A mean-field excitatory network for risk modeling

Séminaire FIME

François Delarue (Nice – J.-A. Dieudonné)

23 Janvier 2015

(Collaboration avec J. Inglis, S. Rubenthaler and E. Tanré)

Motivation

- Mathematical model
 - interacting companies
 - o propagation of defaults?
- Interactions between N companies
 - o company No. *i* defaults \Rightarrow other companies $j \neq i$ feel it
 - o interaction may be

```
excitatory / inhibitory
j more likely to default j less likely to default
```

- Model of interactions
 - mean-field interactions with instantaneous effect

Dynamics of one single company

- State of one single company → wealth
- wealth dynamics of the company

$$V_t = V_0 + \int_0^t b(V_s) ds + \frac{I_t}{I_t} + \frac{W_t}{I_t}$$

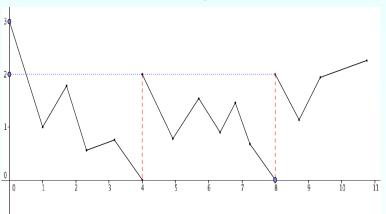
- $\circ (I_t)_{t\geq 0} \leadsto \text{environment}, (W_t)_{t\geq 0} \leadsto \text{Brownian noise}$
- o numerical example: $b(x) = -\lambda(x x_0)$
- \circ company defaults when V_t hits threshold V_D

$$\tau = \inf\{t \ge 0 : V_t \le V_D\}$$

stop the modeling

- after bankruptcy → or wealth is reset to V_R and restart...
- if reset → reset is instantaneous

Example



Model inspired from Neurosciences

- State of one single neuron → potential
 - o different concentration of ions inside and outside neuron
- integrate and fire dynamics dynamics of the potential

$$V_t = V_0 + \int_0^t b(V_s) ds + \frac{I_t}{I_t} + \frac{W_t}{V_t}$$

- $\circ (I_t)_{t>0} \rightsquigarrow \text{signal}, (W_t)_{t>0} \rightsquigarrow \text{Brownian noise}$
- \circ neuron spikes when V_t hits threshold V_F

$$\tau = \inf\{t \ge 0 : V_t \ge V_F\}$$

 \circ after spike \leadsto potential is reset to V_R and restart...

Mean-field interaction

- ullet Model with interactions: N companies V_t^1,\ldots,V_t^N
 - $\circ I_t^i \leadsto I_t^i(\mathbf{V}^j, j \neq i)$ (signal depending on other wealths)
 - $\circ I_t^i(V^j, j \neq i)$ depending on the empirical distribution

$$I_t^i(V^j, j \neq i) = I_t^i \left(N^{-1} \sum_{j \neq i} \delta_{V^j} \right)$$

- $\circ (W_t^i)_{t \ge 0} \leadsto \text{ independent noises on each neuron/company}$
- Example: $I_t^i(V^j, j \neq i) = -\frac{\alpha}{N} \sum_{j \neq i} \sharp \{ \text{defaults}(j) \leq t \}$

$$\begin{split} I_t^i(V^j, j \neq i) - I_{t-}^i(V^j, j \neq i) \\ &= -\frac{\alpha}{N} \sum_{i \neq i} \sharp \{ \mathsf{defaults}(j) = t \} \end{split}$$

Mean-field interaction

- Model with interactions: N companies V_t^1, \ldots, V_t^N
 - $\circ l_t^i \leadsto l_t^i(\mathbf{V}^j, \mathbf{j} \neq \mathbf{i})$ (signal depending on other wealths)
 - $\circ I_t^i(V^j, j \neq i)$ depending on the empirical distribution

$$I_t^i(V^j, j \neq i) = I_t^i\left(N^{-1}\sum_{j\neq i}\delta_{V^j}\right)$$

- $\circ (W_t^i)_{t \ge 0} \leadsto \text{ independent noises on each neuron/company}$
- Example: $I_t^j(V^j, j \neq i) = -\frac{\alpha}{N} \sum_{j \neq i} \sharp \{ \text{defaults}(j) \leq t \}$
 - \circ *j* defaults, $j \neq i \leadsto$ instantaneous jump of $-\frac{\alpha}{N}$ in V^i
 - excitatory (>0) or inhibitory (<0) interaction
 - $\circ \alpha$ independent of $i \leadsto$ exchangeable companies

