Recursive utility and dynamic consistency : A literature review

Guillaume DUQUESNE guillaume.duquesne@ens-cachan.fr

22 mars 2012

Does time consistency matter?

- 2 Wonderful world of time consistent agents
- If irrational agents are more than expected...

Dne (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

・ 同 ト ・ ヨ ト ・ ヨ

Plan

Does time consistency matter?

2 Wonderful world of time consistent agents

If irrational agents are more than expected...

One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

Example 1 : Fatty food or balanced diet?

Here, a very simple example of time inconsistency based on time distance and spineless agent.

When asking an agent if she prefers eating a Big Mac or a salad, the answer depends on when the meal occurs :

- Right now \longrightarrow Big Mac (short term gratification, long term pain)
- One week later \longrightarrow Salad (reverse)

Ask an agent if she prefers eating a Big Mac or a salad for a meal taking place in one week. Then one week later, before the meal begins, ask if she wants to change her mind.

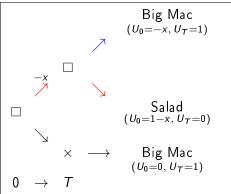
The answer will be **YES**!

One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

Example 1 : Never mind if I change my mind...

Change your mind can be costly especially when your are involved in an optimization problem. Let U_t measure the agent's satisfaction at time t.

- –, agent's strategy at time 0.
- -, agent's deviation at time T,



One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

Example 2 : Mean-Variance criteria

We consider a producer who is subject to production uncertainty and price variation for maturity T_2 . At each time t, he is allowed to partially hedge his exposure with T_2 -forward contracts (F_{t,T_2}) on a market with transaction costs.

For the sake of simplicity, we assume a two period model, ie $t \in \{0, T_1, T_2\}$

Notations/Assumptions

- Q_{t,T_2} : prevision at time t of the production for maturity T_2 .
- Q_t^H : position in T_2 -forward contracts at time t^- , $Q_0^H = 0$.
- $q_t F_{t,T_2} h^2$:transaction cost at time t for a transaction of size h.
- $q_{T_2} = 0$.

One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

Mean-Variance allocation criteria

At each time $t \in \{0, T_1, T_2\}$, the producer follows the first stage of the optimal strategy $(\pi_s^{*,t})_{s \in \{0,T_1,T_2\} \cap [t,T_2]}$ related to :

$$V_t^* = \max_{\pi^t \in \{0,1\}^{T_2-t} \times \{1\}} \underbrace{\mathbb{E}_t \left[P_{t,T_2}^{\pi^t} \right] - \gamma \operatorname{Var}_t \left(P_{t,T_2}^{\pi^t} \right)}_{V_t^{\pi^t}}$$

with :

$$P_{t,T_{2}}^{\pi^{t}} = \sum_{s=t}^{T_{2}} \pi_{s}^{t} \left(F_{s,T_{2}} \left(Q_{s,T_{2}} - Q_{s}^{H,t} \right) - q_{s} F_{s,T_{2}} \left(Q_{s,T_{2}} - Q_{s}^{H,t} \right)^{2} \right)$$

$$Q_{s+1}^{H,t} = Q_{s}^{H,t} + \pi_{s}^{t} \left(Q_{s,T_{2}} - Q_{s}^{H,t} \right), \ Q_{t}^{H,t} = Q_{t}^{H}$$

One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What have I done wrong?

Remark

The mean variance criteria in a multi period setting results in time inconsistency of investment policies.

$$V_{0}^{\pi^{0}} = \pi_{0}^{0} \left(F_{0,T_{2}} \left(Q_{0,T_{2}} - Q_{0}^{H} \right) - q_{0} F_{0,T_{2}} \left(Q_{0,T_{2}} - Q_{0}^{H} \right)^{2} \right) \\ + \mathbb{E}_{0} \left[V_{T_{1}}^{\pi_{0}^{0}} \right] \\ \underbrace{-\gamma Var_{0} \left(\mathbb{E}_{T_{1}} \left[P_{T_{1}}^{\pi_{0}^{0}} \right] \right)}_{time \ inconsitency}$$

One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

Numerical example

•
$$T_1 = 1, T_2 = 2, q_0 = 0.4, q_1 = 0.39, \gamma = 4$$

 1.2
 $T_{t,2} : 1.0 \rightarrow 1.0$
 $Q_{t,2} : 1.0$
 $Q_{t,2} : 0.9 \rightarrow 0.9$

Results

•
$$\pi^{*,0} = (1, \{1,0\}), \ \pi^{*,1} = 1$$

- The optimal strategy conditionally to producer's future behaviour is π = (0, {1, 1}). (hedging cost : {0.43, 0.35})
- The strategy really followed by the producer is $\pi = (1, \{1, 1\})$. (hedging cost : $\{0.44, 0.44\}$)

Does time consistency matter?

