CERs

- Using CERs to meet emission reduction targets
 - 1 CER = 1 ton of CO₂ equivalent to meet emission reduction
 - traded and sold on ANY market, NO date limitation
 - discount due to moral hazard, political, project completion, ... RISK

Trading

- Program started in 2006
- More than 1,000 projects already registered
- Anticipated to produce CERs amounting to more than 2.7 billion tons of CO₂ equivalent for 2008 – 2012
- Speculative Trading of Spread between EUAs and CERs
- Role of CERs in EUA option prices still a mystery

EUAs vs CERs

Figure: Prices of the December 2012 EUA futures contract (EU-ETS second phase), together with the price of the corresponding CER futures contract.

EU and the Kyoto Protocol

- European Climate Change Programme (ECCP) June 2000
- All 25 EU countries ratify Kyoto Protocol on 31 May 2002
- Directive 2003/87/ec of the European Parliament of October 13, 2003: establishment of a scheme for greenhouse gas emission allowance trading.
- Each EU member state proposes a National Allocation Plan (NAP) with a cap
- Permit Allocation:

Installations covered by ETS are given allowances for FREE

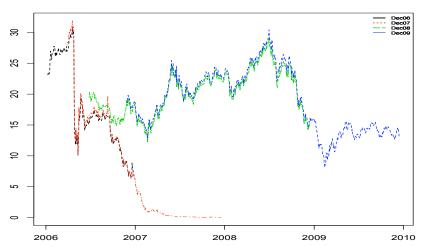
- power plants (capacity > 20MW)
- steel manufacturers
- cement factories
- (1200 installations in EU during first phase)

EU Emission Trading Scheme (ETS)

- Actual trading in EU ETS started January 2005
- 400 million tons of CO₂ equivalent traded the first year
- EU ETS structured in Three Phases
 - Phase I: January 2005 December 2007 (trial)
 - Phase II: January 2008 December 2012 (current)
 - Phase III: January 2013 December 2018 (unclear Copenhagen)
- Exchange traded (standardized & cleared) futures contracts (Dec-05, Dec-06, Dec-07, Dec-08, ..., Dec-12)
- 1 contract = 1 lot = 1000 EUAs of 1 ton CO₂ equivalent each
- Liquid Front End contract
- Vibrant option market on these futures contracts

Traded Contracts

Time Series Plots of EUA Futures



Prices of the EUA futures contracts.

How Do Things Work?

- Each year, installation receive allowances according to NAP
- Each year, cumulative emissions are tallied up to Dec. 31
- Each installation has up to Apr. 30 to cover its emissions
 - by surrendering allowances
 - paying a **penalty** of λ euros per ton not covered by an allowance
 - $\lambda = 40$ euros in **Phase I**; $\lambda = 100$ euros in **Phase II**
 - Paying the penalty is not enough: the corresponding amount of allowances is withdrawn from the next allocation
- Phase I was a trial balloon
- Phase I allowances COULD NOT BE USED beyond their maturities
- Phase II allowances CAN BE BANKED for later use

Goal of the Study

- Putting a Price on
 - CO₂ by internalizing its Social Cost
 - Goods whose Productions lead to Emissions
- Regulatory Economic Instruments
 - Carbon TAX
 - Permits Allocation & Trading (Cap-and-Trade)
- Calibrate the Different Schemes for
 - MEANINGFUL & FAIR comparisons

Goal of the Study: Equilibrium Analysis

- Dynamic Stochastic General Equilibrium
- Inelastic Demand
 - Electricity Production for the purpose of illustration
 - Same results in multi-good Markets
- Random Factors
 - Demands for goods $\{D_t^k\}_{t\geq 0}$
 - **Costs** of Production $\{C_t^{i,j,\overline{k}}\}_{t\geq 0}$
 - Spot Price of Coal
 - Spot Price of Natural Gas

Goal of the Study: Japan Case Study

TOKYO unveiled a Carbon Scheme

Japanese Electricity Market:

- Eastern & Western Regions (1GW Interconnection)
- Electricity Production: Nuclear, Coal, Natural Gas, Oil
 - Coal is expensive
 - Visible Impact of Regulation (fuel switch)
- Regulation Gory Details
 - Cap (Emission Target) 300 Mega-ton CO₂ = 20% w.r.t. 2012 BAU
 - Calibration for Fair Comparisons: Meet Cap 95% of time
 - Penalty 100 USD
 - Tax Level 40 USD
 - Numerical Solution of a Stochastic Control Problem (HJB) in 4-D

Goal of the Study: Comparisons

Economic Statics to be Compared

- Actual Emissions
- Reduction (Abatment) Costs
- Social Costs
- Windfall Profits

Controls to be Varied

- Penalty
- Tax
- Allocation Mechanisms
 - Free Initial Allocation
 - Auctions
 - Dynamic Proportional Allocation
 - Hybrid Allocation Schemes

Description of the Economy

- Finite set \mathcal{I} of risk neutral firms
- ullet Producing a finite set ${\mathcal K}$ of goods
- Firm $i \in \mathcal{I}$ can use **technology** $j \in \mathcal{J}^{i,k}$ to produce good $k \in \mathcal{K}$
- Discrete time $\{0, 1, \dots, T\}$
- No Discounting Work with T-Forward Prices
- Inelastic Demand

$$\{D^k(t);\ t=0,1,\cdots,T-1,\ k\in\mathcal{K}\}.$$

Regulator Input (EU ETS)

At inception of program (i.e. time t = 0)

• INITIAL DISTRIBUTION of $\Lambda = \Lambda_0$ allowance certificates

$$\Lambda_0 = \sum_{i \in \mathcal{I}} \Lambda_0^i, \qquad \Lambda_0^i \quad \text{to firm } i \in \mathcal{I}.$$

 Set PENALTY λ for emission unit NOT offset by allowance certificate at end of compliance period

Extensions discussed later on.

- Multi-period, multi-market extensions
- Alternative allocation mechanisms
- Risk aversion and agent preferences
- Elastic demand (e.g. smart meters for electricity)
- Investments in new technologies (wind, solar, CCS,...)
-

Goal of Equilibrium Analysis

Find stochastic processes

Price of one allowance

$$\textbf{\textit{A}} = \{\textbf{\textit{A}}_t\}_{t \geq 0}$$

Prices of goods

$$S = \{S_t^k\}_{k \in K, t \geq 0}$$

satisfying the usual conditions for the existence of a

competitive equilibrium

(to be spelled out below) and study the fine properties of these processes.