Mean-field interaction

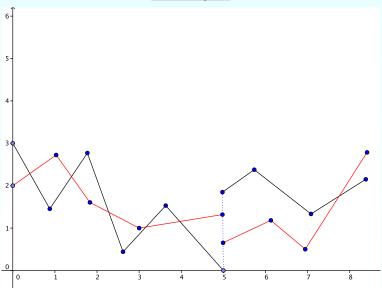
- ullet Model with interactions: N companies V_t^1,\ldots,V_t^N
 - $\circ I_t^i \leadsto I_t^i(\mathbf{V}^j, j \neq i)$ (signal depending on other wealths)
 - \circ $I_t^i(V^j, j \neq i)$ depending on the empirical distribution

$$I_t^i(V^j, j \neq i) = I_t^i \left(N^{-1} \sum_{j \neq i} \delta_{V^j}\right)$$

- $\circ (W_t^i)_{t>0} \leadsto \text{ independent noises on each neuron/company}$
- Example: $I_t^i(V^j, j \neq i) = -\frac{\alpha}{N} \sum_{j \neq i} \sharp \{ \text{defaults}(j) \leq t \}$
 - \circ dynamics before default (restarts from V_R after default)

$$V_t^i = V_0^i + \int_0^t b(V_s^i) ds - rac{lpha}{N} \sum_{j
eq i} \sharp \left\{ \operatorname{defaults}(j) \leq t
ight\} + W_t^i$$

Example



Averaging principle

- ullet Asymptotic model when $N \to +\infty$? McKean-Vlasov version?
 - N particles → one typical particle interacting with its law?
- Usual setting

$$V_t^i = V_0^i + \int_0^t b(V_s^i) ds + \int_0^t I\left(rac{1}{N}\sum_{j
eq i} \delta_{V_s^i}
ight) ds + dW_t^i$$

- \circ expect decorrelation between companies as $N \to +\infty$
- exchangeability + decorrelation ⇒ expect LLN

$$\int_0^t I\bigg(\frac{1}{N}\sum_{i\neq i}\delta_{V_s^i}\bigg)ds \sim \int_0^t I\big(\mathcal{L}(V_s)\big)ds$$

• Typical company as $N \to \infty$

$$dV_t = b(V_t)dt + I(\mathcal{L}(V_t))dt + dW_t$$

Averaging principle

- Asymptotic model when $N \to +\infty$? McKean-Vlasov version?
 - N particles ~> one typical particle interacting with its law?
- Instantaneous interaction is highly-singular
 - does not satisfy usual McKean-Vlasov requirements
- Heuristics

$$I_t^j(V^j, j \neq i) \underset{N \to +\infty}{\sim} -\alpha \mathbb{E}(M_t)$$

- $M_t = M_t = M_t$
- Typical company for $N \to \infty$ (before default)

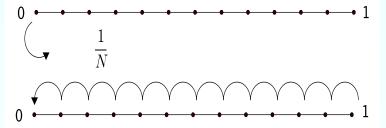
$$V_t = V_0 + \lambda \int_0^t b(V_s) ds - \alpha \mathbb{E}(M_t) + W_t$$

- $\circ M_t = \sharp \{t \geq 0 : V_{t-} = V_D\}$ depends on V!
- \circ if no reset $\Rightarrow \mathbb{E}(M_t) \leadsto \mathbb{P}(\mathsf{default} \leq t)$

Mathematical question

- Well-posedness and influence of the excitation parameter α ?
- Example: runaway behavior if reset ($V_R = 1$, $V_D = 0$)

$$\circ$$
 choose $\alpha = 1$ and $V_0^i = i/N$, $i = 0, ..., N-1$,



- o particles keep jumping!
- $\circ \alpha < 1 \Rightarrow$ no way for defaulting twice at same time
- Behavior of the mean-field model when $\alpha < 1$?

Mean-field model

Dynamics (with reset)

$$V_t = V_R + \int_0^t b(V_s) ds - lpha \mathbb{E}(M_t) + W_t$$

- \circ default value $V_D = 0$, reset (after default) $V_R = 1$
- Crucial question: what class of admissible solutions?
 - \circ class of solutions dictates regularity for $\mathbb{E}(M_t)$

$$\mathbb{E}(M_{t+h}-M_t)$$

 $\sim_{N=\infty}$ probability of default in [t, t+h]

 $\sim_{N<\infty}$ proportion of companies default in [t, t+h]

- $\circ \mathbb{E}(M_t)$ is allowed to jump \leftrightarrow large proportion of companies may default at the same time
 - o may stand for a massive default in the system