Wonderful world of time consistent agents If irrational agents are more than expected...

Time consistency

One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

A (1) < A (1) < A (1) < A (1) </p>

Definition (Time inconsistency)

Our interpretation of time inconsistency is that our behaviour may change over time in a inconsistent way.

Time-consistency and optimization problem

In general, time-inconsistent preferences/risk measures can not be incorporated in a consistent way in a multi-stage decision problem, ie the dynamic programming principle does not hold.

One (surrealistic) example to understand time-inconsistency Does time-consistency occur in the real world?

・ 同 ト ・ ヨ ト ・ ヨ ト

How can we deal with time inconsistency?

There is at least four different ways of handling a time inconsistent problem :

- $\bullet\,$ pretending nothing's wrong $\to\,$ absurd
- allowing commitment \rightarrow not so realistic at the level of firm (commitment devices exist for consumers[Lai97a])

What I am going to talk about :

- ullet requiring rational behaviour ightarrow preference/risk measure theory
- ullet looking for equilibrium o game theory

Lotteries framework Dynamic risk measures

Plan

Does time consistency matter?

2 Wonderful world of time consistent agents

If irrational agents are more than expected...

Guillaume DUQUESNE guillaume.duquesne@ens-cachan.fr Recursive utility and dynamic consistency : A literature rev

▲□▶ ▲ □▶ ▲ □

Risk profiles - a lottery framework

- Let Ω be a finite set of states and B(R) be the space of bounded functions from Ω to the real line R. An element of B(R) is viewed as the net loss (risk) incurred in a period.
- The space of t-period risk profiles is constructed recursively. Let $D_0 = \mathcal{B}(\mathbb{R})$:

$$\left\{ egin{aligned} D_0 &= \mathcal{B}\left(\mathbb{R}
ight) \ D_t &= \mathcal{B}\left(\mathbb{R} imes D_{t-1}
ight), \ t \geq 1 \end{aligned}
ight.$$

• The space *D* [EZ89, Wan99, ML78] of risk profiles is defined as follow :

$$D = \{(d_1, d_2, ...) : d_t \in D_t \text{ and } d_{t-1} = f_t(d_t)\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

where $f_t: D_t \rightarrow D_{t-1}$ is the "tail-cut" operator.

Bellman's Principle of Optimality

Denote by d^{π} the risk profile associated to a portfolio controlled by the policy π , and V_t our optimization criteria at time t. At time t, the agent faces the following optimization problem :

$$\max_{\pi^{t}=(\pi_{t},\ldots,\pi_{T})}V_{t}\left(d^{\pi^{t}}\right), \forall t$$

In general the Bellman's Principle of Optimality does not hold, ie :

$$\pi^{t,*} \in \operatorname*{argmax}_{\pi^{t}} V_t\left(d^{(\pi^{t})}\right) \not\Rightarrow \left(\pi^{t,*}_{s},...,\pi^{t,*}_{T}\right) \in \operatorname*{argmax}_{\pi^{s}} V_s\left(d^{(\pi^{s})}\right)$$

How can we choose (V_t) in order to assure that the DPP hold?

Guillaume DUQUESNE guillaume.duquesne@ens-cachan.fr Recursive utility and dynamic consistency : A literature rev

イロト イポト イヨト イヨト

Definition (Dynamic risk measure)

 $V: D \to \mathbb{R}$ is called a dynamic risk measure if V(x, 0) = x.

