Electricity Pay-as-bid Market: The Best Response of a Producer

Didier Aussel, Pascale Bendotti, Miroslav Pištěk

PROMES, University of Perpignan, France EDF R&D, Clamart, France IITA of the AS, Prague, Czech Republic

> Séminaire FIME March 6, 2014

Outline

- General context
- 2 Description of the model
- 3 Dispatch quantities: well-posed model?
- Market price: well-posed model?
- 5 Analytic solution of ISO's problem
- 6 Problem of Producer i
- Conclusion

Project context

- Project PGMO-IROE "Nash equilibrium problems for the valorization of daily offers: the point of view of the producer" (2012-2015)
- Ph.D. student: Miroslav Pistek co-supervising with Jiri Outrata (Czech Academy of Sciences, Prague, Czech Rep.)
- EDF partner: Pascale Bendotti (Osiris)

Aim:

In a deregulated electricity market, given an estimation of the bid of the other players, provide the best bid for a fix producer and study the stability of this best response.

Modeling an Electricity Markets

- electricity market consists of
 - i) generators/consumers $i \in \mathcal{N}$ respect their own interests in competition with others
 - ii) market operator (ISO) who maintain energy generation and load balance, and protect public welfare
- the ISO has to consider:
 - ii) quantities q; of generated/consumed electricity
 - iii) electricity dispatch t_e with respect to transmission capacities

Modeling an Electricity Markets

- electricity market consists of
 - i) generators/consumers $i \in \mathcal{N}$ respect their own interests in competition with others
 - ii) market operator (ISO) who maintain energy generation and load balance, and protect public welfare
- the ISO has to consider:
 - ii) quantities q_i of generated/consumed electricity
 - iii) electricity dispatch t_e with respect to transmission capacities
- since 1990s, Nash equilibrium problem is the most popular way of modeling spot electricity markets

Scientific context

In this project, we consider, at a first glance, a simplified model:

• Bilevel model, that is, Multi-leader-common-follower game

Scientific context

In this project, we consider, at a first glance, a simplified model:

- Bilevel model, that is, Multi-leader-common-follower game
- no transmission losses
- no production capacity constraint or at least the production bounds are not reached
- no transmission capacity

In order to simplify the notations, we aggregate the total demand and consider only producers

Some references on the topic:

• Electricity markets without transmission losses:

X. Hu & D. Ralph, Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices, Operations Research (2007). bid-on-a-only

Some references on the topic:

- Electricity markets without transmission losses:
 X. Hu & D. Ralph, Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices, Operations Research (2007).
 bid-on-a-only
- Electricity markets with transmission losses:
 - Henrion, R., Outrata, J. & Surowiec, T., Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market, ESAIM: COCV (2012). M-stationary points
 - D. A., R. Correa & M. Marechal Spot electricity market with transmission losses, J. Industrial Manag. Optim (2013). existence of Nash equil., case of a two island model

Some references on the topic (cont.)

• Electricity markets with transmission losses:

D.A., M. Cervinka, M. Maréchal, Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions (RAIRO, under revision) production bounds, well-posedness of model, global optimality conditions for equilibrium

Some references on the topic (cont.)

- Electricity markets with transmission losses:
 - D.A., M. Cervinka, M. Maréchal, Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions (RAIRO, under revision) production bounds, well-posedness of model, global optimality conditions for equilibrium
- Best response in electricity markets:
 - E. Anderson, P. Holmberg and A. Philpott, Mixed strategies in discriminatory divisible-good auctions, The RAND Journal of Economics (2013). necessary optimality cond. for local best response
 - E. Anderson and A. Philpott, Optimal Offer Construction in Electricity Markets, Mathematics of Operations Research (2002). necessary optimality cond. for local best response in time dependent case

Description of the model

Notations

Let consider a fixed time instant and denote

- D > 0 be the overall energy demand of all consumers
- ullet $\mathcal N$ be the set of producers
- $q_i \geq 0$ be the production of *i*-th producer, $i \in \mathcal{N}$

Notations

Let consider a fixed time instant and denote

- D > 0 be the overall energy demand of all consumers
- ullet ${\cal N}$ be the set of producers
- $q_i \geq 0$ be the production of *i*-th producer, $i \in \mathcal{N}$

We assume that producer $i \in \mathcal{N}$ provides to the ISO a quadratic bid function $a_i q_i + b_i q_i^2$ given by $a_i, b_i \geq 0$.

Notations

Let consider a fixed time instant and denote

- D > 0 be the overall energy demand of all consumers
- ullet ${\cal N}$ be the set of producers
- $q_i \geq 0$ be the production of *i*-th producer, $i \in \mathcal{N}$

We assume that producer $i \in \mathcal{N}$ provides to the ISO a quadratic bid function $a_i q_i + b_i q_i^2$ given by $a_i, b_i \geq 0$.

