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Challenges of Renewable Energy Integration

Some of the Challenges

1 Large sunk cost (decreasing!)

2 Engineering uncertainty

3 Policy uncertainty

4 Volatility

Start at the bottom...
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Challenges of Renewable Energy Integration

Some of the Challenges
What is scary about volatility?

4 Volatility
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Challenges of Renewable Energy Integration

Comparison: Flight control
How do we fly a plane through a storm?

Brains

Brawn

Brains

Brawn

What Good Are These?
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Challenges of Renewable Energy Integration

Comparison: Flight control
How do we operate the grid in a storm?

Balancing Authority Ancillary Services Grid

Measurements:
 Voltage
 Frequency
 Phase

Σ

−
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Challenges of Renewable Energy Integration

How do we operate the grid in a storm?
Disturbance decomposition
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Demand Dispatch

Goal: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

Can demand dispatch do all of this?
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A partial list of the needs of the grid operator, and the consumer:

High quality AS? (Ancillary Service)
Does the deviation in power consumption accurately track the desired
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Fig. 10. Coal-�red generators do not follow regulation signals precisely....
 Some do better than others

Regulation service from generators is not perfect
Frequency Regulation Basics and Trends — Brendan J. Kirby, December 2004

Reliable?
Cost effective?
Is the incentive to the consumer reliable?
Customer QoS constraints satisfied?

Can demand dispatch do all of this?
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Demand Dispatch

Goal: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?
Will AS be available each day?
It may vary with time, but capacity must be predictable.

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?

Can demand dispatch do all of this?
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Goal: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?

Cost effective?
This includes installation cost, communication cost, maintenance,
and environmental.

Is the incentive to the consumer reliable?
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Goal: Responsive Regulation
Demand Dispatch the Answer?

A partial list of the needs of the grid operator, and the consumer:

High quality AS?

Reliable?

Cost effective?

Is the incentive to the consumer reliable?

Customer QoS constraints satisfied?
The pool must be clean, fresh fish stays cold, building climate is
subject to strict bounds, farm irrigation is subject to strict constraints,
data centers require sufficient power to perform their tasks.

Can demand dispatch do all of this?
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Demand Dispatch

Control Architecture
Frequency Decomposition for Demand Dispatch

Today: PJM decomposes regulation signal based on bandwidth,
RegA + RegD

Proposal: Each class of DR (and other) resources will have its own
bandwidth of service, based on QoS constraints and costs.
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Demand Dispatch

Control Architecture
Frequency Decomposition for Demand Dispatch
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Demand Dispatch

Control Architecture
Frequency Decomposition for Demand Dispatch

Balancing Reserves from Bonneville Power Administration:
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Control of Deferrable Loads

Control of Deferrable Loads
Control Goals and Architecture

...

Load 1

BA
Reference (MW)

Load 2

Load N

ζ
r 

+

Gc

Power
Consumption (MW) 

Context: Consider population of similar loads that are deferrable.

Examples: Chillers in HVAC systems, water heaters, residential TCLs, ...
... residential pool pumps
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Control of Deferrable Loads

Control of Deferrable Loads
Randomized Control Architecture

Context: Consider population of similar loads that are deferrable.

Constraints: Grid operator demands reliable ancillary service; Consumer demands

reliable service

Control strategy

Requirements:

1. Minimal communication. Each load should know the needs of the
grid, and the status of the service it is intended to provide.

2.

Aggregate must be controllable

=⇒ Randomization

Need: A practical theory for distributed control based on this architecture
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Local Markovian Dynamics and Mean Field Model

General Model
Controlled Markovian Dynamics

Assumptions for Load Model:

Continuous time: ith load Xi(t) evolves on finite state space X

Each load is subject to common controlled Markovian dynamics.

Signal ζ = {ζt} is broadcast to all loads

Controlled Markovian rate-matrix: For any two states x−, x+ ∈ X,

P{Xi(t+ s) = x+ | Xi(t) = x−} ≈ sDζt(x−, x+) +O(s2)
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Local Markovian Dynamics and Mean Field Model

General Model

Aggregate model: N loads running independently,
each under the command ζ.

Empirical Distributions:

µNt (x) =
1

N

N∑
i=1

I{Xi(t) = x}, x ∈ X

Question: How to design Dζ?
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Design for Intelligent Loads

Mean Field Model
Goal: Construct a family of rate-matrices {Dζ : ζ ∈ R}

Design: Consider first the finite-horizon control problem:

Explicit solution for finite T :

p∗ζ(x
T
0 ) ∝ exp

(
ζ

∫ T

t=0
U(xt) dt

)
p0(x

T
0 )

As T →∞, we obtain rate-matrix Dζ
Explicit construction via eigenvector problem:

Dζ(x, y) =
v(y)

v(x)

[
ζU(x)− Λ +D0(x, y)

]
where D̂v = Λv, D̂(x, y) = ζU(x) +D0(x, y)

Extension/reinterpretation of [Todorov 2007] + [Kontoyiannis & M 200X]
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d

dt
µt = µtDζt

yt = 〈µt,U〉

d

dt
Φt = AΦt + Bζt

γt = CΦt

Linearized Dynamics



Linearized Dynamics and Passivity

Mean Field Model
Linearized Dynamics

Mean-field model: d
dtµt = µtDζt , yt = µt(U)

Linear state space model:

d

dt
Φt = AΦt +Bζt

γt = CΦt

Interpretations: |ζt| is small, and π denotes invariant measure for D0.