If V is a risk measure, define $ilde{V}\left(d
ight):\Omega
ightarrow\mathbb{R}$ by

$$ilde{V}\left(d
ight)\left(\omega
ight)=V\left(ilde{x}_{0}\left(\omega
ight), ilde{d}_{1}\left(\omega
ight)
ight)$$

Guillaume DUQUESNE guillaume.duquesne@ens-cachan.fr Recursive utility and dynamic consistency : A literature rev

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lotteries framework Dynamic risk measures

Assumptions

Continuity (C) : For all
$$\{d_n\}_n$$
, $\{d'_n\}_n \in D$, $d_n \to d, d'_n \to d'$,
 $V(d_n) \ge V(d'_n) \Rightarrow V(d) \ge V(d')$

Risk separability (RS) : For all $x, x' \in \mathbb{R}$, $d, d' \in D$,

$$V\left(x,d
ight)\geq V\left(x,d'
ight)\Leftrightarrow V\left(x',d
ight)\geq V\left(x',d'
ight)$$

Consistency(TC): For all (x_i, d_i) and $(x'_i, d'_i) \in \mathbb{R} \times D$, i = 1, ..., n, and all partitions $\{A_i, i = 1, ..., n\}$ of Ω , if $V(x_i, d_i) \ge V(x'_i, d'_i)$ for all *i*, then

$$V\left(\sum_{i} (x_i, d_i) \mathbf{1}_{A_i}\right) \geq V\left(\sum_{i} (x'_i, d'_i) \mathbf{1}_{A_i}\right)$$

Stationarity (S) : For some $\overline{x} \in \mathbb{R}$ and all $(d, d') \in D^2$,

$$V\left(\overline{x},d
ight)\geq V\left(\overline{x},d'
ight)\Leftrightarrow V\left(d
ight)\geq V\left(d'
ight)$$

Theorem ([EZ89, Wan99])

The risk measure V satisfies properties (C),(RS),(TC),(S) if and only if

$$V\left(d
ight)=\mu\left(ilde{V}\left(d
ight)
ight)$$

and

$$V(x,d) = W(x,V(d))$$

where μ is a certainty equivalent and $W : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is continuous and strictly monotone

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Lotteries framework Dynamic risk measures

Epstein Framework

Epstein specification [EZ89]

$$W(x,z) = \phi^{-1} \left(\phi(x) + \beta \phi(z) \right)$$

for some strictly increasing function $\phi : \mathbb{R} \to \mathbb{R}$ with $\phi(0) = 0$, where β is a constant.

Example : Epstein and Zin recursive utility [EZ89, Cam92] If $\mu(X) = \beta \mathbb{E}_{\mathbb{P}} \left[X^{\theta} \right]^{\frac{1}{\theta}}$ and $\phi(x) = x^{\frac{1-\gamma}{\theta}}$, then

$$V(d) = \left(x_0^{\frac{1-\gamma}{\theta}} + \beta \mathbb{E}_{\mathbb{P}}\left[\tilde{V}(d)^{1-\gamma}\right]^{\frac{1}{\theta}}\right)^{\frac{\theta}{1-\gamma}}$$

In such framework, γ represents the risk aversion, while $\psi = 1 - \frac{1-\gamma}{\theta}$ is the inter-temporal elasticity of substitution.

Lotteries framework Dynamic risk measures

Wang Framework

Wang specification [Wan99]

$$V(x,d) = \phi^{-1}\left(\phi(x) + \beta\psi^{-1}\left[\int \psi\left[\phi\left(\tilde{V}(d)\right)\right]d\nu\right]\right)$$

where ν is a monotonic set function and ϕ and ψ are strictly increasing functions such that $\phi(0) = \psi(0) = 0$ and

$$\psi^{-1}\left(\int\psi\left[\phi\left(\beta\tilde{x}\right)\right]d\nu\right)=\beta\psi^{-1}\left(\int\psi\left[\phi\left(\tilde{x}\right)\right]d\nu\right)$$

Example : The worst-case likelihood measure Let $q\left(\{\tilde{V}(d) \ge z\}\right) = \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{P}\left(\{\tilde{V}(d) \ge z\}\right)$, let $\beta = 1$ and let $\phi(x) = \psi(x) = x$. $V(x, d) = x + Q_{q,p}\left(\tilde{V}(d)\right)$

Lotteries framework Dynamic risk measures

Dynamic risk measures

Let's
$$T \in \mathbb{N}^*$$
 and $\left(\Omega, \mathcal{F}, \mathbb{F} = \left(\mathcal{F}_t\right)_{t \in [0, T] \cap \mathbb{N}}, \mathbb{P}\right)$ be filtered
probability space that satisfies the usual assumptions.
Let define :

