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Motivation

• Mathematical model

◦ interacting companies

◦ propagation of defaults?

• Interactions between N companies

◦ company No. i defaults⇒ other companies j 6= i feel it

◦ interaction may be

excitatory︸ ︷︷ ︸
j more likely to default

/
inhibitory︸ ︷︷ ︸

j less likely to default

• Model of interactions

◦ mean-field interactions with instantaneous effect



Dynamics of one single company

• State of one single company wealth

• wealth dynamics of the company

Vt = V0 +

∫ t

0
b(Vs)ds + It + Wt

◦ (It )t≥0  environment, (Wt )t≥0  Brownian noise

◦ numerical example: b(x) = −λ(x − x0)

◦ company defaults when Vt hits threshold VD

τ = inf
{

t ≥ 0 : Vt ≤ VD
}

◦ after bankruptcy 
stop the modeling
or
wealth is reset to VR and restart...

◦ if reset reset is instantaneous



Example



Model inspired from Neurosciences

• State of one single neuron potential

◦ different concentration of ions inside and outside neuron

• integrate and fire dynamics dynamics of the potential

Vt = V0 +

∫ t

0
b(Vs)ds + It + Wt

◦ (It )t≥0  signal, (Wt )t≥0  Brownian noise

◦ neuron spikes when Vt hits threshold VF

τ = inf
{

t ≥ 0 : Vt≥VF
}

◦ after spike potential is reset to VR and restart...



Mean-field interaction

• Model with interactions: N companies V 1
t , . . . ,V

N
t

◦ I i
t  I i

t (V
j , j 6= i) (signal depending on other wealths)

◦ I i
t (V

j , j 6= i) depending on the empirical distribution

I i
t (V

j , j 6= i) = I i
t

(
N−1

∑

j 6=i

δV j

)

◦ (W i
t )t≥0  independent noises on each neuron/company

• Example: I i
t (V

j , j 6= i) = −α
N

∑

j 6=i

]
{

defaults(j) ≤ t
}

I i
t (V

j , j 6= i)− I i
t−(V j , j 6= i)

= −α
N

∑

j 6=i

]
{

defaults(j) = t
}



Mean-field interaction
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j , j 6= i) = −α
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◦ j defaults, j 6= i  instantaneous jump of −α
N

in V i

◦ excitatory (>0) or inhibitory (<0) interaction

◦ α independent of i  exchangeable companies



Mean-field interaction

• Model with interactions: N companies V 1
t , . . . ,V

N
t

◦ I i
t  I i

t (V
j , j 6= i) (signal depending on other wealths)

◦ I i
t (V

j , j 6= i) depending on the empirical distribution

I i
t (V

j , j 6= i) = I i
t

(
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)

◦ (W i
t )t≥0  independent noises on each neuron/company

• Example: I i
t (V

j , j 6= i) = −α
N

∑

j 6=i

]
{

defaults(j) ≤ t
}

◦ dynamics before default (restarts from VR after default)

V i
t = V i

0 +

∫ t

0
b(V i

s)ds − α

N

∑

j 6=i

]
{

defaults(j) ≤ t
}

+ W i
t



Example



Averaging principle

• Asymptotic model when N → +∞? McKean-Vlasov version?

◦ N particles one typical particle interacting with its law?

• Usual setting

V i
t = V i

0 +

∫ t

0
b(V i

s)ds +

∫ t

0
I
(

1
N

∑

j 6=i

δV j
s

)
ds + dW i

t

◦ expect decorrelation between companies as N → +∞
◦ exchangeability + decorrelation⇒ expect LLN

∫ t

0
I
(

1
N

∑

j 6=i

δV j
s

)
ds ∼

∫ t

0
I
(
L(Vs)

)
ds

• Typical company as N →∞

dVt = b(Vt )dt + I
(
L(Vt )

)
dt + dWt



Averaging principle

• Asymptotic model when N → +∞? McKean-Vlasov version?

◦ N particles one typical particle interacting with its law?

• Instantaneous interaction is highly-singular

◦ does not satisfy usual McKean-Vlasov requirements

• Heuristics
I i
t (V

j , j 6= i) ∼
N→+∞

−αE
(
Mt
)

◦ Mt = number of defaults for typical company up to t

• Typical company for N →∞ (before default)

Vt = V0 + λ

∫ t

0
b(Vs)ds − αE

(
Mt ) + Wt

◦ Mt = ]
{

t ≥ 0 : Vt− = VD
}

depends on V !