Similarly, let $A_i q_i + B_i q_i^2$ be the true production cost of *i*-th producer with $A_i \ge 0$ and $B_i > 0$ reflecting the increasing marginal cost of production.

Why a quadratic bid?

Smooth approximation of box bids

Why a quadratic bid?

Smooth approximation of box bids

This approach has already been used in Hu-Ralph (bid-on-a-only), ACM and HOS..

Multi-Leader-Common-Follower game

Multi-Leader-Common-Follower game

Our focus in this work

Multi-Leader-Common-Follower game

Peculiarity of electricity markets is their bi-level structure:

$$\begin{array}{ll} P_i(a_{-i},b_{-i},D) & \max_{\substack{a_i,b_i \ q_i}} \max_{\substack{q_i}} \quad a_iq_i + b_iq_i^2 - (A_iq_i + B_iq_i^2) \\ \\ such \ that & \left\{ \begin{array}{l} a_i,b_i \geq 0 \\ (q_j)_{j \in \mathcal{N}} \in \textit{Q}(\textit{a},\textit{b}) \end{array} \right. \end{array}$$

where set-valued mapping Q(a, b) denotes solution set of

$$ISO(a,b,D) \qquad Q(a,b) = \underset{q}{\textit{argmin}} \quad \sum_{i \in \mathcal{N}} (a_i q_i + b_i q_i^2)$$

$$such \ that \quad \left\{ \begin{array}{l} q_i \geq 0 \ , \ \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} q_i = D \end{array} \right.$$

Is the above model well-posed/coherent?

- from the point of view of dispatch quantities/flows
- from the point of view of Market price

Optimistic case

$$P_i(a_{-i}, b_{-i}, D) \qquad \max_{\substack{a_i, b_i \ q_i}} \max_{a_i q_i} \quad a_i q_i + b_i q_i^2 - (A_i q_i + B_i q_i^2)$$

$$\text{such that} \qquad \begin{cases} a_i, b_i \ge 0 \\ (q_j)_{j \in \mathcal{N}} \in Q(a, b) \end{cases}$$

where set-valued mapping Q(a, b) denotes solution set of

$$\begin{array}{ll} \textit{ISO}(\textit{a},\textit{b},\textit{D}) & \textit{Q}(\textit{a},\textit{b}) = \underset{q}{\textit{argmin}} & \sum_{i \in \mathcal{N}} (\textit{a}_i q_i + \textit{b}_i q_i^2) \\ & \text{such that} & \begin{cases} \textit{q}_i \geq 0 \text{ , } \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} \textit{q}_i = \textit{D} \end{cases} \end{array}$$

Pessimistic case

$$P_i(a_{-i}, b_{-i}, D) \qquad \max_{\substack{a_i, b_i \ q_i \ }} \quad a_i q_i + b_i q_i^2 - (A_i q_i + B_i q_i^2)$$

$$such that \qquad \begin{cases} a_i, b_i \ge 0 \\ (q_j)_{j \in \mathcal{N}} \in Q(a, b) \end{cases}$$

where set-valued mapping Q(a, b) denotes solution set of

$$\begin{array}{ll} \textit{ISO}(\textit{a},\textit{b},\textit{D}) & \textit{Q}(\textit{a},\textit{b}) = \underset{q}{\textit{argmin}} & \sum_{i \in \mathcal{N}} (\textit{a}_i q_i + \textit{b}_i q_i^2) \\ \\ \textit{such that} & \begin{cases} \textit{q}_i \geq 0 \text{ , } \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} \textit{q}_i = \textit{D} \end{cases} \end{array}$$

Uniqueness for the ISO's problem

Knowing overall demand D>0 and bid vectors $(a,b)\in\mathbb{R}^{2N}_+$ provided by producers, the ISO computes $q\in\mathbb{R}^N_+$ in order to minimize the total generation cost.

$$\min_{q} \sum_{i \in \mathcal{N}} (a_i q_i + b_i q_i^2)$$
s.t.
$$\begin{cases} q_i \geq 0, \ \forall i \in \mathcal{N} \\ b_i > 0, \ \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} q_i = D \end{cases}$$

Assumption used in Hu-Ralph, ACM and HOS

This problem has a unique solution.

Uniqueness for the ISO's problem

Knowing overall demand D>0 and bid vectors $(a,b)\in\mathbb{R}^{2N}_+$ provided by producers, the ISO computes $q\in\mathbb{R}^N_+$ in order to minimize the total generation cost.

$$\begin{aligned} & \underset{q}{\text{min}} & \sum_{i \in \mathcal{N}} (a_i q_i + b_i q_i^2) \\ & \text{s.t.} & \begin{cases} q_i \geq 0, \ \forall i \in \mathcal{N} \\ (a_i, b_i) = (a_j, b_j) \Longrightarrow q_i = q_j, \ \forall i, j \in \mathcal{N} \\ \sum_{j \in \mathcal{N}} q_i = D \end{cases} \end{aligned} \tag{H}$$

Assumption called Equity property

This problem also has a unique solution.