Individual Firm Problem

During each time period [t, t+1)

- Firm $i \in \mathcal{I}$ produces $\xi_t^{i,j,k}$ of good $k \in \mathcal{K}$ with technology $j \in \mathcal{J}^{i,k}$
- Firm $i \in \mathcal{I}$ holds a position θ_t^i in emission credits

$$\begin{split} L^{A,S,i}(\theta^{i},\xi^{i}) := \sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{J}^{i,k}} \sum_{t=0}^{T-1} (S_{t}^{k} - C_{t}^{i,j,k}) \xi_{t}^{i,j,k} \\ + \theta_{0}^{i} A_{0} + \sum_{t=0}^{T-1} \theta_{t+1}^{i} (A_{t+1} - A_{t}) - \theta_{T+1}^{i} A_{T} \\ - \lambda (\Gamma^{i} + \Pi^{i}(\xi^{i}) - \theta_{T+1}^{i})^{+} \end{split}$$

where

$$\Gamma^i$$
 random, $\Pi^i(\xi^i) := \sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{J}^i, k} \sum_{t=0}^{I-1} e^{i,j,k} \xi_t^{i,j,k}$

Random Inputs

- Γⁱ uncontrolled emissions
- $C_t^{i,j,k}$ costs of productions (e.g. fuel prices)

Individual Firm Problem (cont.)

Problem for (risk neutral) firm $i \in I$

$$\max_{(\theta^i, \xi^i)} \mathbb{E}\{L^{A, S, i}(\theta^i, \xi^i)\}$$

Choose

- Production strategy ξ^i
- Trading strategy θ^i

in order to

- Maximize its own expected P&L
- Satisfy the demand

Equilibrium Definition for Emissions Market

The processes $A^* = \{A_t^*\}_{t=0,1,\cdots,T}$ and $S^* = \{S_t^*\}_{t=0,1,\cdots,T}$ form an equilibrium if for each agent $i \in \mathcal{I}$ there exist strategies $\theta^{*i} = \{\theta_t^{*i}\}_{t=0,1,\cdots,T}$ (trading) and $\xi^{*i} = \{\xi_t^{*i}\}_{t=0,1,\cdots,T}$ (production)

(i) All financial positions are in constant net supply

$$\sum_{i\in I} \theta_t^{*i} = \sum_{i\in I} \theta_0^i, \qquad \forall t = 0, \dots, T+1$$

(ii) Supply meets Demand

$$\sum_{i\in\mathcal{I}}\sum_{j\in\mathcal{J}^{i,k}}\xi_t^{*i,j,k}=D_t^k, \qquad \forall k\in\mathcal{K}, \ t=0,\ldots,T-1$$

• (iii) Each agent $i \in I$ is satisfied by its own strategy

$$\mathbb{E}[L^{A^*,S^*,i}(\theta^{*i},\xi^{*i})] \ge \mathbb{E}[L^{A^*,S^*,i}(\theta^i,\xi^i)] \qquad \text{for all } (\theta^i,\xi^i)$$

Business As Usual (i.e. $\lambda = 0$)

The corresponding prices of the goods are

$$S_t^{*k} = \max_{i \in \mathcal{I}, j \in \mathcal{J}^{i,k}} C_t^{i,j,k} \mathbf{1}_{\{\xi_t^{*i,j,k} > 0\}},$$

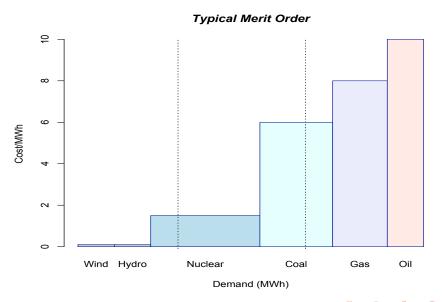
Classical MERIT ORDER

- At each time t and for each good k
- Production technologies ranked by increasing production costs $C_t^{i,j,k}$
- Demand D_t^k met by producing from the cheapest technology first
- Equilibrium spot price is the marginal cost of production of the most expansive production technoligy used to meet demand

Business As Usual

(typical scenario in Deregulated electricity markets)

Example of a Classical Merit Order Plot



Necessary Conditions

Assume

- (A^*, S^*) is an equilibrium
- (θ^{*i}, ξ^{*i}) optimal strategy of agent $i \in I$

then

- The allowance price A^* is a **bounded martingale** in $[0, \lambda]$
- Its terminal value is given by

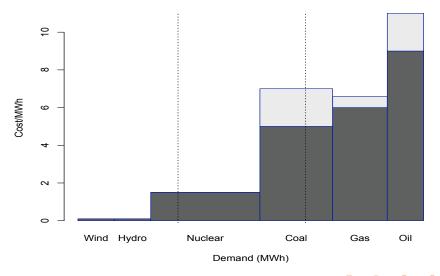
$$A_{T}^{*} = \lambda \mathbf{1}_{\{\Gamma^{i} + \Pi(\xi^{*i}) - \theta_{T+1}^{*i} \ge 0\}} = \lambda \mathbf{1}_{\{\sum_{i \in \mathcal{I}} (\Gamma^{i} + \Pi(\xi^{*i}) - \theta_{0}^{*i}) \ge 0\}}$$

• The spot prices S^{*k} of the goods and the optimal production strategies ξ^{*l} are given by the merit order for the equilibrium with adjusted costs

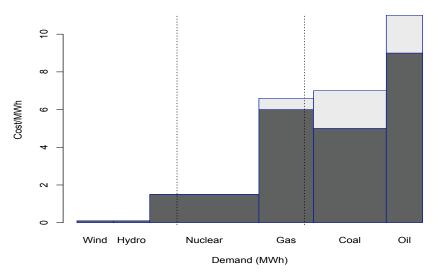
$$ilde{C}_t^{i,j,k} = C_t^{i,j,k} + e^{i,j,k}A_t^*$$

Example of a Fuel Switch forced by Regulation

Example of Fuel Switch forced by CO2 Costs



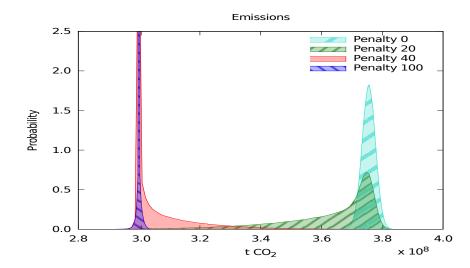
Example of a Merit Order Plot Including CO₂



