Modélisation économétrique affine des prix spot et à terme d'électricité

Olivier FÉRON 1 et Alain Monfort 2

¹ Electricité de France (EDF)— Research & Development 1 Avenue du Général de Gaulle, CLAMART, FRANCE

² Centre de recherche en économie et statistique (CREST) 3 Avenue Pierre Larousse, MALAKOFF, FRANCE

Sommaire

- Contexte
- Approche économétrique affine
 - Hypothèses fondamentales
 - Construction d'une probabilité risque neutre
 - Principes de modélisation
- Description du modèle considéré
 - Dynamique historique
 - Dynamique risque neutre
- conclusion et perspectives

Contexte

- Objectif: calculer des indicateurs de risque pour des portefeuilles thermosensibles
 - Avoir une modélisation conjointe prix spot / prix à terme
 - Intégrer la température comme variable exogène

Modèles existants :

- Modèle à deux facteurs (modèle financier) : assure la cohérence prix spot / prix à terme (absence d'opportunité d'arbitrage)
- Modèle économétrique : permet de modéliser plus finement les prix spot (dépendance à la température, pics de prix,...)

Approche économétrique affine

- Modèles économétriques
- « Cohérence » prix spot / prix à terme

Approche économétrique affine

 Clé : Hypothèses différentes de celles classiquement utilisées en finance

4 pilliers :

- Facteur d'escompte sotchastique
 — lien entre probabilité historique et probabilité risque neutre
- Processus affine ou CAR → large éventail de modèles
- Transformée de Laplace → calculs explicites de valorisation
- Algorithme de Kitagawa-Hamilton → estimation des paramètres

Hypothèses fondamentales

Notations:

- S_t le prix du sous-jacent à la date t.
- $g(S_T)$ pay-off, dépendant du prix S_T de la date T
- $p_t[g(S_T)]$ le prix du produit dérivé à la date t

Hypothèse sur l'information :

Il existe une suite croissante d'ensemble $(I_t)_t$ à partir desquels sont calculés les flux et les prix d'actifs.

Hypothèses fondamentales

- **1 Existence des prix**: À chaque flux de paiement $g_T \in I_T$ correspond un prix à la date t, noté $p_t[T, g] \in I_t$.
- Absence d'opportunité d'arbitrage statique : l'opérateur de prix

$$g \rightarrow p_t [T, g]$$

est linéaire et continu.

Absence d'opportunité d'arbitrage dynamique : il est impossible de construire un portefeuille de produits dérivés de coût initial nul et qui a une probabilité non nulle d'être strictement positif dans le futur.

Construction de la probabilité Risque Neutre

- **1 Existence des prix :** À chaque flux de paiement $g_T \in I_T$ correspond un prix à la date t, noté $p_t[T, g] \in I_t$.
- 2 Absence d'opportunité d'arbitrage statique : l'opérateur de prix

$$g \rightarrow p_t [T, g]$$

est linéaire et continu.

 \implies p_t définit une forme linéaire

Théorème de représentation de Riesz

Il existe une fonction $M_{t,T}$ telle que :

$$p_t[T,g] = \mathbb{E}_t[M_{t,T}g]$$

 $M_{t,T}$ est le facteur d'escompte stochastique (SDF)

Construction de la probabilité Risque Neutre

• Pour une obligation zero-coupon, g = 1,

$$B(t,T) = \mathbb{E}_t [M_{t,T}]$$

Réécriture du prix du produit dérivé

$$egin{array}{lcl} egin{array}{lcl} eta_t \left[g
ight] &=& \mathbb{E}_t \left[M_{t,T} g
ight] \ &=& B(t,T) \mathbb{E}_t \left[rac{M_{t,T}}{\mathbb{E}_t \left[M_{t,T}
ight]} g
ight] \ &=& B(t,T) \mathbb{E}_t^{\mathbb{Q}_t^T} \left[g
ight] \end{array}$$

Probabilité modifiée

$$\mathbb{E}_{t}^{\mathbb{Q}_{t}^{T}}\left[X\right] = \mathbb{E}_{t}\left[\frac{M_{t,T}}{\mathbb{E}_{t}\left[M_{t,T}\right]}X\right]$$

Construction de la probabilité risque neutre

Absence d'opportunité d'arbitrage dynamique : il est impossible de construire un portefeuille de produits dérivés de coût initial nul et qui a une probabilité non nulle d'être strictement positif dans le futur.