Uniqueness for the ISO's problem

Knowing overall demand D>0 and bid vectors $(a,b)\in\mathbb{R}^{2N}_+$ provided by producers, the ISO computes $q\in\mathbb{R}^N_+$ in order to minimize the total generation cost.

$$\min_{q} \sum_{i \in \mathcal{N}} (a_i q_i + b_i q_i^2)$$
s.t. $\begin{cases} q_i \geq 0, \ \forall i \in \mathcal{N} \\ \sum_{i \in \mathcal{N}} q_i = D \end{cases}$

Assumption called Equity property

This model allows linear (Crucial point, see conclusion part)

Let us consider different cases for the revenue function:

- Pay-as-bid market: $\pi_i(a_i, b_i) = a_i.q_i + b_i.q_i^2$
- Marginal price with production capacity: $\pi_i(a_i, b_i) = \lambda_i.q_i$
- Marginal price without production capacity: $\pi_i(a_i, b_i) = (a_i + 2b_i.q_i).q_i$

where ISO(a, b) stands for the following ISO's problem

$$ISO(a,b) \quad \min_{q,t} \quad \sum_{i \in \mathcal{N}} (a_{i}q_{i} + b_{i}q_{i}^{2})$$

$$s.t. \begin{cases} q_{i} \geq 0, \ \forall i \in \mathcal{N} \\ q_{i} \leq \overline{Q}_{i}, \ \forall i \in \mathcal{N} \\ q_{i} + \sum_{e \in \mathcal{L}} \left(\delta_{ie}t_{e} - \frac{L_{e}|\delta_{ie}|}{2} t_{e}^{2} \right) \geq D_{i}, \forall i \in \mathcal{N} \\ t_{e} \geq \underline{T}_{e}, \ \forall e \in \mathcal{L} \\ t_{e} \leq \overline{T}_{e}, \forall e \in \mathcal{L} \end{cases}$$

$$(2)$$

Market price: uniqueness

Proposition

Assume that for all producers $i \in \mathcal{N}$, one has $a_i \neq 0$ or $b_i \neq 0$, and, for all lines $e \in \mathcal{L}$, $L_e > 0$. Then ISO(a, b) admits a unique solution (q^*, t^*) .

Market price: uniqueness

Proposition

Assume that for all producers $i \in \mathcal{N}$, one has $a_i \neq 0$ or $b_i \neq 0$, and, for all lines $e \in \mathcal{L}$, $L_e > 0$. Then ISO(a, b) admits a unique solution (q^*, t^*) .

Proposition

Let $(a,b) \in \mathcal{A} \times \mathcal{B}$ be such that for all producers $i \in \mathcal{N}$, one has $a_i \neq 0$ or $b_i \neq 0$ and there exists a unique (q^*,t^*) solving ISO(a,b). Further, suppose that for all $e \in \mathcal{L}$, $\overline{T}_e < t_e^* < \overline{T}_e$ and that there exists a node $i_0 \in \mathcal{N}$ satisfying $q_{i_0}^* \in (0,\overline{Q}_{i_0})$. Then for each $i \in \mathcal{N}$ there exist unique Lagrange multipliers λ_i^* , μ_i^* , μ_i^* , and for each $e \in \mathcal{L}$ there exist unique Lagrange multipliers β_e^* and $\overline{\beta}_e^*$.

D.A., M. Cervinka, M. Maréchal, RAIRO, under revision

Another alternative to fix well-posedness of market price

Another alternative has been used in Escobar-Jofré, *Equilibrium* analysis of electricity auctions, preprint (2014) to fix the problem of well-posedness of market price: they use a selection of the set of Lagrange multipliers.

Analytic solution of ISO's problem

Critical Parameters

$$\lambda^{m}(a) = \min_{i \in \mathcal{N}} a_{i} \tag{3}$$

Since we allow $b_i=0$, we need to introduce more parameters a critical market price $\lambda^c(a,b)$, a critical value of the overall demand $D^c(a,b)$, and a set of producers bidding critical (linear) bids $\mathcal{N}^c(a,b)\subset\mathcal{N}$

$$\lambda^{c}(a,b) = \min_{i:b_{i}=0} a_{i}$$

$$D^{c}(a,b) = \sum_{i:a_{i}<\lambda^{c}(a,b)} \frac{\lambda^{c}(a,b) - a_{i}}{2b_{i}}$$

$$\mathcal{N}^{c}(a,b) = \{i \in \mathcal{N} : a_{i} = \lambda^{c}(a,b) \text{ and } b_{i} = 0\}$$