◦ if no reset⇒ E(Mt ) P(default ≤ t)



Mathematical question

•Well-posedness and influence of the excitation parameter α?

• Example: runaway behavior if reset (VR = 1, VD = 0)

◦ choose α = 1 and V i
0 = i/N, i = 0, . . . ,N − 1,

◦ particles keep jumping!

◦ α < 1⇒ no way for defaulting twice at same time

• Behavior of the mean-field model when α < 1?



Mean-field model

• Dynamics (with reset)

Vt = VR +

∫ t

0
b(Vs)ds − αE(Mt ) + Wt

◦ default value VD = 0, reset (after default) VR = 1

• Crucial question: what class of admissible solutions?

◦ class of solutions dictates regularity for E(Mt )

E(Mt+h −Mt )

∼N=∞ probability of default in [t , t + h]

∼N<∞ proportion of companies default in [t , t + h]

◦ E(Mt ) is allowed to jump↔ large proportion of companies
may default at the same time

◦ may stand for a massive default in the system



Instantaneous default rate

• Meaning for requiring e : t 7→ E(Mt ) to be differentiable?

probability of default in [t , t + h] ∼ e′(t)h

• Dynamics of V (before default) if differentiability

dVt = b(Vt )dt − αe′(t)dt + dWt

◦ SDE stochastic calculus and regularizing effect

◦ P(Vt ∈ dy) = p(t , y)dy , t > 0, y > 0

• Fokker Planck equation

∂tp(t , y) + ∂y
[(

b(y)− αe′(t)
)
p(t , y)

]
− 1

2∂
2
yyp(t , y) = e′(t)δ1

◦ p(t ,0) = 0 and ∂yp(t ,0) = 1
2e′(t)

◦ control of e′ ⇔ control of the mass near 0



Solvability of the regular model

• Existence of regular solutions in arbitrary time?

◦ avoid blow-up of e′ in finite time?

◦ ⇔ avoid massive defaults?

• Caceres, Carrillo, Perthame (2011)

◦ for any α > 0, ∃V0 > 0 such that blow-up in finite time!

• D., Inglis, Rubenthaler and Tanré (2014)

◦ for V0 > 0, ∃! solution without blow-up for α small enough

◦ explicit (but non-optimal) bounds on critical values α

• Brownian example: b = 0 and V0 = .2 (VD = 0, VR = 1)

◦ existence of regular solutions if α ≤ 0.10

◦ no regular solutions if α ≥ 0.54

◦ numerically, critical value ∼ 0.38 . . .

• Exemple O-U λ→∞⇒ critical α→ 1 (⇔ λ fixed and σ → 0)



Illustration
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Model with a common noise
• Common source of noise in dynamics companies

V i
t = V i

0 +

∫ t

0
b(V i

s)ds + I i
t + W i

t + W 0
t

• Mean-field modeling

Vt = VR +

∫ t

0
b(Vs)ds − αE

(
Mt |W 0)+ Wt + W 0

t

◦ same α competition with common noise

Figure 1: Two realizations of the loss function t 7! LN
t . Parameters: ↵ = 0.4,

µ0 = �x0 with x0 = 0.2, ⇢ = 0.25, b = 0.5 and N = 100000.

We would like to understand what happens in (1.4) when the number of firms N
in the portfolio becomes very large. In particular, we are interested in the behavior
of the loss function

LN
t :=

1

N

NX

j=1

1⌧ jt, as N ! 1,

which is the proportion of firms that have defaulted before t.
To provide some intuition, we numerically plot t 7! LN

t in Figure 1 for large N ,
and for two realizations of the Brownian trajectory (Bt)t�0, using exactly the same
parameters (and a Dirac mass as initial condition). We see that the behavior of
the loss function can be very different, depending on the realization of (Bt)t�0: it
can either be continuous, or can have a jump. The discontinuous behavior would
correspond to a catastrophic event, where a large number of firms in the portfolio all
defaulted at the same time. A key question is therefore whether or not it is possible
to estimate the probability that there will be a catastrophic event in terms of µ0

and the parameters ↵, ⇢ and b when N is large.