Conséquence :

- Positivité de $M_{t,T}$: $\mathbb{P}\left(M_{t,T}>0|I_{t}\right)=1, \forall t,T$
- Pour tout flux g_T , $p_t[g_T] = p_t[p_s[g_T]]$, $t \le s \le T$
- Cohérence temporelle des SDF

$$M_{t,T} = M_{t,t+1}M_{t+1,t+2}\dots M_{T-1,T}$$

Construction de la probabilité risque neutre

• Prix d'un produit dérivé de flux g_T :

$$p_t[g_T] = B(t, T) \mathbb{E}_t \left[\frac{\prod_{s=t}^{T-1} M_{s, s+1}}{\prod_{s=t}^{T-1} \mathbb{E}_t [M_{s, s+1}]} g_T \right]$$

• Pour tout processus de prix $p_t = \mathbb{E}_t [M_{t,T}g_T]$

$$p_t = \mathbb{E}_t [M_{t,s}p_s], \quad \forall s \ge t$$

 $M_{0,t}p_t = \mathbb{E}_t[M_{0,s}p_s]$

 $\Rightarrow M_{0t}p_t$ est une martingale

Probabilité risque neutre

$$\mathbb{E}_{t}^{\mathbb{Q}}\left[g_{\mathcal{T}}\right] = \mathbb{E}_{t}\left[\frac{\prod_{s=t}^{T-1} \textit{M}_{s,s+1}}{\prod_{s=t}^{T-1} \mathbb{E}_{t}\left[\textit{M}_{s,s+1}\right]}g_{\mathcal{T}}\right]$$

Discussion

Approche classique (temps discret) :

- AOA ⇔ existence d'une probabilité qui rend les actifs actualisés martingales
- Pour tout payoff g_T atteignable, alors $p_t[g_T] = \mathbb{E}^\mathbb{Q}\left[B(t,T)g_T\right]$
- Payoff atteignable ⇔ il existe une stratégie admissible telle que h = V_T(φ)

Approche économétrique affine :

- Existence de prix pour tout payoff (liquide ou non, observable ou non). Le prix est fonction de l'information l_t définie a priori.
- + AOA ⇒ existence d'une probabilité risque neutre. Cette probabilité rend les actifs actualisés martingales

Marchés incomplets

- Il existe une infinité de SDF $M_{t,t+1}$, fonction de l'information I_{t+1} compatibles avec les prix observés.
- On restreint a priori le nombre de SDF admissibles
- Formes paramétriques pour obtenir des formules de valorisation explicites :

$$M_{t,t+1} = exp\left\{\alpha_t(\boldsymbol{w}_t) + \beta_t(\boldsymbol{w}_t)\boldsymbol{w}_{t+1}\right\}$$

forme exponentielle affine.

Formule de Black et Scholes

Modèle (discrétisé) d'évolution de l'actif risqué

$$r_{t+1} = \ln rac{\mathcal{S}_{t+1}}{\mathcal{S}_t} \sim \mathcal{N}\left(\mu - rac{\sigma^2}{2}, \sigma^2
ight)$$

Facteur d'escompte stochastique

$$M_{t,t+1} = \exp\left\{\alpha + \beta r_{t+1}\right\}$$

• Contraintes sur α et β

$$\mathbb{E}_{t}[M_{t,t+1}] = B(t,t+1) = exp\{-r\}$$

 $\mathbb{E}_{t}[M_{t,t+1}S_{t+1}] = S_{t}$

Formule de Black et Scholes

 Distribution risque neutre : caractérisation par la transformée de Laplace

$$\psi_{t}^{\mathbb{Q}}(u) = \mathbb{E}_{t} \left[\frac{M_{t,t+1}}{\mathbb{E}_{t} \left[M_{t,t+1} \right]} \exp \left\{ u r_{t+1} \right\} \right]$$
$$= \exp \left\{ u \left(\mu - \frac{\sigma^{2}}{2} + \beta \sigma^{2} \right) + \frac{u^{2}}{2} \sigma^{2} \right\}$$