Impact of the Penalty

- Trial Phase of EU ETS (2005 2007): 40 Euros
- First Phase of EU ETS (2008 2012): 100 Euros
- RGGI: Market Participants do not really pay attention
- Option Data show Market Participants DO NOT BELIEVE the market will EVER BE SHORT
 - Influx of CERs
 - Hot Air (Russia, Poland excess allocation)
 - Lobbying & Political Pressure to put FLOORs and CIELINGs

Effect of the Penalty on Emissions



Costs in a Cap-and-Trade

Consumer Burden

$$SC = \sum_t \sum_k (S_t^{k,*} - S_t^{k,BAU*}) D_t^k.$$

Reduction Costs (producers' burden)

$$\sum_{t} \sum_{i,j,k} (\xi_{t}^{i,j,k*} - \xi_{t}^{BAU,i,j,k*}) C_{t}^{i,j,k}$$

Excess Profit

$$\sum_{t} \sum_{k} (S_{t}^{k,*} - S_{t}^{k,BAU*}) D_{t}^{k} - \sum_{t} \sum_{i,j,k} (\xi_{t}^{i,j,k*} - \xi_{t}^{BAU,i,j,k*}) C_{t}^{i,j,k} - \lambda (\sum_{t} \sum_{ijk} \xi_{t}^{ijk} \boldsymbol{e}_{t}^{ijk} - \theta_{0})^{+}$$

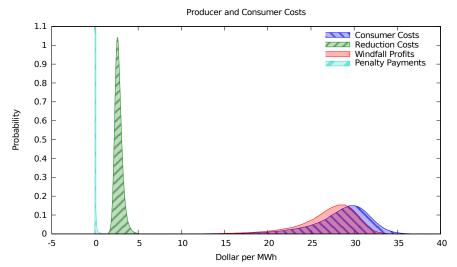
Windfall Profits

$$\mathsf{WP} = \sum_{t=0}^{T-1} \sum_{k \in K} (S_t^{*k} - \hat{S}_t^k) D_t^k$$

where

$$\hat{S}^k_t := \max_{i \in I, j \in J^{i,k}} C^{i,j,k}_t \mathbf{1}_{\{\xi^{*i,j,k}_t > 0\}}.$$

Costs in a Cap-and-Trade Scheme



Histograms of consumer costs, social costs, windfall profits and penalty payments of a standard cap-and-trade scheme calibrated to reach the emissions target with 95% probability and BAU.

One of many Alternative Designs

Introduction of Taxes / Subsidies

$$H^{A,S,i}(\theta^{i},\xi^{i}) := -\sum_{t=0}^{T-1} V_{t}^{i} + \sum_{t=0}^{T-1} \sum_{(j,k)\in M_{i}} (S_{t}^{k} - C_{t}^{i,j,k} - Z_{t}^{k}) \xi_{t}^{i,j,k}$$

$$+ \sum_{t=0}^{T-1} \theta_{t}^{i} (A_{t+1} - A_{t}) - \theta_{T}^{i} A_{T}$$

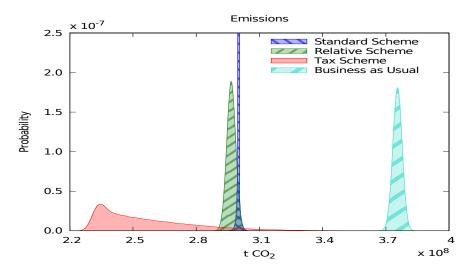
$$- \lambda \left(\Delta^{i} + \Pi^{i}(\xi^{i}) - \sum_{t=0}^{T-1} \left(X_{t}^{i} + \sum_{(j,k)\in M_{i}} Y_{t}^{k} \xi_{t}^{i,j,k} \right) - \theta_{T}^{i} \right)^{+} .$$
 (1)

then in equilibrium allowance price does not change but

$$S_t^{\dagger k} = S_t^{*k} + Z_t^k - Y_t^k A_t^* \quad \text{for all } k \in \mathcal{K}, t = 0, \dots, T - 1$$
 (2)

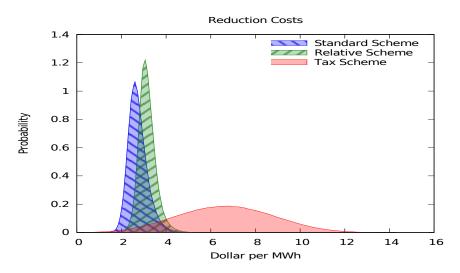
- Cost of the tax passed along to the end consumer
- Proportional allocation reduces the prices of the goods

Yearly Emissions Equilibrium Distributions



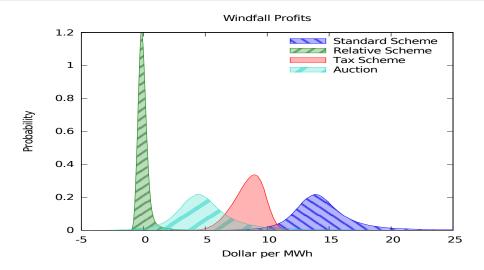
Yearly emissions from electricity production for the Standard Scheme, the Relative Scheme, a Tax Scheme and BAU.

Abatement Costs



Yearly abatement costs for the Standard Scheme, the Relative Scheme and a Tax Scheme.

Windfall Profits



Histograms of the yearly distribution of windfall profits for the Standard Scheme, a Relative Scheme, a Standard Scheme with 100% Auction and a Tax Scheme

What is Next?

- Why would we want to reduce Windfall Profits?
- Can one Design a cap-and-trade scheme to reach Prescribed Distributions for profits and costs?
- Optimizing irreversible investment decisions (installing scrubbers,)
- Need for Partial Equilibrium and/or Reduced Form Models
 - Require early active trading
 - Illustrate Leakage and/or Market Exits
 - Illustrate and identify Market Impact and/or Manipulations

Multi-Compliance Periods Markets

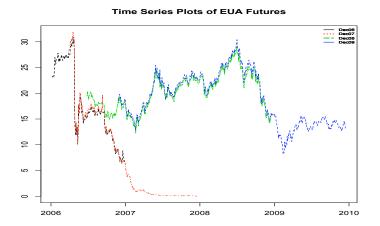


Figure: Price drop before the end of the first phase of the EU-ETS.

Rules Governing Successive Compliance Periods

- Borrowing allows for the transfer of a (limited) number of allowances from the next period into the present one;
- Banking allows for the transfer of a (limited) number of (unused) allowances from the present period into the next;
- Withdrawal penalizes firms which fail to comply in two ways:
 - Penalty payment for each unit of pollutant not covered by credits
 - Withdrawal of the missing allowances from next period allocation.