Critical Parameters

- (a) On one hand, if the price is strictly below $\lambda^c(a,b)$ then only truly quadratically bidding producers will be active in the market. On the other hand, if price equals $\lambda^c(a,b)$, there is some linearly bidding producer $(b_i=0)$ that can formally provide arbitrary amount of electricity at price $\lambda^c(a,b)$.
- (b) $\mathcal{N}^c(a, b)$ is the set of all the critical producers that is, producers bidding linearly and at the critical price that may possibly be active in the market.
- (c) $D^c(a,b)$ will be later identified with the overall amount of electricity produced by sub-critical producers, i.e., those bidding with $b_i > 0$
- (d) From the definition of $\lambda^c(a,b)$ we clearly have that $a_i < \lambda^c(a,b)$ immediately implies $b_i > 0$. This means that if the linear term of the bid of producer i is strictly smaller than the critical market price, then this producer is bidding quadratically.
- (e) We note that condition $D^c(a,b)=0$ means that no sub-critical producer, i.e. producer bidding $b_i>0$, can be active in the market. Moreover, this condition may be equivalently stated as $\lambda^m(a)=\lambda^c(a,b)$.

Market Price

Next we define

$$\frac{\lambda(a,b,D)}{\lambda(a,b,D)} = \begin{cases} \lambda \in \mathbb{R}_+ \text{ s.t. } \sum_{i:a_i < \lambda} \frac{\lambda - a_i}{2b_i} = D \text{ if } D \in]0, D^c(a,b)[\\ \lambda^c(a,b) \text{ if } D \geq D^c(a,b) \end{cases}$$

which is continuous, piece-wise linear, and non-decreasing in D.

Analytic Solution to ISO(a,b,D) Problem

Theorem

Let D > 0 and $(a, b) \in \mathbb{R}^{2N}_+$, then ISO(a, b, D) admits a unique solution obeying the equity property (H) with q(a, b, D) given by

$$q_{i}(a,b,D) = \begin{cases} \frac{\lambda(a,b,D) - a_{i}}{2b_{i}} & \text{if } a_{i} < \lambda(a,b,D) \\ \frac{D - D^{c}(a,b)}{N^{c}(a,b)} & \text{if } a_{i} = \lambda(a,b,D), b_{i} = 0 \\ 0 & \text{if } a_{i} = \lambda(a,b,D), b_{i} > 0 \\ 0 & \text{if } a_{i} > \lambda(a,b,D) \end{cases}$$

Analytic Solution to ISO(a,b,D) Problem

Theorem

Let D > 0 and $(a, b) \in \mathbb{R}^{2N}_+$, then ISO(a, b, D) admits a unique solution obeying the equity property (H) with q(a, b, D) given by

$$q_{i}(a,b,D) = \begin{cases} \frac{\lambda(a,b,D) - a_{i}}{2b_{i}} & \text{if } a_{i} < \lambda(a,b,D) \\ \frac{D - D^{c}(a,b)}{N^{c}(a,b)} & \text{if } a_{i} = \lambda(a,b,D), b_{i} = 0 \\ 0 & \text{if } a_{i} = \lambda(a,b,D), b_{i} > 0 \\ 0 & \text{if } a_{i} > \lambda(a,b,D) \end{cases}$$

Denoting C(a, b, D) the overall cost of production, it holds

$$\lambda(a, b, D) = \partial_D C(a, b, D).$$

Active bidders/producers

One can deduce that for a given demand D > 0 and a given bid vector (a, b), the active producers are:

- (a) either the quadratically bidding producers $(b_i > 0)$ for whom the linear term coefficient a_i of the bid is strictly less than the market price $\lambda(a, b, D)$,
- (b) or the linearly bidding producers $(b_i = 0)$ who bid exactly the market price $\lambda(a, b, D)$.

A toy market

Consider a market with 5 producers, $\mathcal{N} = \{1, \dots, 5\}$, having bid functions given by

Respective marginal bid functions $a_i + 2b_iq_i$ of such producers are

A toy market

Consider a market with 5 producers, $\mathcal{N} = \{1, \dots, 5\}$, having bid functions given by

Then, we have

- critical market price $\lambda^c(a, b) = 43$
- critical value of the overall demand $D^c(a, b) = 1.5$
- ullet set of producers bidding critical (linear) bids $\mathcal{N}^c(a,b)=\{4\}$

A toy market (cont.)

Best response

Aim: given the aggregated demand D>0 and the bids of "the other players" (a_{-i},b_{-i}) , determine, if exists, the best response $(\tilde{a}_i,\tilde{b}_i)$ of producer i that solves

$$P_i(a_{-i}, b_{-i}, D)$$
 $\tilde{\pi}_i := \sup_{a_i, b_i > 0} \pi_i(a_i, a_{-i}, b_i, b_{-i}, D)$

where

$$\pi_i(a, b, D) = \left[a_i.q_i(a, b, D) + b_i.q_i(a, b, D)^2 \right] - \left[A_i.q_i(a, b, D) + B_i.q_i(a, b, D)^2 \right]$$

Best response

Aim: given the aggregated demand D>0 and the bids of "the other players" (a_{-i},b_{-i}) , determine, if exists, the best response $(\tilde{a}_i,\tilde{b}_i)$ of producer i that solves

$$P_i(a_{-i}, b_{-i}, D)$$
 $\tilde{\pi}_i := \sup_{a_i, b_i \ge 0} \pi_i(a_i, a_{-i}, b_i, b_{-i}, D)$

where

$$\pi_i(a, b, D) = \left[a_i.q_i(a, b, D) + b_i.q_i(a, b, D)^2 \right] - \left[A_i.q_i(a, b, D) + B_i.q_i(a, b, D)^2 \right]$$

Our conclusions will be:

• A linear bid is the best response!!