• Transformée de Laplace $\psi_t^\mathbb{Q}$ (1) et contraintes sur α et β

$$\frac{\mathbb{E}_{t} \left[M_{t,t+1} \exp \left\{ r_{t+1} \right\} \right]}{\mathbb{E}_{t} \left[M_{t,t+1} \right]} = \exp \left\{ r \right\}$$
$$\mu + \beta \sigma^{2} = r$$

Dynamique risque neutre

$$\mathbb{E}_{t}^{\mathbb{Q}}\left[\mathit{ur}_{t+1}\right] = \exp\left\{u\left(r - \frac{\sigma^{2}}{2}\right) + \frac{\mathit{u}^{2}}{2}\sigma^{2}\right\}$$

Principe de modélisation

Déterminer deux des trois éléments :

- Dynamique historique
- Facteur d'escompte stochastique
- Dynamique risque neutre

Restrictions « techniques »

- modèles conditionnellement gaussiens pour la dynamique risque neutre
- facteur d'escompte stochastique sous forme exponentielle affine :

$$M_{t,t+1} = exp\{\alpha + \beta w_{t+1}\}$$

Contraintes de cohérence interne

Suivant les facteurs modélisés dans la dynamique historique

Dynamique historique: 1 seul facteur

 modèle AR à changement de régime sur le log du spot désaisonnalisé :

$$s_t = \ln(S_t) - \nu_t$$

$$s_t = \mu^T z_t + \sum_{i=1}^m \varphi_i (s_{t-i} - \mu^T z_{t-i}) + \sigma^T z_t \varepsilon_t$$

- ν_t partie déterministe issue d'EXODE
 - saisonnalité
 - dépendance à la température (considérée comme variable exogène)
- z_t variable d'état prenant K valeurs correspondant à K régimes caractérisés par des moyennes μ_i et des variances σ_i^2
 - Régime normal
 - Régime à forte volatilité
 - Pics de prix

Dynamique historique

• Dynamique historique : variable (s_t, z_t)

$$oldsymbol{s}_t = oldsymbol{\mu}^{\mathsf{T}} oldsymbol{z}_t + \sum_{i=1}^m arphi_i (oldsymbol{s}_{t-i} - oldsymbol{\mu}^{\mathsf{T}} oldsymbol{z}_{t-i}) + \sigma^{\mathsf{T}} oldsymbol{z}_t arepsilon_t$$

• Chaîne de Markov homogène sur z_t

$$P(z_t = e_j | z_{t-1} = e_i) = \pi_{ij}$$

- Paramètres du modèle
 - Moyennes $(\mu_i)_{i=1,...,K}$
 - Variances $(\sigma_i^2)_{i=1,...,K}$
 - Coefficient d'auto-régression $(\varphi_i)_{i=1,...,m}$
 - Probabilités de transition $(\pi_{ij})_{i,j=1,...,K}$

Estimation

Estimation par maximisation de la vraisemblance

- Calcul de la vraisemblance en tout point par le filtre de Kitagawa-Hamilton
- Algorithme d'optimisation de type Quasi-Newton

Données utilisées

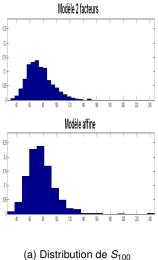
- Historique de 3 ans de prix spot journaliers du 01/01/2006 au 31/12/2008
- Partie déterministe ν_t estimée à partir d'EXODE.