Existing markets

unlimited banking, no borrowing, withdrawal

Two-period Market Model

- Periods [0, T] and [T, T']
- $(A_t)_{t \in [0,T]}$ futures contract with compliance at T
- $(A'_t)_{t \in [0,T']}$ futures contract with compliance at T
- $N \in \mathcal{F}_T$ non-compliance at the end of the first period
- ullet $N' \in \mathcal{F}_{T'}$ non-compliance at the end of the first period

No arbitrage implies

$$A_T \mathbf{1}_{\Omega \setminus N} = \kappa A_T' \mathbf{1}_{\Omega \setminus N},$$

 $\kappa \in (0, \infty)$ discount factor and **withdrawal rule** implies

$$A_T \mathbf{1}_N = \kappa A_T' \mathbf{1}_N + \lambda \mathbf{1}_N.$$

$$A_t - \kappa A_t' = \mathbb{E}^{\mathbb{Q}}(A_T - \kappa A_T' \mid \mathcal{F}_t) = \lambda \mathbb{E}^{\mathbb{Q}}(\mathbf{1}_N \mid \mathcal{F}_t) \qquad t \in [0, T]$$

is a $[0, \lambda]$ -valued martingale with binary terminal value!

Sample Result for the CDM and CER Prices

For an emission market $m \in M$ and a compliance period $[T_q^m, T_{q+1}^m]$

$$A_{T_{q}^{m}}^{q,m} = (\lambda^{q,m} + \mathbb{E}[A_{T_{q+1}^{m}}^{q+1,m}|\mathcal{F}_{T_{q}^{m}})]\mathbf{1}_{\{\beta_{T_{q}^{m}}>0\}}$$

$$+ \left(\mathbb{E}[A_{T_{q+1}^{m}}^{q+1,m}|\mathcal{F}_{T_{q}^{m}}]\mathbf{1}_{\{\gamma_{T_{q}^{m}}>0\}} + \mathbb{E}[C_{T_{q+1}}^{p+1}|\mathcal{F}_{T_{q}^{m}})\mathbf{1}_{\{\gamma_{T_{q}^{m}}=0\}}\right)\mathbf{1}_{\{\beta_{T_{q}^{m}}=0\}}$$

R.C. - M. Fehr

- When $\{\beta_{T_q^m}>0\}$ market m is short of allowances despite the usage of CERs, the allowance price is given by the penalty $\lambda^{q,m}$ plus the cost of the allowances from the next period
- When $\{\beta_{T_q^m}=0\}$ (not short of allowances at time of compliance) the allowance price is either the expected value of an allowance for the next period on the event $\{\gamma_{T_q^m}>0\}$ that the allowances are banked for use in the next period, or the expected value of a CER in the next period on the event $\{\gamma_{T_q^m}=0\}$ that the allowances are not banked.

Modeling Partial Information

Cetin-Verschuere (T=Dec-07 & T'=Dec-08 futures contracts)

A'_t value at time t of Dec-08 EUA futures contract

$$dA'_t = A'_t[\mu + \alpha\theta_t]dt + A'_t\sigma dW_t$$

- σ , μ , α constants, $A'_0 = x$
- θ_t two-state continuous-time Markov chain independent of Wiener process W_t
 - $\theta_t = 1$ market is *long allowances* at time t
 - $\theta_t = -1$ market is *short allowances* at time t
- T = Dec 07 end of Phase I
- A_t value at time $t \leq T$ of Dec-07 EUA futures contract

$$A_T = egin{cases} A_T' + \lambda & ext{ if } heta_T \leq 0 \ 0 & ext{ otherwise} \end{cases}$$

 Pricing & Hedging in Incomplete Market (two sources of randomness, one underlier)

Partial Information

Filtering Techniques

- Observe $\mathcal{F}^{A'} = \{\mathcal{F}_t^{A'}\}_t$ filtration of S_t
- One time announcement of true value of θ at time T

$$\mathcal{G}_t = \begin{cases} \mathcal{F}_t^{A'} & \text{for } t < T \\ \mathcal{F}_t^{A'} \vee \sigma(\theta_T) & \text{for } t = T \end{cases}$$

- Optional projection $\overline{\theta}_t = \mathbb{E}\{\theta_t | \mathcal{F}_t^{A'}\}$
- $\overline{W}_t = \int_0^t \frac{1}{\sigma A_s'} [dA_s' (\mu \alpha \overline{\theta}_s) A_s' ds]$ is a $\mathcal G$ Brownian motion
- $d\overline{\theta}_t = -2\lambda \overline{\theta}_t dt + \frac{\alpha}{\sigma} (1 \overline{\theta}_t^2) d\overline{W}_t$ with $\overline{\Lambda} = 2p 1$, and $p = \mathbb{P}\{\Lambda = 1\}$.
- $Z_t = \mathbf{1}_{\{t=T\}}(\theta_T \overline{\theta}_T)$ is a $\mathcal G$ martingale orthogonal to \overline{W}
- \bullet \overline{A}_t fair price of A_t

$$\overline{A}_t = \mathbb{E}^* \{ \frac{1 - heta_T}{2} (A_T' + \lambda) | \mathcal{G}_t \}$$

where \mathbb{E}^* is expectation w.r.t. **minimal martingale measure** \mathbb{P}^* (Foellmer-Schweizer)

Information Discontinuities

What Happened in April 06? Special Announcement

- TRUE value θ_{t_0} of θ_t revealed at time t_0
- Replace $\overline{\theta}_t$ by $\widetilde{\theta}_t = \mathbb{E}\{\theta_t | \mathcal{F}_t^{A'}, \theta_{t_0}\}$ for $t > t_0$
- Fair price of T=Dec-07 contract now given by

$$A_t = \begin{cases} Z_t^h + h(t, S_t, \overline{\theta}_t) & \text{for } t < t_0 \\ h(t, S_t, \overline{\theta}_t) - Z_t(S_t + \lambda)/2 & \text{for } t > t_0 \end{cases}$$

and

$$\Delta A_{t_0} = h(t_0, A'_{t_0}, \theta_{t_0}) - h(t_0, A'_{t_0}, \overline{\theta}_{t_0})$$

where *h* is the solution of a specific PDE (full observation model) and

$$Z_t^h = \mathbb{E}^* \{ h(t_0, A'_{t_0}, \theta_{t_0}) - h(t_0, A'_{t_0} | \mathcal{G}_t \}$$

Explicit formula for the size of the jump in price!