Best response

Aim: given the aggregated demand D>0 and the bids of "the other players" (a_{-i},b_{-i}) , determine, if exists, the best response $(\tilde{a}_i,\tilde{b}_i)$ of producer i that solves

$$P_i(a_{-i}, b_{-i}, D)$$
 $\tilde{\pi}_i := \sup_{a_i, b_i \ge 0} \pi_i(a_i, a_{-i}, b_i, b_{-i}, D)$

where

$$\pi_i(a, b, D) = \left[a_i.q_i(a, b, D) + b_i.q_i(a, b, D)^2 \right] - \left[A_i.q_i(a, b, D) + B_i.q_i(a, b, D)^2 \right]$$

Our conclusions will be:

- A linear bid is the best response!!
- But it's often better not to search for the best response!!!

Similarly to previous notation: on a market consisting only of producers in $\mathcal{N} \setminus \{i\}$: we define

$$\lambda^{c}(a_{-i},b_{-i}) = \min_{j \in \mathcal{N} \setminus \{i\}, b_{j}=0} a_{j},$$

and similarly also the other critical parameters $\mathcal{N}^c(a_{-i},b_{-i}),\ D^c(a_{-i},b_{-i})$ of E-ISO (a_{-i},b_{-i},D) .

Lemma

Consider demand D>0 and bid vector $(a,b)\in\mathbb{R}^{2N}_+$. Then

- (a) $\lambda(a, b, D) \leq \lambda(a_{-i}, b_{-i}, D)$,
- (b) $a_i \leq \lambda(a, b, D)$ if and only if $a_i \leq \lambda(a_{-i}, b_{-i}, D)$,
- (c) if $b_i > 0$, then, $a_i < \lambda(a, b, D)$ if and only if $a_i < \lambda(a_{-i}, b_{-i}, D)$.

An economical interpretation:

- (a) it states that the price in the market including producer i is always less or equal to the price in the market without producer i
- (b) (respectively (c)) it enlightens that if producer i would have been active with a linear bid (respectively with a quadratic bid) in the market without him then he will be active in the market with him.

Extended toy market: a new producer i = 6

Let us consider another producer i=6 in the toy market described above. Then the price curve in the market with producer 6, its real production cost coefficients (A_6, B_6) and D=1 is:

Example: the Profit of Producer i = 6, D = 1

Theorem

Assume D > 0 and take $(a_{-i}, b_{-i}) \in \mathbb{R}^{2N-2}_+$. Then, considering the unique solution q(a, b, D) to the regulator's problem E-ISO(a,b,D), the i-th producer profit $\pi_i(a,b,D)$ satisfies one of the following statements:

(a) for $a_i \leq \lambda(a_{-i}, b_{-i}, D)$ and $b_i > 0$,

$$\pi_i(\mathbf{a},\mathbf{b},D) = \frac{\lambda(\mathbf{a},\mathbf{b},D) - \mathbf{a}_i}{4b_i^2} \left[\mathbf{a}_i \mathbf{b}_i - 2 \mathbf{A}_i \mathbf{b}_i + \mathbf{a}_i \mathbf{B}_i + \lambda(\mathbf{a},\mathbf{b},D)(\mathbf{b}_i - \mathbf{B}_i) \right],$$

(b) for $a_i < \lambda(a_{-i}, b_{-i}, D)$ and $b_i = 0$ (and so $a_i = \lambda^c(a, b)$ and $\mathcal{N}^c(a, b) = \{i\}$),

$$\pi_i(a, b, D) = (\lambda^c(a, b) - A_i)(D - D^c(a, b)) - B_i(D - D^c(a, b))^2$$

(c) for $a_i=\lambda(a_{-i},b_{-i},D)$ and $b_i=0$ (and so $a_i=\lambda^c(a,b)$ and $i\in\mathcal{N}^c(a,b)$),

$$\pi_i(\mathbf{a},\mathbf{b},D) = \left(\lambda^c(\mathbf{a},\mathbf{b}) - A_i\right) \frac{D - D^c(\mathbf{a},\mathbf{b})}{N^c(\mathbf{a},\mathbf{b})} - B_i \left(\frac{D - D^c(\mathbf{a},\mathbf{b})}{N^c(\mathbf{a},\mathbf{b})}\right)^2,$$

(d) for $a_i > \lambda(a_{-i}, b_{-i}, D)$ it holds $\pi_i(a, b, D) = 0$.