• $\mathcal{R}_{t,T}^{\infty} = \{1_{\{t \leq .\}}X : [0,T] \cap \mathbb{N} \times \Omega \to \mathbb{R}, Prog, \|X^*\|_{\infty}\}$ • $\mathcal{A}^1 = \{a : [0,T] \cap \mathbb{N} \times \Omega \to \mathbb{R} | \mathbb{F} - adapted, Var(a) \in L^1(\mathbb{P})\}$ • $\forall a \in \mathcal{A}^1, X \to \langle X, a \rangle_{t,T} = \mathbb{E}\left[\sum_{s \geq t} X_s \Delta a_s | \mathcal{F}_t\right]$ • $\mathcal{D}_{t,T} = \{1_{\{t \leq .\}}a | a \in \mathcal{A}_+^1 | \langle 1, a \rangle_{t,T} = 1\}$

Lotteries framework Dynamic risk measures

Conditional risk measure

For all
$$X, Y \in \mathcal{R}^{\infty}_{t,T}, \lambda \in L^{\infty}_{+}(\mathcal{F}_{t})$$

Monetary risk measure

 $ho:\mathcal{R}^{\infty}_{t,\mathcal{T}}
ightarrow L^{\infty}\left(\mathcal{F}_{t}
ight)$ is a conditional monetary risk measure if :

- (Normalisation) $\rho(0) = 0$
- (Monotonicity) $X \leq Y \Rightarrow \rho(X) \geq \rho(Y)$
- $(\mathcal{F}_t$ -Translation) $\rho\left(X + m\mathbf{1}_{[t,T]}\right) = \rho\left(X\right) m, \ \forall m \in L^{\infty}\left(\mathcal{F}_t\right)$

Furthermore, ρ is

- convex if $\rho(\lambda X + (1 \lambda) Y) \le \lambda \rho(X) + (1 \lambda) \rho(Y), \lambda \le 1$
- coherent iff ρ is convex and satisfies that $\rho(\lambda X) = \lambda \rho(X)$
- *T*-relevant iff $A \subset \{\rho(-\epsilon \mathbf{1}_{A}\mathbf{1}_{[s,T]}) > 0\} \forall \epsilon > 0, A \in \mathcal{F}_{s}$

イロト イポト イヨト イヨト

Lotteries framework Dynamic risk measures

Representation Theorem

Theorem (Dual representation [PCK04, PCK03, Del00])

Let $\rho_{t,T} : \mathcal{R}^{\infty}_{t,T} \to \mathbb{R}$ be a conditional monetary risk measure (\Leftrightarrow) :

• There exists a $\sigma^*\left(\mathcal{A}^1, \mathcal{R}^\infty\right), \mathcal{F}_t$ -closed convex set $\mathcal{Q} \in \mathcal{D}_{t, \mathcal{T}}$:

$$\rho_{t,T}\left(X\right) = -\underset{a \in \mathcal{Q}}{ess.\, inf} \langle X, a \rangle_{t,T} \, \forall X \in \mathcal{R}_{t,T}^{\infty}$$

•
$$\rho_{t,T}$$
 satisfies the Fatou property.

Example : if $\rho(X) = -\mathbb{E}_{\mathbb{P}}[\inf_{n} X_{n}]$, then ρ is a coherent risk measure with representation :

$$\rho(X) = -\inf_{A^{\tau} \in \mathcal{A}} \mathbb{E}_{\mathbb{P}} \left[\sum X_n \left(A_n^{\tau} - A_{n-1}^{\tau} \right) \right]$$
$$\mathcal{A} = Hull \left(\left\{ A^{\tau} | A_n^{\tau} = A_{n-1}^{\tau} + \mathbb{E}_{\mathbb{P}} \left[\mathbf{1}_{\{\tau=n\}} | \mathcal{F}_n \right], \tau \text{ random time} \right\} \right)$$

Definition (Time consistency)

A monetary risk measure $(\rho_{t,T})_{t \in [S,T]}$ is time-consistent (\Leftrightarrow)