Reduced Form Models & Option Pricing

(Uhrig-Homburg-Wagner, R.C - Hinz)

- Emissions Cap-and-Trade Markets SOON to exist in the US (and Canada, Australia, Japan,)
- Liquid Option Market ALREADY exists in Europe
 - Underlying {A_t}_t non-negative martingale with binary terminal value
 - Think of A_t as of a binary option
 - Underlying of binary option should be Emissions
- Need for Formulae (closed or computable)
 - Prices and Hedges difficult to compute (only numerically)
 - Jumps due to announcements (Cetin et al.)
- Reduced Form Models

Option quotes on Jan. 3, 2008

Option Maturity	Option Type	Volume	Strike	Allowance Price	Implied Vol	Settlement Price
Dec-08	Call	150,000	24.00	23.54	50.50%	4.19
Dec-08	Call	500,000	26.00	23.54	50.50%	3.50
Dec-08	Call	25,000	27.00	23.54	50.50%	3.20
Dec-08	Call	300,000	35.00	23.54	50.50%	1.56
Dec-08	Call	1,000,000	40.00	23.54	50.50%	1.00
Dec-08	Put	200,000	15.00	23.54	50.50%	0.83

Option quotes on Jan. 4, 2008

Option Maturity	Option Type	Volume	Strike	Allowance Price	Implied Vol	Settlement Price
Dec-08	Cal	200,000	22.00	23.55	51.25%	5.06
Dec-08	Call	150,000	26.00	23.55	51.25%	3.57
Dec-08	Call	450,000	27.00	23.55	51.25%	3.27
Dec-08	Call	100,000	28.00	23.55	51.25%	2.99
Dec-08	Call	125,000	29.00	23.55	51.25%	2.74
Dec-08	Call	525,000	30.00	23.55	51.25%	2.51
Dec-08	Call	250,000	40.00	23.55	51.25%	1.04
Dec-08	Call	700,000	50.00	23.55	51.25%	0.45
Dec-08	Put	1,000,000	14.00	23.55	51.25%	0.64
Dec-08	Put	200,000	15.00	23.55	51.25%	0.86
Dec-08	Put	200,000	15.00	23.55	51.25%	0.86
Dec-08	Put	400,000	16.00	23.55	51.25%	1.13
Dec-08	Put	100,000	17.00	23.55	51.25%	1.43
Dec-08	Put	1,000,000	18.00	23.55	51.25%	1.78
Dec-08	Put	500,000	20.00	23.55	51.25%	2.60
Dec-08	Put	200,000	21.00	23.55	51.25%	3.07
Dec-08	Put	200,000	22.00	23.55	51.25%	3.57

Reduced Form Models and Calibration

Allowance price should be of the form

$$A_t = \lambda \mathbb{E}\{\mathbf{1}_N \mid \mathcal{F}_t\}$$

for a non-compliance set $N \in \mathcal{F}_t$. Choose

$$N = \{\Gamma_T \ge 1\}$$

for a random variable $\Gamma_{\mathcal{T}}$ representing the normalized emissions at compliance time. So

$$A_t = \lambda \mathbb{E}\{\mathbf{1}_{\{\Gamma_T \geq 1\}} | \mathcal{F}_t\}, \qquad t \in [0, T]$$

We choose Γ_T in a parametric family

$$\Gamma_T = \Gamma_0 \exp \left[\int_0^T \sigma_s dW_s - \frac{1}{2} \int_0^T \sigma_s^2 ds \right]$$

for some square integrable deterministic function

$$(0, T) \ni t \hookrightarrow \sigma_t$$

Dynamic Price Model for $a_t = \frac{1}{\lambda} A_t$

a_t is given by

$$a_t = \Phi\left(\frac{\Phi^{-1}(a_0)\sqrt{\int_0^T \sigma_s^2 ds} + \int_0^t \sigma_s dW_s}{\sqrt{\int_t^T \sigma_s^2 ds}}\right) \qquad t \in [0, T)$$

where Φ is standard normal c.d.f.

a_t solves the SDE

$$da_t = \Phi'(\Phi^{-1}(a_t))\sqrt{z_t}dW_t$$

where the positive-valued function $(0, T) \ni t \hookrightarrow z_t$ is given by

$$z_t = rac{\sigma_t^2}{\int_t^T \sigma_u^2 du}, \qquad t \in (0, T)$$

Risk Neutral Densities

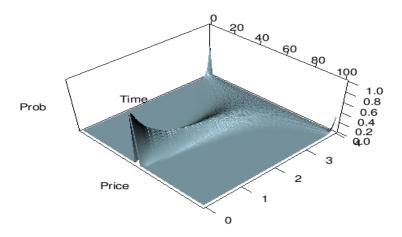


Figure: Histograms for each day of a 4 yr compliance period of 10⁵ simulated risk neutral allowance price paths.

Aside: Binary Martingales as Underliers

Allowance prices are given by $A_t = \lambda a_t$ where $\{a_t\}_{0 \le t \le T}$ satisfies

- $\{a_t\}_t$ is a martingale
- $0 \le a_t \le 1$
- $\mathbb{P}\{\lim_{t \to T} a_t = 1\} = 1 \mathbb{P}\{\lim_{t \to T} a_t = 0\} = p \text{ for some } p \in (0, 1)$

The model

$$da_t = \Phi'(\Phi^{-1}(a_t))\sqrt{z_t}dW_t$$

suggests looking for martingales $\{Y_t\}_{0 \le t < \infty}$ satisfying

- $0 \le Y_t \le 1$

and do a time change to get back to the (compliance) interval [0, T)

Feller's Theory of 1-D Diffusions

Gives conditions for the SDE

$$da_t = \Theta(a_t)dW_t$$

for $x \hookrightarrow \Theta(x)$ satisfying

- $\Theta(x) > 0$ for 0 < x < 1
- $\Theta(0) = \Theta(1) = 0$

to

- Converge to the boundaries 0 and 1
- NOT explode (i.e. NOT reach the boundaries in finite time)

Interestingly enough the solution of

$$dY_t = \Phi'(\Phi^{-1}(Y_t))dW_t$$

IS ONE OF THEM!

Explicit Examples

The SDE

$$dX_t = \sqrt{2}dW_t + X_t dt$$

has the solution

$$X_t = e^t \big(x_0 + \int_0^t e^{-s} dW_s \big)$$

and

$$\lim_{t \to \infty} X_t = +\infty$$
 on the set $\{\int_0^\infty e^{-s} dW_s > -x_0\}$ $\lim_{t \to \infty} X_t = -\infty$ on the set $\{\int_0^\infty e^{-s} dW_s < -x_0\}$

Moreover Φ is **harmonic** so if we choose

$$Y_t = \Phi(X_t)$$

we have a martingale with the desired properties.