Note that a_i is compared to $\lambda(a_{-i}, b_{-i}, D)$

Ideal production for producer i

We introduce a level of production

$$q_i^{\star}(a_{-i}, b_{-i}) = \frac{\lambda^{c}(a_{-i}, b_{-i}) - A_i}{2B_i}$$

having a significant economic meaning for producer $i \in \mathcal{N}$:

Let $(a_{-i},b_{-i}) \in \mathbb{R}^{2N-2}$, $a_i = \lambda^c(a_{-i},b_{-i})$ and $b_i = 0$ be fixed for some $i \in \mathcal{N}$. Then, if we consider q_i as a free variable for the moment, the profit of producer i is given by $\pi_i^c(q_i): q_i \to (\lambda^c(a_{-i},b_{-i})-A_i)\,q_i-B_i\,q_i^2$. Then, the maximum of $\pi_i^c(q_i)$ is attained for $q_i = q_i^\star(a_{-i},b_{-i})$, thus corresponding to a kind of ideal production rate for producer i. This follows from $B_i > 0$, then for production quantity higher than $q_i^\star(a_{-i},b_{-i})$ the additional production cost will be higher than the respective additional gain. Finally, we note that $q_i^\star > 0$ and $\pi_i^c(q_i^\star) > 0$ provided $A_i < \lambda^c(a_{-i},b_{-i})$.

Proposition

Let $(a_{-i},b_{-i})\in\mathbb{R}^{2N-2}_+$, D>0 and $b_i=0$ be fixed. Then, $\pi_i(a_i,a_{-i},0,b_{-i},D)$ is strictly quasiconcave in a_i on $[0,\lambda(a_{-i},b_{-i},D)[$, and problem

$$\hat{P}_{i}(a_{-i}, b_{-i}, D) \qquad \sup_{a_{i} \in [0, \lambda(a_{-i}, b_{-i}, D)[} \pi_{i}(a_{i}, a_{-i}, 0, b_{-i}, D)$$

admits a solution if and only if one of the following alternatives holds:

- (a) $A_i < \lambda(a_{-i}, b_{-i}, D) < \lambda^c(a_{-i}, b_{-i})$ (implying $\lambda^m(a_{-i}) < \lambda(a_{-i}, b_{-i}, D)$),
- $\text{(b)} \quad \lambda^{m}(a_{-i}) < \lambda(a_{-i},b_{-i},D) = \lambda^{c}(a_{-i},b_{-i}) \text{ and } q_{i}^{c}(a_{-i},b_{-i}) > D D^{c}(a_{-i},b_{-i}).$

Moreover, if a solution exists, it is unique. Denoting it by \tilde{a}_i , it is given by

$$\left\{ \begin{array}{ccc} & & & & & \text{if} & & D \leq q_i^m(a_{-i},b_{-i}), \\ \\ & & & \frac{\bar{a}_i - A_i}{2B_i + m^-(a_{-i},b_{-i},\bar{a}_i)} \leq D - F(a_{-i},b_{-i},\bar{a}_i) \leq \frac{\bar{a}_i - A_i}{2B_i + m^+(a_{-i},b_{-i},\bar{a}_i)} & & \text{if} & D > q_i^m(a_{-i},b_{-i}), \\ \end{array} \right.$$

and satisfies $\tilde{\mathbf{a}}_i \in [\lambda^m(\mathbf{a}_{-i}), \lambda^c(\mathbf{a}_{-i}, \mathbf{b}_{-i})]$. Moreover, the respective maximal profit is positive, $\pi_i(\tilde{\mathbf{a}}_i, \mathbf{a}_{-i}, \mathbf{0}, \mathbf{b}_{-i}, D) > 0$. Additionally, if a solution does not exist, then $\pi_i(\mathbf{a}, \mathbf{b}, D)$ is strictly increasing in \mathbf{a}_i on $[0, \lambda(\mathbf{a}_{-i}, \mathbf{b}_{-i}, D)]$.

Best response?

Theorem

Let D>0, $(a_{-i},b_{-i})\in\mathbb{R}^{2N-2}_+$ for some $i\in\mathcal{N}$ and consider the problem

$$\tilde{\pi}_i := \sup_{a_i, b_i \geq 0} \pi_i(a_i, a_{-i}, b_i, b_{-i}, D).$$

Then either $A_i \ge \lambda^c(a_{-i}, b_{-i})$ and $\tilde{\pi}_i \le 0$, or one of the following alternatives holds:

- (a) if $D \in]0, q_i^0(a_{-i}, b_{-i})]$ then $\tilde{\pi}_i \leq 0$,
- (b) if $D\in]q_0^0(a_{-i},b_{-i}), D^c(a_{-i},b_{-i})+q_i^c(a_{-i},b_{-i})[$ then $\tilde{\pi}_i>0$ and there is a unique best response $(\tilde{a}_i,\tilde{b}_i)$ given by $\tilde{b}_i=0$, and $\tilde{a}_i<\lambda^c(a_{-i},b_{-i})$ satisfying

$$\left\{ \begin{array}{ll} \tilde{\mathbf{a}}_i = \min_{i \in \mathcal{N}} \mathbf{a}_i & \text{if} \qquad D \leq q_i^m(\mathbf{a}_{-i}, b_{-i}), \\ \\ \frac{\tilde{\mathbf{a}}_i - A_i}{2\mathcal{B}_i + m^-(\mathbf{a}_{-i}, b_{-i}, \tilde{\mathbf{a}}_i)} \leq D - F(\mathbf{a}_{-i}, b_{-i}, \tilde{\mathbf{a}}_i) \leq \frac{\tilde{\mathbf{a}}_i - A_i}{2\mathcal{B}_i + m^+(\mathbf{a}_{-i}, b_{-i}, \tilde{\mathbf{a}}_i)} \text{ otherwise} \end{array} \right.$$

(c) $D \in [D^c(a_{-i},b_{-i})+q_i^c(a_{-i},b_{-i}),D^c(a_{-i},b_{-i})+q_i^*(a_{-i},b_{-i})]$ then $\tilde{\pi}_i > 0$ and a limiting best response $(\tilde{a}_i^k,\tilde{b}_i^k)_k$ is given by $\tilde{a}_i^k \nearrow \lambda^c(a_{-i},b_{-i})$ and $\tilde{b}_i^k = 0$,

Theorem

Let D > 0, $(a_{-i}, b_{-i}) \in \mathbb{R}^{2N-2}_+$ for some $i \in \mathcal{N}$ and consider the problem

$$\tilde{\pi}_i := \sup_{a_i, b_i \ge 0} \pi_i(a_i, a_{-i}, b_i, b_{-i}, D).$$

Then either $A_i \geq \lambda^c(a_{-i}, b_{-i})$ and $\tilde{\pi}_i \leq 0$, or one of the following alternatives holds:

(c) if $D \in]D^c(a_{-i},b_{-i}) + q_i^\star(a_{-i},b_{-i}), +\infty[$ and $D \neq D^c(a_{-i},b_{-i}) + (N^c(a_{-i},b_{-i})+1) q_i^\star(a_{-i},b_{-i})$ then $\tilde{\pi}_i > 0$ and a limiting best response $(\tilde{a}_i^k, \tilde{b}_i^k)_k$ is given by $\tilde{a}_i^k \nearrow \lambda^c(a_{-i},b_{-i})$ and $\tilde{b}_i^k \searrow 0$ satisfying

$$\tilde{a}_i^k = \frac{A_i \tilde{b}_i^k + B_i \lambda^c(a_{-i}, b_{-i})}{\tilde{b}_i^k + B_i}$$

(d) if $D=D^c(a_{-i},b_{-i})+(N^c(a_{-i},b_{-i})+1)$ $q_i^\star(a_{-i},b_{-i})$ then $\tilde{\pi}_i>0$ and there is a unique best response $(\tilde{a}_i,\tilde{b}_i)=(\lambda^c(a_{-i},b_{-i}),0).$

Example: the Profit of Producer i, D = 30

Corollary

Let D>0, $i\in\mathcal{N}$, $b_i=0$, $(a_{-i},b_{-i})\in\mathbb{R}^{2N-2}_+$ and denote $\xi_i:=\xi(a_{-i},b_{-i}).$ Then, one of the following alternatives has to be satisfied:

(a) if $\lambda(a_{-i}, b_{-i}, D) < \lambda^c(a_{-i}, b_{-i})$ then

$$\lim_{a_{i}\nearrow\lambda(a_{-i},b_{-i},D)}\pi_{i}(a_{i},a_{-i},0,b_{-i},D)=\pi_{i}(\lambda(a_{-i},b_{-i},D),a_{-i},0,b_{-i},D),$$

 $\text{(b)} \quad \textit{if} \ \lambda(a_{-i},b_{-i},D) = \lambda^{c}(a_{-i},b_{-i}) \ \ \textit{and} \ \ q_{i}^{\star}(a_{-i},b_{-i}) = \xi_{i}(D-D^{c}(a_{-i},b_{-i})) \ \ \textit{then}$

$$\lim_{\mathbf{a}_{i}\nearrow\lambda^{\mathbf{C}}(\mathbf{a}_{-i},b_{-i})}\pi_{i}(\mathbf{a}_{i},\mathbf{a}_{-i},\mathbf{0},b_{-i},D)=\pi_{i}(\lambda^{\mathbf{C}}(\mathbf{a}_{-i},b_{-i}),\mathbf{a}_{-i},\mathbf{0},b_{-i},D),$$

