On the link between oil price and exchange rate: a time-varying VAR parameter approach

Séminaire FIME (2014)

Brémond V., Hache E., Razafindrabe T.

EconomiX and IFPEN

19 décembre 2014

Context

- No clear-cut result regarding the direction (literature) and size (different sample period) of the relationship between exchange rate & oil price.
- Strong increase in volatility of exchange rate and oil price since 1970 (end of Bretton Woods, takeover of OPEC in 1973-1974).
- Increasing financialization of commodity markets (since 1993-2000).
- Petrodollar recycling and commodities labeled in USD (reinforced the link between HWWI and oil price).

Motivation of the paper

- A better understanding of the relationship between Oil Prices and Exchange Rates.
- Assessing the time-varying nature of the relationship in order to reconciliate different findings in the literature (context 1).
- Assessing the growing impact of financialization in influencing the relationship.

Literature

Oil price causes USD

- Positive link: Amano and Van Norden (1998a,1998b), Bénassy-Quéré et al. (2007), Chen and Chen (2007).
- Negative link: Lizardo and Mollick (2010), Bénassy-Quéré et al. (2007) (from 2002 to 2004), Reboredo et al. (2014).

Literature

Oil price causes USD

- Positive link: Amano and Van Norden (1998a,1998b), Bénassy-Quéré et al. (2007), Chen and Chen (2007).
- Negative link: Lizardo and Mollick (2010), Bénassy-Quéré et al. (2007) (from 2002 to 2004), Reboredo et al. (2014).

USD causes oil prices

- Negative link: Sadorsky (2000) and Krichene (2007).
- 2 Positive link: Zhang et al. (2008).

Literature

Oil price causes USD

- Positive link: Amano and Van Norden (1998a,1998b), Bénassy-Quéré et al. (2007), Chen and Chen (2007).
- Negative link: Lizardo and Mollick (2010), Bénassy-Quéré et al. (2007) (from 2002 to 2004), Reboredo et al. (2014).

USD causes oil prices

- Negative link: Sadorsky (2000) and Krichene (2007).
- 2 Positive link: Zhang et al. (2008).

Bilateral causality

Percebois (2009) and Benhmad (2012).

$$B_t Y_t = d_t + C_{1,t} Y_{t-1} + \dots + C_{p,t} Y_{t-p} + \Sigma_t v_t$$
 (structural)
 $Y_t = c_t + A_{1,t} Y_{t-1} + \dots + A_{p,t} Y_{t-p} + \varepsilon_t$ (reduced form)
 where $A_{p,t} = B_t^{-1} C_{p,t}$, $c_t = B_t^{-1} d_t$ and $\varepsilon_t = B_t^{-1} \Sigma_t v_t$.

The Time-varying parameter VAR model:

$$B_t Y_t = d_t + C_{1,t} Y_{t-1} + \dots + C_{p,t} Y_{t-p} + \Sigma_t v_t \text{ (structural)}$$

$$Y_t = c_t + A_{1,t} Y_{t-1} + \dots + A_{p,t} Y_{t-p} + \epsilon_t \text{ (reduced form)}$$

where
$$A_{p,t}=B_t^{-1}C_{p,t}$$
, $c_t=B_t^{-1}d_t$ and $\epsilon_t=B_t^{-1}\Sigma_t v_t$.

• Change in the relationship between variables over the sample period comes from 3 sources:

$$B_t Y_t = d_t + C_{1,t} Y_{t-1} + \dots + C_{p,t} Y_{t-p} + \Sigma_t v_t \text{ (structural)}$$

$$Y_t = c_t + A_{1,t} Y_{t-1} + \dots + A_{p,t} Y_{t-p} + \varepsilon_t \text{ (reduced form)}$$

where
$$A_{p,t}=B_t^{-1}C_{p,t}$$
, $c_t=B_t^{-1}d_t$ and $\epsilon_t=B_t^{-1}\Sigma_t v_t$.

- Change in the relationship between variables over the sample period comes from 3 sources:
 - **1** The **contemporaneous** relationship B_t .

$$B_t Y_t = d_t + C_{1,t} Y_{t-1} + \dots + C_{p,t} Y_{t-p} + \Sigma_t v_t \text{ (structural)}$$

$$Y_t = c_t + A_{1,t} Y_{t-1} + \dots + A_{p,t} Y_{t-p} + \varepsilon_t \text{ (reduced form)}$$

where
$$A_{p,t}=B_t^{-1}C_{p,t}$$
, $c_t=B_t^{-1}d_t$ and $\epsilon_t=B_t^{-1}\Sigma_t v_t$.