Another (explicit) example can be constructed from Ph. Carmona, Petit and Yor on Dufresne formula.

Calibration

Has to Be Historical !!!!

- Choose Constant Market Price of Risk
- Two-parameter Family for Time-change

$$\{z_t(\alpha,\beta)=\beta(T-t)^{-\alpha}\}_{t\in[0,T]}, \qquad \beta>0, \alpha\geq 1.$$

Volatility function $\{\sigma_t(\alpha,\beta)\}_{t\in(0,T)}$ given by

$$\begin{split} \sigma_t(\alpha,\beta)^2 &= z_t(\alpha,\beta)e^{-\int_0^t z_u(\alpha,\beta)du} \\ &= \begin{cases} \beta(T-t)^{-\alpha}e^{\beta\frac{T^{-\alpha+1}-(T-t)^{-\alpha+1}}{-\alpha+1}} & \text{for } \beta>0, \alpha>1\\ \beta(T-t)^{\beta-1}T^{-\beta} & \text{for } \beta>0, \alpha=1 \end{cases} \end{split}$$

Maximum Likelihood

Call Option Price in One Period Model

for $\alpha=1,\,\beta>0$, the price of an European call with strike price $K\geq 0$ written on a one-period allowance futures price at time $\tau\in[0,T]$ is given at time $t\in[0,\tau]$ by

$$C_t = e^{-\int_t^{\tau} r_s ds} \mathbb{E}\{(A_{\tau} - K)^+ \mid \mathcal{F}_t\}$$

=
$$\int (\lambda \Phi(x) - K)^+ N(\mu_{t,\tau}, \nu_{t,\tau})(dx)$$

where

$$\mu_{t,\tau} = \Phi^{-1}(A_t/\lambda)\sqrt{\left(\frac{T-t}{T-\tau}\right)^{\beta}}$$

$$\nu_{t,\tau} = \left(\frac{T-t}{T-\tau}\right)^{\beta} - 1.$$

Easily extended to several periods

Price Dependence on T and Sensitivity to β

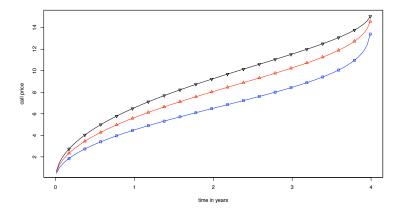
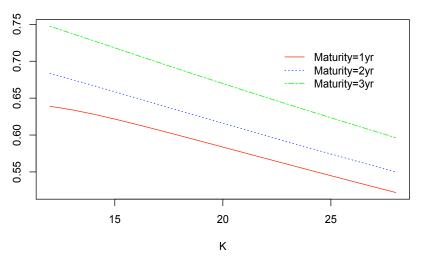


Figure: Dependence $\tau \mapsto C_0(\tau)$ of Call prices on maturity τ . Graphs \Box , \triangle , and ∇ correspond to $\beta = 0.5$, $\beta = 0.8$, $\beta = 1.1$.

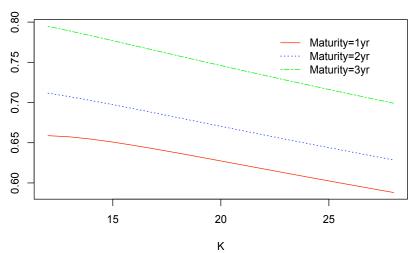
Implied Volatilities $\beta = 1.2$

Implied Volatilities for Different Maturities



Implied Volatilities $\beta = 0.6$, $\lambda = 100$

Implied Volatilities for Different Maturities



Option quotes on April 9, 2010

With a Smile Now!

Option Maturity	Option Type	Volume	Strike	Allowance Price	Implied Vol	Settlement Price
Dec-10	Call	750,000	14.00	13.70	29.69	1.20
Dec-10	Call	150,000	15.00	13.70	29.89	0.85
Dec-10	Call	250,000	16.00	13.70	30.64	0.61
Dec-10	Call	250,000	18.00	13.70	32.52	0.34
Dec-10	Call	1,000,000	20.00	13.70	33.07	0.17
Dec-10	Put	1,000,000	10.00	13.70	37.42	0.29
Dec-10	Put	500,000	12.00	13.70	32.12	0.67
Dec-10	Put	500,000	13.00	13.70	30.37	1.01

Partial Equilibrium Models

- Relax demand inelasticity
- Include preferences to relax risk neutrality (Touzi et al., RC-Espinosa-Touzi)
- "Representative Agent" form already considered in Seifert-Uhrig-Homburg-Wagner, RC-Fehr-Hinz

Mathematical Set-Up (continuous time)

- $(\Omega, \mathcal{F}, \mathbb{P})$ **historical** probability structure
- W D-dimensional Wiener process on $(\Omega, \mathcal{F}, \mathbb{P})$
- T > 0 finite horizon (end of the **single** compliance period)
- $\mathbb{F} = \{\mathcal{F}_t; \ 0 \le t \le T\}$ filtration of W

Goal of equilibrium analysis is to derive pollution permit price $\{A_t; 0 \le t \le T\}$ allowing firms to **maximize their expected utilities simultaneously**

Emissions Dynamics

Assume allowance price $A = \{A_t; 0 \le t \le T\}$ exists.

- ullet A is a \mathbb{F} -martingale under \mathbb{Q}
- $dA_t = Z_t dB_t$ for some adapted process Z s.t. $Z_t \neq 0$ a.s. and B D-dim Wiener process for spot martingale measure \mathbb{Q}
- $A_T = \lambda \mathbf{1}_{[\Lambda,\infty)}(E_T)$ where
 - ullet λ is the penalty
 - $E_t = \sum_{i \in \mathcal{I}} E_t^i$ is the aggregate of the E_t^i representing the **cumulative emission** up to time t of firm i
 - Λ is the cap imposed by the regulator

Assume the following dynamics $under \mathbb{P}$

$$dE_t^i = (b_t^i - \xi_t^i)dt + \sigma_t^i dW_t, \quad E_0^i = 0.$$

- $\{E_t^i(\xi_t^i \equiv 0)\}_{0 \le t \le T}$ cumulative emissions of firm i in BAU
- $\{\xi_t^i\}_{0 \le t \le T}$ abatement rate of firm i
- Assumptions on emission rates b_t^i and volatilities σ_t^i to be articulated later

Individual Firm Optimization Problems

Abatement costs for firm i given by cost function $c_t^i:\mathbb{R}\to\mathbb{R}$

- c^i is C^1 and strictly convex
- c^i satisfies Inada-like conditions for each $t \in [0, T]$

$$(c^i)'(-\infty) = -\infty$$
 and $(c^i)'(+\infty) = +\infty$.