 $\text{(c)} \quad \text{if } \lambda(a_{-i},b_{-i},D) = \lambda^{c}(a_{-i},b_{-i}) \text{ and } q_{i}^{\star}(a_{-i},b_{-i}) > \xi_{i}(D-D^{c}(a_{-i},b_{-i})) \text{ then } q_{i}^{\star}(a_{-i},b_{-i}) > \xi_{i}(D-D^{c}(a_{-i},b_{-i})) \text{ then } q_{i}^{\star}(a_{-i},b_{-i}) > \xi_{i}(D-D^{c}(a_{-i},b_{-i})) \text{ then } q_{i}^{\star}(a_{-i},b_{-i}) = 0$

$$\lim_{a_{i}\nearrow\lambda^{\mathcal{C}}(a_{-i},b_{-i})}\pi_{i}(a_{i},a_{-i},0,b_{-i},D)>\pi_{i}(\lambda^{\mathcal{C}}(a_{-i},b_{-i}),a_{-i},0,b_{-i},D),$$

(d) if $\lambda(a_{-i}, b_{-i}, D) = \lambda^c(a_{-i}, b_{-i})$ and $q_i^*(a_{-i}, b_{-i}) < \xi_i(D - D^c(a_{-i}, b_{-i}))$ then

$$\lim_{a_{i}\nearrow\lambda^{C}(a_{-i},b_{-i})}\pi_{i}(a_{i},a_{-i},0,b_{-i},D)<\pi_{i}(\lambda^{c}(a_{-i},b_{-i}),a_{-i},0,b_{-i},D).$$

The Best Response of Producer $i \in \mathcal{N}$

Production quantity yielded by the best response

The Optimal Profit of Producer $i \in \mathcal{N}$

Main Achievements

 we found a model of electricity market which is simple enough to be analytically solvable, but still complex enough to be interesting

Main Achievements

- we found a model of electricity market which is simple enough to be analytically solvable, but still complex enough to be interesting
- we provided (eventually limiting) best response of a producer discussed with respect to D

Main Achievements

- we found a model of electricity market which is simple enough to be analytically solvable, but still complex enough to be interesting
- we provided (eventually limiting) best response of a producer discussed with respect to D
- we shown that assuming $b_i > 0$ alone is not consistent from a game-theoretical point of view

Further Extensions

There are several possible extensions of the proposed model/technique

• to characterize all Nash Equilibria of the proposed model

Further Extensions

There are several possible extensions of the proposed model/technique

- to characterize all Nash Equilibria of the proposed model
- to add production bounds $q_i \leq \overline{q}_i$

Further Extensions

There are several possible extensions of the proposed model/technique

- to characterize all Nash Equilibria of the proposed model
- to add production bounds $q_i \leq \overline{q}_i$
- to add uncertainty, thus having $\tilde{b}_i > 0$

Further Extensions

There are several possible extensions of the proposed model/technique

- to characterize all Nash Equilibria of the proposed model
- to add production bounds $q_i \leq \overline{q}_i$
- to add uncertainty, thus having $\tilde{b}_i > 0$
- ...

All this could be possibly done in an analytical way again.

Further Extensions

There are several possible extensions of the proposed model/technique

- to characterize all Nash Equilibria of the proposed model
- to add production bounds $q_i \leq \overline{q}_i$
- to add uncertainty, thus having $\tilde{b}_i > 0$
- ...

All this could be possibly done in an analytical way again.

Do the same in pay-as-cleared setting? To this end we need to model consumers in a detail.

Further Extensions

There are several possible extensions of the proposed model/technique

- to characterize all Nash Equilibria of the proposed model
- to add production bounds $q_i \leq \overline{q}_i$
- to add uncertainty, thus having $\tilde{b}_i > 0$
- ...

All this could be possibly done in an analytical way again.

Do the same in pay-as-cleared setting? To this end we need to model consumers in a detail.

Thank you for your attention.

Selected References

- D. Aussel, R. Correa & M. Marechal, Spot electricity market with transmission losses, J. Industrial Manag. Optim. 9 (2013), 275-290.
- D. Aussel, R. Gupta & A. Mehra, Evolutionary Variational Inequality Formulation of Generalized Nash Equilibrium Problem, (2014), 14 pp.
- D. A., P. Bendotti & M. Pistek, Electricity pay-as-bid market: the best response of a producer, (2014), 31 pp.
- D. A., M. Cervinka & M. Marechal, Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions, (2014), 24 pp. [under revision]

Selected References

- D. Aussel, R. Correa & M. Marechal, Spot electricity market with transmission losses, J. Industrial Manag. Optim. 9 (2013), 275-290.
- D. Aussel, R. Gupta & A. Mehra, Evolutionary Variational Inequality Formulation of Generalized Nash Equilibrium Problem, (2014), 14 pp.
- D. A., P. Bendotti & M. Pistek, Electricity pay-as-bid market: the best response of a producer, (2014), 31 pp.
- D. A., M. Cervinka & M. Marechal, Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions, (2014), 24 pp. [under revision]
- D. A. & M. Pistek, Limiting Normal Operator in Quasiconvex Analysis, (2014), 18 pp.