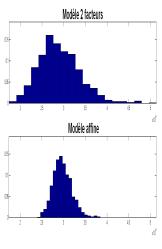
Modèles considérés

- K = 2.3
- m = 2, 3, 4

		K=3	
	m=2	m=3	m=4
μ_1	-0.2323	-0.0857	-0.0925
μ_2	0.0165	0.013	0.0101
μ_3	0.1532	0.5222	0.542
σ_1^2	0.0101	0.0436	0.0438
σ_2^2	0.0111	0.0109	0.0108
$\frac{\sigma_2^2}{\sigma_3^2}$	0.0982	0.1335	0.1426
Ψ1	0.6436	0.5786	0.5633
φ_2	0.2299	0.1406	0.1206
φ_3	-	0.1574	0.118
φ_4	-	-	0.0884
P _{trans}	[0.48 0.5 0.02 0.03 0.94 0.03 0.37 0.06 0.56	0.78 0.21 0.007 0.058 0.94 0.006 0.0001 0.36 0.64	[0.79 0.20 0.008 0.06 0.94 0.005 0 0.36 0.64
AIC	-3210	-3215	-3218

TABLE: Résultats d'estimation pour un modèle avec 3 régimes





(b) Distribution de $\sum_{t=1}^{365} S_t$

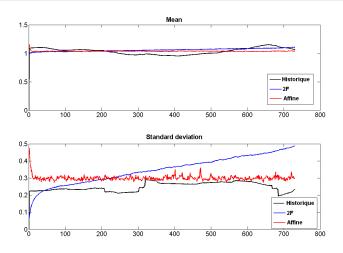


FIGURE: Caractéristiques statistiques du prix spot désaisonnalisé.

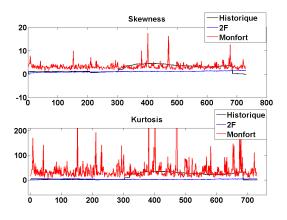


FIGURE: Caractéristiques statistiques du prix spot désaisonnalisé.

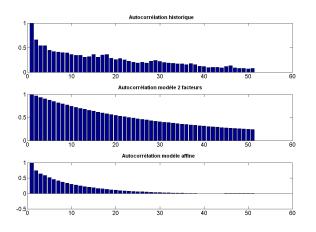


FIGURE: Autocorrélation

Dynamique risque neutre

 Il existe un facteur d'escompte stochastique qui permet d'obtenir une dynamique risque neutre de la forme :

$$\tilde{\mathbf{s}}_{t} = \ln(\mathbf{S}_{t}) - \tilde{\nu}_{t}
\tilde{\mathbf{s}}_{t} = \tilde{\boldsymbol{\mu}}^{T} \mathbf{z}_{t} + \sum_{i=1}^{m} \tilde{\varphi}_{i} (\tilde{\mathbf{s}}_{t-i} - \tilde{\boldsymbol{\mu}}^{T} \mathbf{z}_{t-i}) + \sigma^{T} \mathbf{z}_{t+1} \varepsilon_{t}$$

Chaîne de Markov homogène sur z_t

$$P(z_t = e_j | z_{t-1} = e_i) = \tilde{\pi}_{ij}$$

• Partie déterministe $\tilde{\nu}_t$ constante par morceaux

$$\tilde{\nu}_t = \sum_{i=1}^{12} \tilde{c}_i \mathbb{1}_{t \in m_i}$$

Formule de récurrence pour les prix à terme unitaires

Valorisation d'un prix à terme unitaire

$$\begin{split} F(t,h) &= & \mathbb{E}_t^{\mathbb{Q}}[S_{t+h}] \\ &= & \exp\left\{\tilde{\nu}_{t+h}\right\} \mathbb{E}_t^{\mathbb{Q}}\left[\exp\left\{\tilde{s}_{t+h}\right\}\right] \\ &= & \exp\left\{\tilde{\nu}_{t+h}\right\} \mathbb{E}_t^{\mathbb{Q}}\left[\exp\left\{e_1^T \tilde{X}_{t+h}\right\}\right], \qquad \tilde{X}_t = (\tilde{s}_t, z_t)^T \end{split}$$