• $c^i(0) = \min c^i_t \ (\xi^i \equiv 0 \ \text{corresponds to BAU})$

Typical example for c^i

$$\lambda |x|^{1+\alpha},$$

for some $\lambda > 0$ and $\alpha > 0$.

Each firm chooses its **abatement strategy** ξ^i and its **investment** θ^i in allowances. Its **wealth** is given by

$$X_t^i = X_t^{i,\xi,\theta} = x^i + \int_0^T heta_t^i dA_t - \int_0^T c^i(\xi_t^i) dt - E_T^i A_T.$$

Solving the Individual Firm Optimization Problems

Preferences of firm i given by a C^1 , increasing, strictly concave **utility** function $U^i : \mathbb{R} \to \mathbb{R}$ satisfying Inada conditions:

$$(U^i)'(-\infty) = +\infty$$
 and $(U^i)'(+\infty) = 0$.

The optimization problem for firm *i* is:

$$V(x^i) := \sup_{(\xi^i, \theta^i) \in \mathcal{A}^i} \mathbb{E}^{\mathbb{P}} \{ U^i(X_T^{i, \xi^i \theta^i}) \}$$

If no non-standard restriction on \mathcal{A}^i set of admissible strategies for firm i

Proposition

If an equilibrium allowance price $\{A_t\}_{0 \le t \le T}$ exists, then the optimal abatement strategy $\hat{\xi}^i$ is given by

$$\hat{\xi}_t^i = [(c^i)']^{-1}(A_t).$$

NB: The optimal abatement strategy $\hat{\xi}^i$ is independent of the utility function U^i !

Finding the Equilibrium Allowance Price

Complete Market Intuition ⇒ Representative Agent (Informed Central Planner) approach

Recall

$$dE_t^i = \left[\tilde{b}_t^i - [(c^i)^i]^{-1} (A_t) \right] dt + \sigma_t^i dB_t, \quad E_0^i = 0, \text{ for each } i$$

- Assume
 - $\forall i, \tilde{b}_t^i = \tilde{b}^i(t) E_t^i \text{ or } \forall i, \tilde{b}_t^i = \tilde{b}^i(t)$
 - $\bullet \ \forall i, \sigma_t^i = \sigma^i(t).$
- Set

$$b := \sum_{i \in \mathcal{I}} \tilde{b}^i, \ \sigma := \sum_{i \in \mathcal{I}} \sigma^i, \ \text{and} \ f := \sum_{i \in \mathcal{I}} [(c^i)']^{-1}.$$

Therefore we have the following FBSDE

$$dE_t = \{b(t, E_t) - f_t(A_t)\}dt + \sigma(t)dB_t, \quad E_0 = 0$$
 (4)

$$dA_t = Z_t dB_t, \quad A_T = \lambda \mathbf{1}_{[\kappa, +\infty)}(E_T), \tag{5}$$

with $b(t, E_t) = b(t)E_t^{\beta}$ with $\beta \in \{0, 1\}$ and f increasing.

Theoretical Existence and Uniqueness

Theorem

If $\sigma(t) \geq \underline{\sigma} > 0$ then for any $\lambda > 0$ and $\kappa \in \mathbb{R}$, FBSDE (4)-(5) admits a unique solution $(E, A, Z) \in M^2$. Moreover, A_t is nondecreasing w.r.t λ and nonincreasing w.r.t κ .

Proof

- Approximate the singular terminal condition $\lambda \mathbf{1}_{[\kappa,+\infty)}(E_T)$ by increasing and decreasing sequences $\{\varphi_n(E_T)\}_n$ and $\{\psi_n(E_T)\}_n$ of smooth monotone functions of E_T
- Use
 - comparison results for BSDEs
 - the fact that E_T has a density

to control the limits

PDE Characterization

Assume GBM for BAU emissions (Chesney-Taschini, Seifert-Uhrig-Homburg-Wagner) i.e. b(t,e)=be and $\sigma(t,e)=\sigma e$

$$\begin{cases}
E_t = E_0 + \int_0^t (bE_s - f(Y_s)) ds + \int_0^t \sigma E_s d\tilde{W}_s \\
A_t = \lambda \mathbf{1}_{[\Lambda,\infty)} (E_T) - \int_t^T Z_t d\tilde{W}_t.
\end{cases} (6)$$

Allowance price A_t constructed as $A_t = v(t, E_t)$ for a function v which **MUST** solve

$$\begin{cases} \partial_t v(t,e) + (be - f(v(t,e)))\partial_e v(t,e) + \frac{1}{2}\sigma^2 e^2 \partial_{ee}^2 v(t,e) = 0, \\ v(T,.) = \mathbf{1}_{[\Lambda,\infty)} \end{cases}$$
 (7)

The price at time t of a **call option** with maturity τ and strike K on an allowance forward contract maturing at time $T > \tau$ is given by

$$V(t, E_t) = \mathbb{E}_t\{(Y_{\tau} - K)^+\} = \mathbb{E}_t\{(v(\tau, E_{\tau}) - K)^+\}.$$

V solves:

$$\begin{cases} \partial_t V(t,e) + (be - f(v(t,e))) \partial_e V(t,e) + \frac{1}{2} \sigma^2 e^2 \partial_{ee}^2 V(t,e) = 0, \\ V(\tau,.) = (v(\tau,.) - K)^+ \end{cases}$$
(8)

Black-Scholes Case: $f \equiv 0$.

$$v^{0}(t, e) = \lambda \mathbb{P}\left[E_{T}^{0} \geq \Lambda | E_{t}^{0} = e\right] = \lambda \Phi\left(\frac{\ln(e/\Lambda e^{-b(T-t)})}{\sigma\sqrt{T-t}} - \frac{\sigma\sqrt{T-t}}{2}\right)$$

$$V^{0}(t, e) = \mathbb{E}\left[(v^{0}(\tau, E_{\tau}^{0}) - K)^{+} | E_{t}^{0} = e\right],$$

where E^0 is the geometric Brownian motion:

$$dE_t^0 = E_t^0 [bdt + \sigma d\tilde{W}_t].$$

used as proxy estimation of the cumulative emissions in business as usual.