- Change in the relationship between variables over the sample period comes from 3 sources:
 - **1** The **contemporaneous** relationship B_t .
 - **②** The **propagation mechanism** or dynamics of the model $C_{p,t}$.

$$B_t Y_t = d_t + C_{1,t} Y_{t-1} + \dots + C_{p,t} Y_{t-p} + \Sigma_t v_t \text{ (structural)}$$

$$Y_t = c_t + A_{1,t} Y_{t-1} + \dots + A_{p,t} Y_{t-p} + \varepsilon_t \text{ (reduced form)}$$

where
$$A_{p,t}=B_t^{-1}C_{p,t}$$
, $c_t=B_t^{-1}d_t$ and $\epsilon_t=B_t^{-1}\Sigma_t v_t$.

- Change in the relationship between variables over the sample period comes from 3 sources:
 - **1** The **contemporaneous** relationship B_t .
 - **2** The **propagation mechanism** or dynamics of the model $C_{p,t}$.
 - **1** The size of the **volatility** of variables Σ_t .

Why the relationship should be time-varying?

 Strong increase in the volatility of foreign exchange market and oil price. In contrast, great moderation for real activity.

Why the relationship should be time-varying?

- Strong increase in the volatility of foreign exchange market and oil price. In contrast, great moderation for real activity.
- Different nature of shocks underlying the dynamics of oil price (Kilian (2009)).

Why the relationship should be time-varying?

- Strong increase in the volatility of foreign exchange market and oil price. In contrast, great moderation for real activity.
- Different nature of shocks underlying the dynamics of oil price (Kilian (2009)).
- The growing financialisation of commodities markets.

$$\alpha_t = \alpha_{t-1} + \omega_t \text{ (for } A_{p,t})$$

$$b_t = b_{t-1} + \zeta_t \text{ (for } B_t)$$

$$h_t = h_{t-1} + \eta_t \text{ (for } \Sigma_t)$$

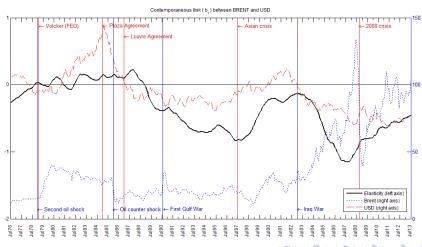
Parameters of interest evolve according to:

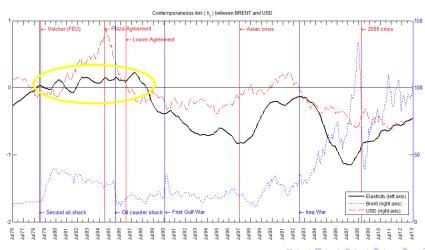
$$\begin{array}{lll} \alpha_t & = & \alpha_{t-1} + \omega_t \; (\text{for } A_{p,t}) \\ b_t & = & b_{t-1} + \zeta_t \; (\text{for } B_t) \\ h_t & = & h_{t-1} + \eta_t \; (\text{for } \Sigma_t) \end{array}$$

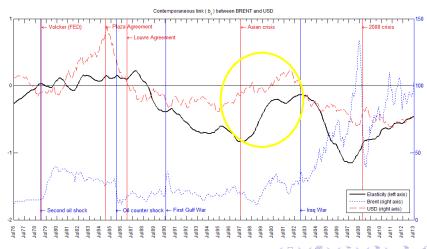
Advantages of this specification:

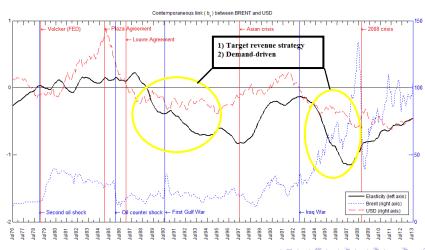
$$egin{array}{lll} lpha_t &=& lpha_{t-1} + \omega_t ext{ (for } A_{p,t}) \ b_t &=& b_{t-1} + \zeta_t ext{ (for } B_t) \ h_t &=& h_{t-1} + \eta_t ext{ (for } \Sigma_t) \end{array}$$

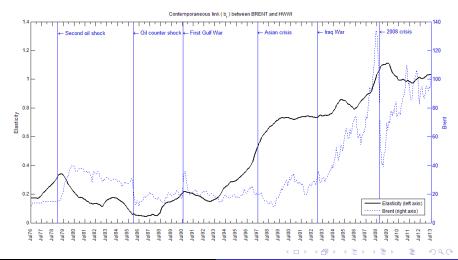
- Advantages of this specification:
 - model possible abrupt break in the evolution of parameters.