- Consistency :
 - $\forall X, Y \in \mathcal{R}^{\infty}_{t,T} \text{ s.t.}$

$$X \mathbf{1}_{[au, heta)} = Y \mathbf{1}_{[au, heta)}$$
 and $ho_{ heta, au}(X) \leq
ho_{ heta, au}(Y)$

then

$$\rho_{\tau,T}(X) \leq \rho_{\tau,T}(Y)$$

• Bellman principle :

$$\rho_{t,T}(X) = \rho_{t,T} \left(X \mathbf{1}_{[t,\theta)} - \rho_{\theta,T}(X) \mathbf{1}_{[\theta,T]} \right)$$

for each $t \in [S, T]$, every finite \mathcal{F}_t -stopping time θ such that $t \leq \theta \leq T$ and all processes $X \in \mathcal{R}_{t,T}^{\infty}$

(日) (同) (三) (三)

Theorem ([PCK04, PCK03, Nad06])

Let $(\rho_{t,T})$ be a time consistent dynamic coherent risk measure such that $\rho_{0,T}$ is *T*-relevant and continuous for bounded decreasing sequences. Then the sets

$$\mathcal{Q}_{0,\mathcal{T}}^{0} = \{ a \in \mathcal{D}_{0,\mathcal{T}} | \rho^{\sharp}\left(a\right) = 0 \} \text{ and } \mathcal{Q}_{0,\mathcal{T}}^{0,rel} = \mathcal{Q}_{0,\mathcal{T}}^{0} \cap \mathcal{D}_{0,\mathcal{T}}^{rel},$$

are **stable** [Del03], and for every finite stopping time $\tau \leq T$ and $X \in \mathcal{R}^{\infty}_{\tau,T}$,

$$\rho_{\tau, T}(X) = -\underset{a \in \mathcal{Q}_{0, T}^{0, rel}}{\operatorname{ess.inf}} \frac{\langle X, a \rangle_{\tau, T}}{\langle 1, a \rangle_{\tau, T}}$$

Guillaume DUQUESNE guillaume.duquesne@ens-cachan.fr Recursive utility and dynamic consistency : A literature rev

Lotteries framework Dynamic risk measures

Example

Let \mathcal{Q} be a stable subset of $\mathcal{D}_{0,\mathcal{T}} \cap \{Z_{\mathcal{T}} | Z_{\mathcal{T}} \geq 0, \in \mathbb{E}_{\mathbb{P}}[Z_{\mathcal{T}}] = 1\}.$

 Example : Terminal value risk measures [Rie03, BR02] The dynamic risk measure ρ defined by Q can be identified with :

$$\rho_{t,T}(X) = -\underset{\mathbb{P}\in\mathcal{P}}{essinf}\mathbb{E}_{\mathbb{P}}[X_T|\mathcal{F}_t]$$

• Example :Snell Envelop [PA04] $\rho_t(X) = -ess. \inf \{ \mathbb{E}_{\mathbb{Q}} [X_{\tau} | \mathcal{F}_t] | \tau \ge t, \text{ stopping time}, \mathbb{Q} \in \mathcal{Q} \}$ coincides with $\overline{\rho}$ defined recursively by :

$$\begin{cases} \overline{\rho}_{T}(X) = -X_{N} \\ \overline{\rho}_{t}(X) = -\left(X_{t} \land ess. \inf_{\mathbb{Q} \in \mathcal{P}^{e}} \mathbb{E}_{\mathbb{Q}}\left[\overline{\rho}_{t+1}(X) | \mathcal{F}_{t}\right]\right), \ 0 \leq t < T \end{cases}$$

4 冊 ト 4 三 ト 4 三 ト

Lotteries framework Dynamic risk measures

Entropic risk measure

Theorem ([KS09])

The family $(\rho_t)_{t\in\mathbb{N}_0}$ is law invariant, time consistent, relevant dynamic risk measure if and only if there is $\gamma \in (-\infty, +\infty]$ such that :

$$ho_t(X) = rac{1}{\gamma} ln \mathbb{E}\left[\exp\left(-\gamma X
ight) | \mathcal{F}_t
ight]$$

The limiting cases $\gamma={\rm 0}$ and $\gamma=\infty$ are defined such as :

$$\rho_t(X) = \begin{cases} \mathbb{E}\left[-X|\mathcal{F}_t\right] & \gamma = 0\\ ess. \sup_{Z \in \mathcal{P}_t} \mathbb{E}\left[Z\left(-X\right)\right] & \gamma = \infty \end{cases}$$

where \mathcal{P}_t denotes the set of all positive integrable random variables Z with $\mathbb{E}[Z|\mathcal{F}_t] = 1$ In addition, the dynamic risk measure $(\rho_t)_{t \in \mathbb{N}_0}$ is convex (resp coherent) iff $\gamma \in [0, \infty]$ (resp $\gamma \in \{0, \infty\}$)

Irrational agents must be reasonable... Inconsistency and Extended HJB system

・ 同 ト ・ ヨ ト ・ ヨ

Plan

Does time consistency matter?