Small Abatement Asymptotics

R.C. - **Espinosa** - **Touzi** For $\epsilon \ge 0$ small, let v^{ϵ} and V^{ϵ} be the prices of the allowances and the option for $f = \epsilon f_0$. We denote by .

$$\begin{split} v^{\epsilon}(T,.) &= \lambda \mathbf{1}_{[\Lambda,\infty)} \quad \text{and} \quad -\partial_t v^{\epsilon} - (be - \epsilon f_0(v^{\epsilon})) \partial_{\theta} v^{\epsilon} - \frac{1}{2} \sigma^2 e^2 \partial_{\theta\theta}^2 v^{\epsilon} = 0, \\ V^{\epsilon}(T,.) &= (v^{\epsilon}(T,.) - K)^+ \quad \text{and} \quad -\partial_t V^{\epsilon} - (be - \epsilon f_0(v^{\epsilon})) \partial_{\theta} V^{\epsilon} - \frac{1}{2} \sigma^2 e^2 \partial_{\theta\theta}^2 V^{\epsilon} = 0, \end{split}$$

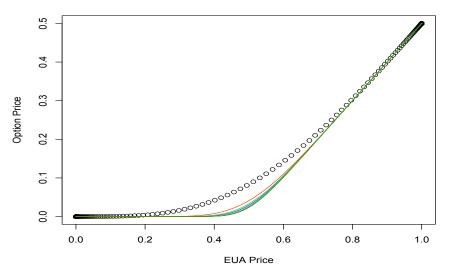
Proposition

As $\epsilon \rightarrow 0$, we have

$$egin{align*} V^{\epsilon}(t,s) &= V^0(t,s) \ + \epsilon \ \mathbb{E}_{t,e} \left[\mathbf{1}_{[\Lambda,\infty)}(v^0)(au, E^0_{ au}) \int_t^T f_0(v^0)(s,E^0_s) \partial_e v^0(s ee au, E^0_{see au}) rac{E^0_{see au}}{E^0_s} ds
ight] \ + \circ (\epsilon), \end{split}$$

Implied Volatilities $\beta = 1.2$

11 valeurs de EPSILON de 0 a 1.0



A Slightly Different Model

Single good (e.g. **electricity**) regulated economy, with price dynamics given **exogenously**!

$$\frac{dP_t}{P_t} = \mu(t, P_t)dt + \sigma(t, P_t)dW_t$$

Firm i

- Controls its instataneous rate of production qⁱt
- **Production** over [0, t]

$$Q_t^i := \int_0^t q_t^i dt.$$

• Costs of production given by $c_t^i: \mathbb{R}_+ \mapsto \mathbb{R}$ C^1 strictly convex satisfying Inada-like conditions

$$(c_t^i)'(0)=0, \quad (c_t^i)'(+\infty)=+\infty$$

- Cumulative emissions $E_t^i := e^i Q_t^i$
- P&L (wealth)

$$X_t^i = X_t^{i,q^i,\theta^i} = x^i + \int_0^T \theta_t^i dA_t - \int_0^T [P_t q_t^i - c_t^i(q_t^i)] dt - e^i Q_T^i A_T.$$

Individual Firm Optimization Problem

Proposition

If such an equilibrium exits, the optimal production strategy \hat{q}^i is given by:

$$\hat{q}_t^i = [(c^i)']^{-1}(P_t - e^i Y_t).$$

NB: As before the optimal production schedule \hat{q}^i **DOES NOT DEPEND** upon the utility function!

Existence of Allowance Equilibrium Prices

- Set $E_t := \sum_{i \in \mathcal{I}} E_t^i$ for the total aggregate emissions up to time t
- Define $f(p, y) := \sum_{i \in \mathcal{I}} \varepsilon^i [(c^i)']^{-1} (p \varepsilon^i y)$

Then the corresponding FBSDE under Q reads

$$\begin{cases} dP_t &= \sigma(t,P_t)dB_t, \quad P_0 = p \\ dE_t &= f(P_t,A_t)dt, \quad E_0 = 0 \\ dA_t &= Z_t dB_t, \quad A_T = \lambda \mathbf{1}_{[\kappa,+\infty)}(E_T). \end{cases}$$

NB: The volatility of the forward equation is **degenerate!**

Still, Natural Conjecture: For $\lambda > 0$ and $\kappa \in \mathbb{R}$, the above FBSDE has a unique solution (P, E, A, Z).

An Enlightening Example (R.C. - Delarue)

$$\begin{cases} dP_t = dW_t, & P_0 = p \\ dE_t = (P_t - A_t)dt, & E_0 = e \\ dA_t = Z_t dW_t, & 0 \le t \le T, & A_T = \mathbf{1}_{[\Lambda, \infty)}(E_T) \end{cases}$$
(9)

Theorem

• There exists a unique progressively measurable triple $(P_t, E_t, A_t)_{0 \le t \le T}$ satisfying (9) and

$$\mathbf{1}_{(\Lambda,\infty)}(E_T) \leq A_T \leq \mathbf{1}_{[\Lambda,\infty)}(E_T).$$

- The marginal distribution of E_t
 - is absolutely continuous for 0 ≤ t < T
 - has a Dirac mass at Λ when t = T, $\mathbb{P}\{E_T = \Lambda\} > 0$.

The terminal condition $A_T = \mathbf{1}_{[\Lambda,\infty)}(E_T)$ may not be satisfied!

Lectures based on)

- R.C., M. Fehr and J. Hinz: Mathematical Equilibrium and Market Design for Emissions Markets Trading Schemes. SIAM J. Control and Optimization (2009)
- R.C., M. Fehr, J. Hinz and A. Porchet: Mathematical Equilibrium and Market Design for Emissions Markets Trading Schemes. SIAM Review (2010)
- R.C., M. Fehr and J. Hinz: Properly Designed Emissions Trading Schemes do Work! (working paper)
- R.C., and J. Hinz: Risk-Neutral Modeling of Emission Allowance Prices and Option Valuation (working paper)
- R.C. & M. Fehr: Auctions and Relative Allocation Mechanisms for Cap-and-Trade Schemes (working paper)
- R.C. & M. Fehr: The Clean Development Mechanism: a Mathematical Model. Proc. 2008 Ascona Conf.
- R.C., G.E. Espinosa and N. Touzi: BSDEs and Option Pricing for the Emissions Markets! (working paper)
- R.C., and F. Delarue: Limiting Behavior of Singular BSDEs (working paper)