• Φt ∈ R|X|, a column vector with
Φt(x) ≈ µt(x)− π(x), x ∈ X

• γt ≈ yt − y0; deviation from nominal steady-state

• A = DT
0, Ci = U(xi), and input dynamics linearized:

BT =
d

dζ
πDζ

∣∣∣
ζ=0
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Linearized Dynamics and Passivity

Example: One Million Pools in Florida
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses
1.3kW and runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern

Single pool dynamics:
1 2 T−1 T

. . .

T

On

O�

12T−1

...

17 / 26



Linearized Dynamics and Passivity

Example: One Million Pools in Florida
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses
1.3kW and runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern

Single pool dynamics:
1 2 T−1 T

. . .

T

On

O�

12T−1

...

17 / 26



Linearized Dynamics and Passivity

Example: One Million Pools in Florida
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses
1.3kW and runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern

Single pool dynamics:
1 2 T−1 T

. . .

T

On

O�

12T−1

...

17 / 26



Linearized Dynamics and Passivity

Pools in Florida Supply G2 – BPA regulation signal∗
Stochastic simulation using N = 105 pools
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Each pool pump turns on/off with probability depending on
1) its internal state, and 2) the BPA reg signal
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Stochastic simulation using N = 105 pools

 

 Reference Output deviation  (MW)

−300

−200

−100

0

100

200

300

0 20 40 60 80 100 120 140 160
t/hour

 0 20 40 60 80 100 120 140 160

Mean-field model: Input-output system stable? Passive?
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Linearized Dynamics and Passivity

Linearized Dynamics
Transfer Function

Linear state space model:

d

dt
Φt = AΦt +Bζt

γt = CΦt A = DT
0, Ci = U(xi), BT =

d

dζ
πDζ

∣∣∣
ζ=0

Transfer Function:

G(s) = C[Is−A]−1B = C[Is−DT
0]−1B

= CRT
sB TF for L-MFM � Resolvent for one load

Resolvent Matrix:

Rs =

∫ ∞
0

e−stetD0 dt = [Is−D0]
−1
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Linearized Dynamics and Passivity

Linearized Dynamics
Passive Pools

Theorem: Reversibility =⇒ Passivity

Suppose that the nominal model is reversible.
Then its linearization satisfies,

ReG(jω) = PSDY (ω), ω ∈ R ,

where
G(s) = C[Is−A]−1B for s ∈ C.

PSDY (ω) =

∫ ∞
−∞

e−jωtEπ[Ũ(X0)Ũ(Xt)] dt

Implication for control: G(s) is positive real
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Linearized Dynamics and Passivity

Linearized Dynamics
Example Without Passivity

Example: Eight state model Utility function U(xi) = i.

1 2

3 4

5 6

7 8

a c

c

a

a a

a a

a a

b b b b

Not reversible
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Example: Eight state model a = c = 10, b = 1
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Conclusions and Extensions

Conclusions
Recap

A particular approach to distributed control is proposed

The grid level control problem is simple because:

? Mean field model is simple, and good approximation of finite system

? LTI approximation is positive real

Analysis:
Transfer function � Resolvent for one load

not the Kalman–Yakubovich–Popov lemma
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Conclusions and Extensions

Conclusions
Extensions

The minimum phase condition was observed in all of our applications,
even though the nominal model was not reversible — mystery

Performance for an individual load: Gaussian approximations for QoS
There will be “rare events” in which QoS is poor.

Remedy: Additional layer of control at each load
=⇒ hard constraints on performance can be assured.

100 150 200 250

−20

−10

0

10

20

20

M
W

ζ

−1

0

1

−1

0

1

Hours

Reference Output Control

23 / 26



Conclusions and Extensions

Conclusions
Extensions

The minimum phase condition was observed in all of our applications,
even though the nominal model was not reversible — mystery
Performance for an individual load: Gaussian approximations for QoS

QoS without local control
−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

 

 

fra
ct

io
n 

of
 p

oo
ls

Histogram of pool health
Gaussian distribution

There will be “rare events” in which QoS is poor.

Remedy: Additional layer of control at each load
=⇒ hard constraints on performance can be assured.

100 150 200 250

−20

−10

0

10

20

20

M
W

ζ

−1

0

1

−1

0

1

Hours

Reference Output Control

23 / 26



Conclusions and Extensions

Conclusions
Extensions

The minimum phase condition was observed in all of our applications,
even though the nominal model was not reversible — mystery
Performance for an individual load: Gaussian approximations for QoS

QoS without local control
−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

 

 

fra
ct

io
n 

of
 p

oo
ls

Histogram of pool health
Gaussian distribution

There will be “rare events” in which QoS is poor.

Remedy: Additional layer of control at each load
=⇒ hard constraints on performance can be assured.

100 150 200 250

−20

−10

0

10

20

20

M
W

ζ

−1

0

1

−1

0

1

Hours

Reference Output Control

23 / 26



Conclusions and Extensions

Conclusions
Extensions

The minimum phase condition was observed in all of our applications,
even though the nominal model was not reversible — mystery

Performance for an individual load: Gaussian approximations for QoS
There will be “rare events” in which QoS is poor.

Remedy: Additional layer of control at each load
=⇒ hard constraints on performance can be assured.

100 150 200 250

−20

−10

0

10

20

20

M
W

ζ

−1

0

1

−1

0

1

Hours

Reference Output Control

23 / 26



Conclusions and Extensions

Conclusions

Thank You!
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A. Bušić and S. Meyn. Passive dynamics in mean field control. ArXiv e-prints:
arXiv:1402.4618. 53rd IEEE Conf. on Decision and Control (Invited), 2014.
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