Instantaneous default rate

• Meaning for requiring $e: t \mapsto \mathbb{E}(M_t)$ to be differentiable?

probability of default in
$$[t, t+h] \sim e'(t)h$$

Dynamics of V (before default) if differentiability

$$dV_t = b(V_t)dt - \alpha e'(t)dt + dW_t$$

SDE → stochastic calculus and regularizing effect

$$\circ \mathbb{P}(V_t \in dy) = \rho(t, y)dy, \quad t > 0, \quad y > 0$$

Fokker Planck equation

$$\partial_t p(t,y) + \partial_y \left[\left(b(y) - \alpha e'(t) \right) p(t,y) \right] - \frac{1}{2} \partial_{yy}^2 p(t,y) = e'(t) \delta_1$$

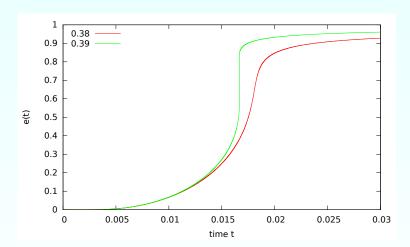
$$op(t,0) = 0$$
 and $\partial_y p(t,0) = \frac{1}{2}e'(t)$

 \circ control of $e' \Leftrightarrow$ control of the mass near 0

Solvability of the regular model

- Existence of regular solutions in arbitrary time?
 - o avoid blow-up of e' in finite time?
 - ⇔ avoid massive defaults?
- Caceres, Carrillo, Perthame (2011)
 - \circ for any $\alpha > 0$, $\exists V_0 > 0$ such that blow-up in finite time!
- D., Inglis, Rubenthaler and Tanré (2014)
 - \circ for $V_0>0$, $\exists !$ solution without blow-up for lpha small enough
 - \circ explicit (but non-optimal) bounds on critical values α
- Brownian example: b = 0 and $V_0 = .2$ ($V_D = 0$, $V_R = 1$)
 - \circ existence of regular solutions if $\alpha \le 0.10$
 - \circ no regular solutions if $\alpha > 0.54$
 - \circ numerically, critical value $\sim 0.38...$
- Exemple O-U $\lambda \to \infty \Rightarrow$ critical $\alpha \to 1$ ($\Leftrightarrow \lambda$ fixed and $\sigma \to 0$)

Illustration



Model with a common noise

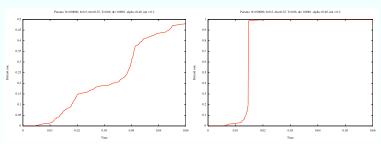
• Common source of noise in dynamics companies

$$V_t^i = V_0^i + \int_0^t b(V_s^i) ds + I_t^i + W_t^i + W_t^0$$

Mean-field modeling

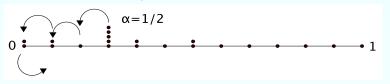
$$V_t = V_R + \int_0^t b(V_s) ds - lpha \mathbb{E}(M_t | W^0) + W_t + W_t^0$$

 \circ same $\alpha \leadsto$ competition with common noise



Sketch of the proof

- Competition between noise and mean-field
- \circ Control regularity of $e \Leftrightarrow$ the mass near the boundary along the construction
- Condition for continuity of e?



$$\Delta e(t) = e(t) - e(t-) = 0$$

$$\Leftrightarrow \exists \delta_n \downarrow 0 : \underbrace{\text{kick due to particles in } [0, \delta_n)}_{\alpha \int_0^{\delta_n} p(t-, y) dy} < \delta_n$$

$$\circ$$
 if $p(t,y) < 1/\alpha$ for $y \in [0,\varepsilon)$ then $e(t) = e(t-)$

Sketch of the proof

- Typical scheme for nonlinear models
 - \circ Existence and uniqueness in short time on $[0, T^*]$

Short time result

$$\circ \text{ if } \quad \frac{1}{dy} \mathbb{P}(V_0 \in dy) \leq \beta y \quad \text{ for } y \in (0, \varepsilon)$$

- \Rightarrow existence and uniqueness on $[0, T^*(\alpha, \beta, \varepsilon)]$
- Picard's fixed point argument

$$e \in \mathcal{C}^1([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E}\bigg(\sum_{s \leq t} \mathbf{1}_{\{V_{s-}=1\}}\bigg)\right)_{0 \leq t \leq T}$$