2 Wonderful world of time consistent agents

3 If irrational agents are more than expected...

• • = • • = •

What does a time-inconsistent decision problem look like?

Following [BM10], we introduce the quit general time-inconsistent optimization problem :

$$\begin{cases} V(t,x) = \max_{u \in \mathcal{U}} \left\{ \mathbb{E}_{t,x} \left[\int_{t}^{T} C(t,x,s,X_{s}^{x},u_{s}) ds + F(t,x,X_{T}^{x}) \right] \right. \\ \left. + \frac{G(t,x,\mathbb{E}_{t,x}[X_{T}^{x}]) \right\} \\ dX_{s}^{t,x} = \mu\left(s,X_{s}^{t,x},u_{s}\right) ds + \sigma\left(t,X_{s}^{t,x},u_{s}\right) dW_{s} \\ X_{t}^{t,x} = x \end{cases}$$

This kind of problems is time inconsistent in the sense that Bellman Optimality Principle does not hold.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Consumption problem with impatience rate :

$$\begin{cases} \max_{u=(c,\theta)} \mathbb{E} \left[\int_{t}^{T} h(s-t) u(c_{s}) ds \right] \\ dX_{s}^{t,x} = \left(rX_{s}^{t,x} + \theta_{s} \left(\mu - r \right) - c_{s} \right) ds + \theta_{s} \sigma dW_{s} \\ X_{t}^{t,x} = x \end{cases}$$

Exemple : *Hyperbolic discount factor* [EA08, EL10, EL08] Let *u* be of CRRA form and *h* such that :

$$h(s-t) = \delta e^{-\rho_0(s-t)} + (1-\delta) e^{-\rho_\infty(s-t)}$$

 Portfolio allocation under mean variance criteria [BM10, TBZ11, BC11] :

$$\begin{cases} \max_{\theta} \mathbb{E}_{t} \left[X_{T}^{t,x} \right] - \gamma \operatorname{Var}_{t} \left(X_{T}^{t,x} \right) \\ dX_{s}^{t,x} = \left(rX_{s}^{t,x} + \theta_{s} \left(\mu - r \right) \right) ds + \theta_{s} \sigma dW_{s} \\ X_{t}^{t,x} = x \end{cases}$$

・ 同 ト ・ 三 ト ・

Irrational behaviour and Game theory

Optimization problem under time-inconsistent behaviour can be viewed as a sequential game, where the players are several successive "selves" \Rightarrow Game theory problem

Irrational agents must be reasonable... Inconsistency and Extended HJB system

イロト イポト イヨト イヨト

Nash equilibrium [PM72]

Equilibrium

A strategy is a Nash equilibrium, if at time t, the agent has nothing to gain by changing unilaterally his strategy on period [t, t + 1].

 \Downarrow sequential game

Perfect Sub-game Nash equilibrium [Gol80, R.H55]

A strategy is a Perfect Sub-game Nash equilibrium, if it is constructed by backward induction as follow : at time t the decision maker guesses what her successors are planning to do, and decides her optimal plan accordingly. (uniqueness?)

マロト イラト イラト

Recursive approach

Recursive optimization technique dominates many areas of economic dynamics.

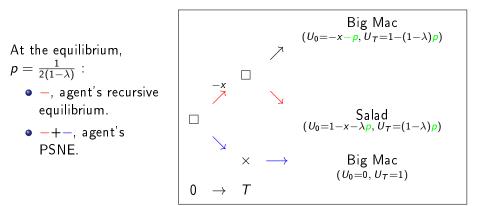
- \bullet Sub-game perfection \rightarrow arbitrary beliefs about breaking the indifference
- Recursive approach [CL04] \rightarrow leaving the breaking of indifference to the initial self

Indeed the agent chooses :

- an action today
- an optimal continuation plan from the set of optimal continuation plans

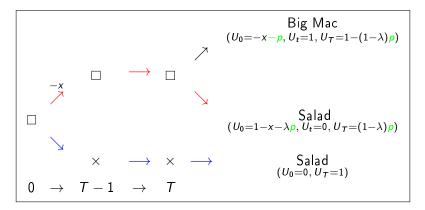
Example 1 : Fatty food vs balanced diet with incitations

We suppose that the agent is able to incite his future incarnation thanks to a premium p:



Example 2 : Fatty food vs balanced diet with renegotiation

We modify the previous example by adding an intermediate renegotiation time. The recursive equilibrium dismisses.