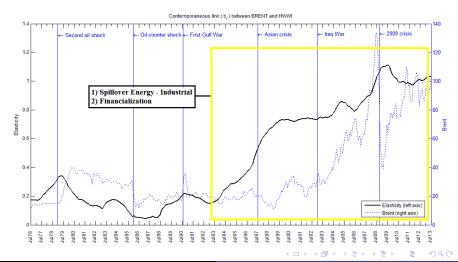

$$egin{array}{lll} lpha_t &=& lpha_{t-1} + \omega_t ext{ (for } A_{p,t}) \ b_t &=& b_{t-1} + \zeta_t ext{ (for } B_t) \ h_t &=& h_{t-1} + \eta_t ext{ (for } \Sigma_t) \end{array}$$

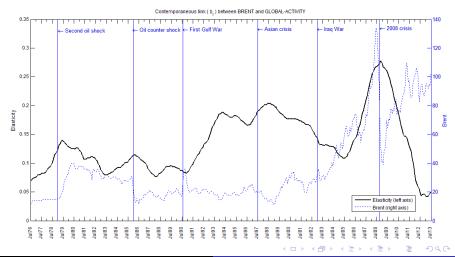

- Advantages of this specification:
 - 1 model possible abrupt break in the evolution of parameters.
 - model gradual changes in the relationship between variables.

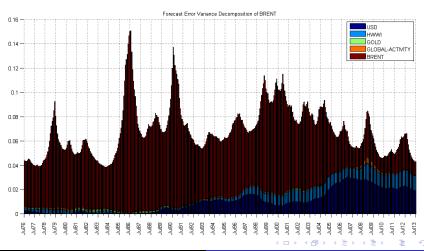

$$egin{array}{lll} lpha_t &=& lpha_{t-1} + \omega_t ext{ (for } A_{p,t}) \ b_t &=& b_{t-1} + \zeta_t ext{ (for } B_t) \ h_t &=& h_{t-1} + \eta_t ext{ (for } \Sigma_t) \end{array}$$


- Advantages of this specification:
 - 1 model possible abrupt break in the evolution of parameters.
 - @ model gradual changes in the relationship between variables.
- Estimation is conducted using Bayesian Gibbs Sampling methodology (and forward and backward Kalman filter).



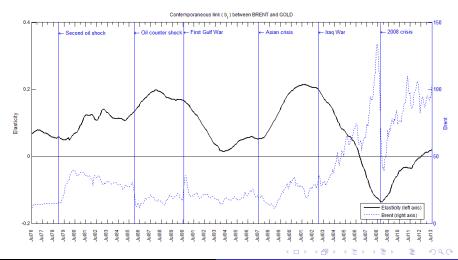



Brent and HWWI

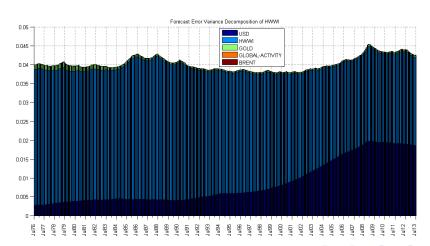

Brent and HWWI

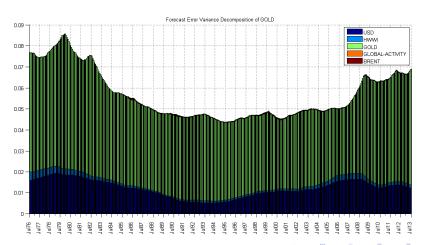
Brent and Global activity

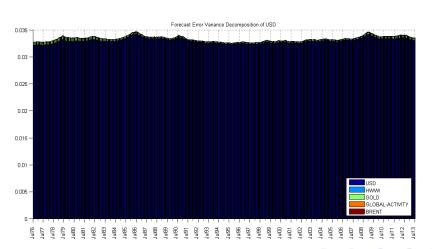
FEDV Brent


Conclusion

- Relationship between oil price and exchange rate (elasticity and volatility) is time-varying.
- The relationship is negative since 1989: "Target revenue strategy - Demand driven".
- Increasing role of commodities markets in the oil price dynamics.


Thank you for your attention.


Backslides (BRENT/GOLD)


Backslides (FEDV HWWI)

Backslides (FEDV GOLD)

Backslides (FEDV USD)