 \circ where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before default

Sketch of the proof

- Typical scheme for nonlinear models
 - \circ Existence and uniqueness in short time on $[0, T^*]$
 - ∘ Estimate of $\frac{1}{dy}\mathbb{P}(V_{T^*} \in dy)$ and iteration
- Short time result

$$\circ \text{ if } \quad \frac{1}{dy} \mathbb{P}(V_0 \in dy) \leq \beta y \quad \text{ for } y \in (0, \varepsilon)$$

- \Rightarrow existence and uniqueness on $[0, T^*(\alpha, \beta, \varepsilon)]$
- Picard's fixed point argument

$$e \in \mathcal{C}^1([0,T]) \mapsto \left(\Gamma(e)(t) = \mathbb{E}\left(\sum_{s \leq t} \mathbf{1}_{\{V_{s-}=1\}}\right)\right)_{0 \leq t \leq T}$$

• where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before default

Scheme for the a priori estimate

- Assume \exists solution with $e \in C^1$ on [0, T]
 - \circ where $dV_t = b(V_t)dt + \alpha e'(t)dt + dW_t$ before default

• Four steps
$$\begin{cases} \circ \text{ bound for } p(t,y) = \mathbb{P}(V_t \in dy)/dy \\ \circ 1/2 \text{ H\"older bound for } e \\ \circ \text{ H\"older regularity of } p(t,y) \text{ in } y \\ \circ \text{ Lipschitz regularity of } p(t,y) \text{ in } y \end{cases}$$

- Bound of p(t, y)
 - o rough bound using (non-killed) Gaussian kernels

$$V_0 > \varepsilon \Rightarrow p(t, y) \leq C(\varepsilon, \alpha), \quad y \in (0, \varepsilon/4)$$

- \circ very bad (can't see p(t,0) = 0) but explicit
- \circ if $C(\varepsilon, \alpha)\alpha < 1$ then continuity of e (here is α small!)
- o continuity dictated by Brownian: e 1/2-Hölder

Regularity of p close to the boundary

- Recall Dirichlet condition p(t, 1) = 0
 - ∘ p satisfies Fokker-Planck → Feynman-Kac

$$p(T,y) = \mathbb{E}\Big[p(T-
ho,Y_
ho)\exp\Big(-\int_0^
ho b'(Y_s)ds\Big)\big|Y_0=y\Big]$$

- \circ where $dY_t = -b(Y_t)dt + \alpha e'(T-t)dt + dW_t$
- $\circ \rho = \inf\{t \geq 0 : Y_t \not\in (0, \delta)\} \wedge T$
- Regularity of p at the boundary $\leftrightarrow \mathbb{P}\{Y_{\rho} = 0\}$
- Probability to hit the boundary
 - o competition between B and e
 - \circ e 1/2 Hölder \Rightarrow B wins with >0 probability
 - o get Hölder decay and then Lipschitz

Solutions with blow-up

- Limit of particle system ⇒ ∃ solutions with blow-up
 risk modeling → massive/systemic default?
- Description of the jumps of $e(t) = \mathbb{E}(M_t)$ when blow-up?

$$\Delta e(t) = e(t) - e(t-) \ge \delta_0$$
 $\Leftrightarrow \forall \delta \le \delta_0, \ \delta - \text{kick due to particles in } [0, \delta) \le 0$
 $\Delta e(t) = \sup \left\{ \delta_0 : \forall \delta \le \delta_0, \qquad \underbrace{\alpha \int_0^\delta p(t-, y) dy}_{\text{kick due to particles in } [0, \delta)} \ge \delta \right\}$

o restart with density $p(t, y) = p(t-, y + \Delta e(t))$ for y near 1

• Uniqueness? regularization of e just after default?

Convergence of the particle system

• Main difficulty: singularity of the counter of spikes/defaults

$$\frac{1}{N} \sum_{j=1}^{N} \sum_{s \le t} \mathbf{1}_{\{V_{s-}^{j} = 1\}}$$

- o requires tightness for a suitable topology and continuity
- Topology: counter is increasing in time → Skorohod M1

$$Law\Big(\bar{\mu}^N = \frac{1}{N} \sum_{i=1}^N \delta_{V^i}\Big) \rightarrow Law(\mu)$$
 (up to subsequence)

- \circ continuity of counter: μ a.s. hitting $V_F \Leftrightarrow$ crossing V_F
- \circ if ! solution to mean-field equation $\Rightarrow \mu$ is Dirac at solution
- \circ if no ! $\Rightarrow \mu$ charges solutions \rightsquigarrow way to prove \exists