2 Convergence results
In order to study the convergence of the system (1.4) as N ! 1, we first introduce
the (continuous) limit equation:

8
>>>>><
>>>>>:

X̄t = X0 + bt +
p
⇢Bt +

p
1 � ⇢Wt � ↵L̄t, t 2 [0, ⌧̄),

X̄t = 0, t � ⌧̄ ,

⌧̄ = inf{t � 0 : X̄t = 0},

L̄t = P
✓

inf
st

X̄s  0
���(Bs)st

◆
, t > 0.

(2.1)

3



Sketch of the proof

• Competition between noise and mean-field

◦ Control regularity of e⇔ the mass near the boundary
along the construction

• Condition for continuity of e?

∆e(t) = e(t)− e(t−) = 0
⇔ ∃δn ↓ 0 : kick due to particles in [0, δn)︸ ︷︷ ︸

α

∫ δn

0
p(t−, y)dy

< δn

◦ if p(t , y) < 1/α for y ∈ [0, ε) then e(t) = e(t−)



Sketch of the proof

• Typical scheme for nonlinear models

◦ Existence and uniqueness in short time on [0,T ?]

◦ Estimate of
1

dy
P(VT? ∈ dy) and iteration

• Short time result

◦ if
1

dy
P(V0 ∈ dy) ≤ βy for y ∈ (0, ε)

⇒ existence and uniqueness on [0,T ?(α, β, ε)]

◦ Picard’s fixed point argument

e ∈ C1([0,T ]) 7→
(

Γ(e)(t) = E
(∑

s≤t

1{Vs−=1}

))

0≤t≤T

◦ where dVt = b(Vt )dt + αe′(t)dt + dWt before default
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Scheme for the a priori estimate

• Assume ∃ solution with e ∈ C1 on [0,T ]

◦ where dVt = b(Vt )dt + αe′(t)dt + dWt before default

• Four steps





◦ bound for p(t , y) = P(Vt ∈ dy)/dy
◦ 1/2 Hölder bound for e
◦ Hölder regularity of p(t , y) in y
◦ Lipschitz regularity of p(t , y) in y

• Bound of p(t , y)

◦ rough bound using (non-killed) Gaussian kernels

V0 > ε⇒ p(t , y) ≤ C(ε, α), y ∈ (0, ε/4)

◦ very bad (can’t see p(t ,0) = 0) but explicit

◦ if C(ε, α)α < 1 then continuity of e (here is α small!)

◦ continuity dictated by Brownian: e 1/2-Hölder



Regularity of p close to the boundary

• Recall Dirichlet condition p(t ,1) = 0

◦ p satisfies Fokker-Planck Feynman-Kac

p(T , y) = E
[
p(T − ρ,Yρ) exp

(
−
∫ ρ

0
b′(Ys)ds

)∣∣Y0 = y
]

◦ where dYt = −b(Yt )dt + αe′(T − t)dt + dWt

◦ ρ = inf{t ≥ 0 : Yt 6∈ (0, δ)} ∧ T

• Regularity of p at the boundary↔ P{Yρ = 0}
• Probability to hit the boundary

◦ competition between B and e

◦ e 1/2 Hölder⇒ B wins with >0 probability

◦ get Hölder decay and then Lipschitz



Solutions with blow-up

• Limit of particle system⇒ ∃ solutions with blow-up

◦ risk modeling massive/systemic default?

• Description of the jumps of e(t) = E(Mt ) when blow-up?

∆e(t) = e(t)− e(t−) ≥ δ0

⇔ ∀δ ≤ δ0, δ − kick due to particles in [0, δ) ≤ 0

∆e(t) = sup
{
δ0 : ∀δ ≤ δ0, α

∫ δ

0
p(t−, y)dy

︸ ︷︷ ︸
kick due to particles in [0, δ)

≥ δ
}

◦ restart with density p(t , y) = p
(
t−, y + ∆e(t)

)
for y near 1

• Uniqueness? regularization of e just after default?



Convergence of the particle system

• Main difficulty: singularity of the counter of spikes/defaults

1
N

N∑

j=1

∑

s≤t

1{V j
s−=1}

◦ requires tightness for a suitable topology and continuity

• Topology : counter is increasing in time Skorohod M1

Law
(
µ̄N =

1
N

N∑

j=1

δV j

)
→ Law(µ) (up to subsequence)

◦ continuity of counter: µ a.s. hitting VF ⇔ crossing VF

◦ if ! solution to mean-field equation⇒ µ is Dirac at solution

◦ if no !⇒ µ charges solutions way to prove ∃