Continuous time perfect sub-game Nash equilibrium

Consider a control law \hat{u} . Choose a fixed $u \in \mathcal{U}$, a fixed number h > 0. Also fix an arbitrary chosen initial point (t, x). Define the control law u_h by :

$$u_{h}(s) = \begin{cases} u, t \leq s \leq t + h \\ \widehat{u}_{s}, t + h \leq s \leq T \end{cases}$$

lf

$$\liminf_{h\to 0}\frac{J(t,x,\widehat{u})-J(t,x,u_h)}{h}\geq 0$$

for all $u \in U$, we say that \hat{u} is an equilibrium control law [EA08]. The equilibrium value function V is defined by :

$$V(t,x)=J(t,x,\widehat{u})$$

Irrational agents must be reasonable... Inconsistency and Extended HJB system

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extended HJB system

The extended HJB system of equations for the Nash equilibrium problem is defined as follows [BM10] :

$$\begin{cases} 0 = \sup_{u \in \mathcal{U}} \left\{ \mathcal{L}^{u} V(t, x) + C(t, x, t, x, u) + h(t, x, u, \widehat{u}) \right\} \\ V(T, x) = F(T, x, x) + G(T, x, x) \end{cases}$$

Remark

- Verification theorem
- Fixed point problem
- Equivalent time consistent problem

Irrational agents must be reasonable... Inconsistency and Extended HJB system

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example - Portfolio allocation

The investor's wealth process X follows :

$$dX_t = (rX_t + \theta_t (\mu - r)) dt + \theta_t \sigma dW_t, X_0 = x$$

At each time t, the investor faces the optimization problem : $\max_{\theta} \mathbb{E}_t \left[X_T \right] - \frac{\gamma}{2} \operatorname{Var}_t (X_T)$

Results

•
$$\theta_t^* = \frac{\mu - r}{\gamma \sigma^2} e^{-r(T-t)} \xi_t e^{\left(\frac{\mu - r}{\sigma}\right)^2 (T-t) + rt}$$
 (Pre-commitment)

•
$$\hat{\theta}_t = \frac{\mu - r}{\gamma \sigma^2} e^{-r(T-t)}$$
 (Nash subgame equilibrium)

• $\max_{\theta} \mathbb{E}_t \left[-\epsilon_T e^{-\gamma X_T} \right]$ (Equivalent time-consistent problem)

$$d\epsilon_t = -rac{\gamma^2}{2}\epsilon_t \operatorname{Var}_t \left(dX_t^{\widehat{u}} e^{r(T-t)}
ight)$$
 and $d\xi_t = \xi_t \left(-rdt - rac{\mu-r}{\sigma} dW_t
ight)$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion-Goals

We have present to way of handling time-inconsistency :

- time consistent preferences (representation theorems + DP)
- game theory approach (unchanged preferences + BI)

At EDF, we attempt to study time-inconsistency in managing a commodities portfolio on a market with transaction costs and margin calls. We try to compare and to understand each of the two approach lists above.

Imperative

Because we work with the firm's financial management, we must deduce rules that have a clear meaning (ex : CAPM approach).

イロト イポト イラト イラト

- [BC11] Suleyman Basak and Georgy Chabakauri. Dynamic mean variance asset allocation. October 2011.
- [BM10] Tomas Bjork and Agatha Murgoci. A general theory of markovian time inconsistent stochastic control problems. September 2010.
- [BR02] Hans Schumacher Berend Roorda, Jacob Engwerda. Coherent acceptability measures in multiperiod models. Jully 2002.
- [BRV11] Alexandre Street Birgit Rudloff and Davi Valladao. Time consistency and risk averse dynamic decision models : Interpretation and pratical consequences. February 2011.