Formule de récurrence des transformées de Laplace

$$\mathbb{E}_{t}^{\mathbb{Q}}\left[\exp\left\{e_{1}^{T}\tilde{X}_{t+h}\right\}\right]=\exp\left\{c_{h}^{T}\tilde{X}_{t}\right\}$$

où c_h est défini par la relation de récurrence :

$$c_1 = a(e_1)$$

 $c_h = a(c_{h-1})$

Valorisation d'un produit à terme

• En utilisant la relation $\tilde{s}_t + \tilde{\nu}_t = s_t + \nu_t$

Valeur d'un prix à terme unitaire

$$\log F(t,h) = \tilde{\nu}_{t+h} + c_{h1}(\nu_t - \tilde{\nu}_t) + c_h^T X_t$$

avec $X_t = (s_t, z_t)$

• La valeur d'un prix à terme unitaire F(t,h) s'exprime en fonction des paramètres de la dynamique risque neutre et de l'observation X_t .

Valeur d'un produit à terme (réellement observé)

$$F_{theor}(t, T, \theta) = \frac{1}{\theta} \sum_{t+h \in [T; T+\theta]} F(t, h)$$

Estimation

Paramètres du modèle

- Moyennes $(\tilde{\mu}_i)_{i=1,...,K}$
- Coefficient d'auto-régression $(\tilde{\varphi}_i)_{i=1,...,m}$
- Probabilités de transition $(\tilde{\pi}_{ij})_{i,j=1,...,K}$
- Coefficients mensuels $(\tilde{c}_i)_{i=1,...,12}$

Estimation par minimisation du critère non linéaire

$$J(\tilde{\mu}, \tilde{\varphi}, \tilde{\pi}, \tilde{c}) = \sum_{t=1}^{T_f} \sum_{i=1}^{N} \left[\log F_{obs}(t, T_i, \theta_i) - \log F_{theor}(t, T_i, \theta_i) \right]^2$$

Données utilisées

- Tous les produits disponibles (1WAH → 2YAH)
- Historique de 3 ans du 01/01/2006 au 31/12/2008.

	K=3,m=3			
μ_1	Init. -0.0857	Borne inf. 0.1527	Estimé 0.1515	Borne sup. 0.1504
μ_2	0.0130	0.2023	0.2023	0.2022
μ_3	0.5222	0.7084	0.7094	0.7105
φ_1	0.5786	0.8895	0.8895	0.8895
φ_2	0.1406	0.1848	0.1848	0.1848
φ_3	0.1574	-0.0810	-0.0810	-0.0810
φ_4	-	-	-	-
c ₁	1	1.2711	1.2710	1.2709
c_2	1	1.2543	1.2543	1.2542
c_3	1	1.1169	1.1169	1.1168
c ₄	1	0.9109	0.9109	0.9109
<i>c</i> ₅	1	0.7819	0.7819	0.7819
<i>c</i> ₆	1	0.8221	0.8221	0.8221
C7	1	0.8988	0.8988	0.8987
<i>c</i> ₈	1	0.7412	0.7412	0.7412
<i>c</i> ₉	1	0.9094	0.9094	0.9094
c ₁₀	1	0.9311	0.9311	0.9311
C ₁₁	1	1.1600	1.1600	1.1601
c ₁₂	1	1.2023	1.2024	1.2026
P _{trans}	0.78 0.21 0.01 0.06 0.94 0.01 0 0.36 0.64	0.32 0.60 0.08 0.02 0.98 0.01 0 0.37 0.63	0.78 0.21 0.01 0.06 0.94 0.01 0 0.37 0.63	0.96 0.03 0 0.17 0.83 0.01 1.00 0 0