[Cam92] John Y. Campbell.

イロト イポト イヨト イヨ

Intertemporal asset pricing without consumption data. February 1992.

[CL04] Andrew Caplin and John Leahy. The recursive approach to time inconsistency. February 2004.

- [Del00] Freddy Delbaen. Coherent risk measures on general probability spaces. March 2000.
- [Del03] Freddy Delbaen. The structure of m-stable sets and in particular the set of risk neutral measures. May 2003.
- [EA08] Ivar Ekeland and Traian A.Pirvu. Invesment and consumption without commitment. December 2008.

(日) (同) (三) (三)

Ivar Ekeland and Ali Lazrak. [EL08] Equilibrium policies when preferences are time inconsistent. August 2008. [EL10] lvar Ekeland and Ali Lazrak. The golden rule when preferences are time inconsistent. Springer, February 2010. [EZ89] Larry G. Epstein and Stanley E. Zin. Substitution, risk aversion, and the temporal behavior of consumption and asset returns : A theoretical framework Econometrica, 57, July 1989. [GB92] Larry G.Epstein and Michel Le Breton. Dynamically consistent beliefs must be bayesian. April 1992.

[Gol80] Goldman. Consitent plans. The review of economic studies, 1980, [IEP11] Oumar Mbodji Ivar Ekeland and Traian A. Pirvu. Time consistent portfolio management. July 2011. Simon Grant Jurgen Eichberger and David Kelsey. [JEK04] Ceu preferences and dynamic consistency. Elsevier. October 2004. [JYCT11] Christopher Polk John Y. Campbell, Stefano Giglio and Robert Turley. An intertemporal capm with stochastic volatility. October 2011. [KL] Larry Karp and In Ho Lee. Time consistent policies.

[KS09] Michael Kupper and Walter Schachermayer. Representation results for law invariant time consistent functions. August 2009. [Lai97a] David Laibson. Golden eggs and hyperbolic discounting. The guarterly Journal of Economics, May 1997. [Lai97b] David Laibson. Golden eggs and hyperbolic discounting. May 1997. [Mac89] Mark Machina. Dynamic consistency and non-expected utility models of choice under uncertainty. Journal of Economic Literature, XXVII, December 1989. [ML78] David M.Kreps and Evan L.Porteus.

Temporal resolution of uncertainty and dynamic choice theory. *Econometrica*, January 1978.

[Nad06] Jocelyne Bion Nadal. Dynamic risk measures : Time consistency and risk measures from bmo martingales. December 2006.

 [PA04] Jean Marc Eber David Heath Hyejin Ku Philippe Artzner, Freddy Delbaen.
 Coherent multiperiod risk adjusted values and bellman's principle.
 Springer, November 2004.

 [PAK04] Jean-Marc Eber David Heath Philippe Artzner, Freddy Delbaen and Hyejin Ku.
 Coherent multi periodrisk adjusted values and bellman principle.

Irrational agents must be reasonable... Inconsistency and Extended HJB system

November 2004.

[PCK03] Freddy Delbaen Patrick Cheridito and Michael Kupper. Coherent and convex risk measures for bounded cadlag processes. April 2003.

- [PCK04] Freddy Delbaen Patrick Cheridito and Michael Kupper. Dynamic monetary risk measures for bounded discrete-time processe. October 2004.
- [PM72] B. Peleg and E.Y Menahem. On the existence of a consistent course of action when tates are changing. *The review of economic studies*, 1972.

[R.A]

R.A.Pollak.

Consistent planning.

The review of economic studies.

イロト イポト イヨト イヨト

3

[R.H55]	R.H.Strotz. Myopia and inconsistency in dynamic utility maximization. <i>The review of economic studies</i> , 1955.
[Rie03]	Frank Riedel. Dynamic coherent risk measures. January 2003.
[Sha09]	Alexander Shapiro. On a time consistency concept in risk averse multistage stochastic programming. <i>Elsevier</i> , March 2009.
[TBZ11]	Agatha Murgoci Tomas Blork and Xun Yu Zhou. Mean variance portfolio optimization with state dependent risk aversion. January 2011.

Irrational agents must be reasonable... Inconsistency and Extended HJB system

・ 同 ト ・ ヨ ト ・ ヨ ト

[Wan99] Tan Wang.

A class of dynamic risk measures. September 1999.