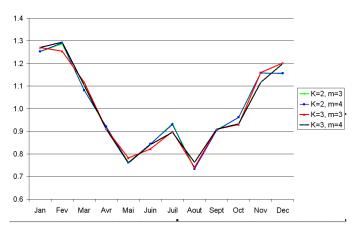


FIGURE: Estimations des coefficients mensuels en fonction du modèle

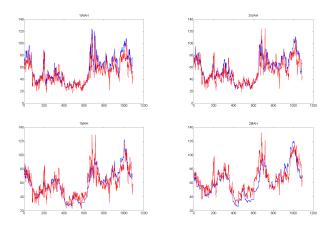


FIGURE: Résultats de reconstruction des prix à terme : prix reconstruits (en rouge) contre prix observés (en bleu)

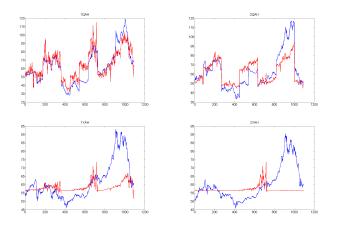
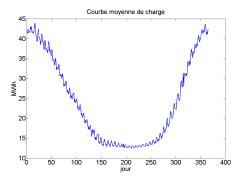


FIGURE: Résultats de reconstruction des prix à terme : prix reconstruits (en rouge) contre prix observés (en bleu)

Calcul d'EaR

- Début de l'étude : 1^{er} janvier 2009.
- Demande *D*(*t*) sur l'année 2010. Profil réaliste (Clients Res2P1)



Simulation sans stratégie de couverture

$$CF(t) = D(t)(K - S(t))$$

Calcul d'EaR

- Simulation avec stratégie de couverture
 - contractualisation de Year-ahead toutes les fin de mois 2009 (31 janvier 2009, 28 février 2009,...)

$$P_{couv} = \frac{1}{12} \sum_{i=1}^{12} P_{Year2010}(t_i). \tag{2}$$

 volume de couverture égal à la moyenne de la demande sur l'année 2010.

$$\overline{D} = \frac{1}{T} \frac{1}{N_s} \sum_{t=1}^{I} \sum_{s=1}^{N_s} D_t^s.$$
 (3)

Cash flow lié à l'action de couverture

$$CF_{couv}(t) = \overline{D}(K - P_{couv})$$
 (4)

Cash flow lié à l'ajustement au spot

$$CF_{achat\ spot}(t) = (D_t^s - \overline{D})(K - S_t).$$
 (5)

Cash flow total

$$CF(t) = CF_{couv}(t) + CF_{achat\ spot}(t).$$
 (6)^{RoD}

Sans stratégie de couverture

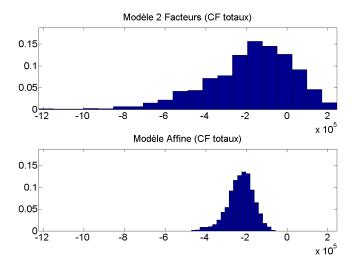
	Modèle 2F	modèle affine
MtM (k €)	-18.741	-22.895
EaR (k €)	40.232	11.494

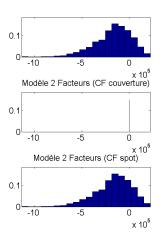
TABLE: Résultats de MtM et d'EaR pour un portefeuille sans couverture.

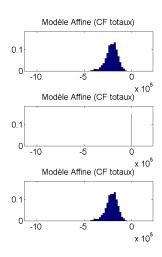
Avec stratégie de couverture

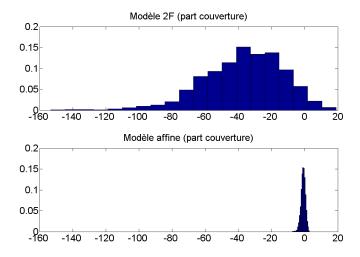
	Modèle 2F	modèle affine
MtM (k €)	-17.383	-21.276
EaR (k €)	36.790	10.661

TABLE: Résultats de MtM et d'EaR pour un portefeuille sans couverture.









Sans stratégie de couverture

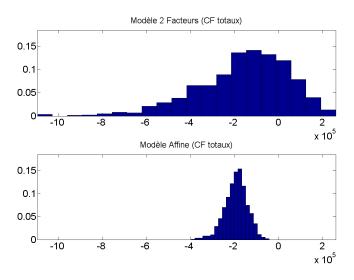
	Modèle 2F	modèle affine
MtM (k €)	-16.128	-19.257
EaR (k €)	38.868	8.772

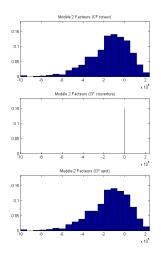
TABLE: Résultats de MtM et d'EaR pour un portefeuille sans couverture.

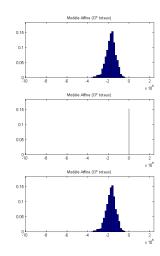
Avec stratégie de couverture

	Modèle 2F	modèle affine
MtM (k €)	-14.838	-17.652
EaR (k €)	35.635	8.041

TABLE: Résultats de MtM et d'EaR pour un portefeuille sans couverture.







Conclusion

- Une nouvelle approche pour modéliser les prix d'électricité
 - Modèle économétrique pour le spot (pics de prix, dépendance à la température,...)
 - Cohérence prix spot / prix à terme (absence d'opportunité d'arbitrage)
- Un « concurrent » aux modèles économétriques utilisés
- Un « concurrent » aux modèles financiers utilisés
- Premiers résultats, avec un modèle simple (1 seul facteur), très prometteurs
 - Bonne représentation du prix spot et des prix à terme de faible maturité
 - Difficultés dans la représentation de prix à terme de grande maturité

Perspectives

- Ajout d'un deuxième facteur dans la dynamique historique pour mieux représenter les produits de longue maturité
- Exemple: modélisation affine du logarithme du produit Year-ahead
- Intégration de contraintes de cohérence interne
 - Le produit observable est modélisé par une dynamique historique et peut aussi se déduire de la dynamique risque neutre.
 - Le problème de minimisation de critère pour la partie risque neutre devient un problème de minimisation de critère (non linéaire) sous contrainte (non linéaire)

Perspectives

Comparaison avec les modèles actuellement utilisés

- pour le calcul d'EaR sur des portefeuilles avec stratégie de couverture (fait en partie)
- pour le calcul d'indicateurs sur des portefeuilles thermosensibles
 - ...

Placement de cette approche

- Sur quelles applications cette approche peut être une alternative
- Quelles sont les applications pour lesquelles cette approche n'est pas utilisable.

Annexe 1 : Cohérence temporelle

- **Lemme :** Pour tout flux g_T , $p_t[g_T] = p_t[p_s[g_T]]$, $t \le s \le T$
- Preuve : Sinon, on peut construire une stratégie
 - en t: acheter $p_s[g_T]$, vendre g_T , acheter $\frac{p_t[g_T]-p_t[p_s[g_T]]}{\mathbb{E}_t[M_{t,T}]}$
 - en s: acheter g_T et vendre $p_s[g_T]$
 - en T : flux $g_T g_T + \frac{p_t[g_T] p_t[p_s[g_T]]}{\mathbb{E}_t[M_{t,T}]}$

Annexe 2 : Dépendance à la température

- Partie déterminist de $\ln S_t$, $\nu(t) = \sum_{j=1}^J \alpha_j F_j(t)$
- Variables explicatives F_i
 - Cycle annuel des prix
 - Calendrier.
 - 3 variables relatives à l'écart à la normale de température, dans le cas où la normale de température est inférieure à une température seuil T_{froide} (10° en pratique) :
 - 1'écart à la normale lissé dans le temps (par un lissage exponentiel),
 - 2 la différence entre l'écart à la normale de la veille et celui du jour,
 - l'accumulation au court du temps des écarts à la normale.
 - L'écart à la normale de la température, dans le cas où la normale de température est supérieure à une température seuil T_{chaude} (18° en pratique). Cette variable est lissée dans le temps par un lissage exponentiel.
 - Une tendance linéaire.
 - Type de jour : 7 variables correspondant aux jours de la semaine.

