Ancillary Service to the Grid Using Intelligent Deferrable Loads

Séminaire FIME

July 3, 2015

Ana Bušić

Inria Paris-Rocquencourt

In collaboration with S. Meyn, P. Barooah, Y. Chen, and J. Ehren.

メロト メタト メミト メミト

重

 $2Q$

Outline

- 2 [Demand Dispatch](#page-19-0)
- 3 [Control of Deferrable Loads](#page-34-0)
- 4 [Local Markovian Dynamics and Mean Field Model](#page-40-0)
- 5 [Design for Intelligent Loads](#page-50-0)
- 6 [Conclusions and Extensions](#page-81-0)

1 Large sunk cost (decreasing!)

- **1** Large sunk cost (decreasing!)
- ² Engineering uncertainty

- **1** Large sunk cost (decreasing!)
- ² Engineering uncertainty
- **3** Policy uncertainty

- **1** Large sunk cost (decreasing!)
- **2** Engineering uncertainty
- **3** Policy uncertainty
- **4** Volatility

Start at the bottom...

K ロ X K @ X K 경 X X 경 X X 경

1 / 26

 QQ

What is scary about volatility?

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ B QQ 2 / 26

What is scary about volatility?

 \bullet Volatility \Longrightarrow greater regulation needs

What is scary about volatility?

\bullet Volatility \Longrightarrow greater regulation needs

 Ω 3 / 26

Comparison: Flight control How do we fly a plane through a storm?

Comparison: Flight control How do we fly a plane through a storm?

メロメ メ御き メミメ メミメ Ω 4 / 26

Comparison: Flight control How do we operate the grid in a storm?

Disturbance decomposition

 QQ 6 / 26

Disturbance decomposition

Disturbance decomposition

 QQ 6 / 26

Disturbance decomposition

 QQ 6 / 26

Disturbance decomposition

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ B QQ 6 / 26

Disturbance decomposition

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$ Ω 6 / 26

Disturbance decomposition

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ Ω 6 / 26

Demand Dispatch

★ ロン → 御 > → (할 > → 할 > → 할

 $2Q$

A partial list of the needs of the grid operator, and the consumer:

A partial list of the needs of the grid operator, and the consumer:

• High quality AS? (Ancillary Service)

Does the deviation in power consumption accurately track the desired deviation target?

7 / 26

 Ω

イロト イ部 トメ ミト メミト 一毛

A partial list of the needs of the grid operator, and the consumer:

• High quality AS? (Ancillary Service)

^{7 / 26}

A partial list of the needs of the grid operator, and the consumer:

- High quality AS?
- **•** Reliable?

Will AS be available each day? It may vary with time, but capacity must be predictable.

A partial list of the needs of the grid operator, and the consumer:

- High quality AS?
- **•** Reliable?

• Cost effective?

This includes installation cost, communication cost, maintenance, and environmental.

A partial list of the needs of the grid operator, and the consumer:

- High quality AS?
- **•** Reliable?
- **Cost effective?**
- Is the incentive to the consumer reliable?

If a consumer receives a \$50 payment for one month, and only \$1 the next, will there be an explanation that is clear to the consumer?

A partial list of the needs of the grid operator, and the consumer:

- High quality AS?
- **•** Reliable?
- Cost effective?
- Is the incentive to the consumer reliable?
- Customer QoS constraints satisfied?

The pool must be clean, fresh fish stays cold, building climate is subject to strict bounds, farm irrigation is subject to strict constraints, data centers require sufficient power to perform their tasks.

A partial list of the needs of the grid operator, and the consumer:

- High quality AS?
- **e** Reliable?
- Cost effective?
- **a** Is the incentive to the consumer reliable?
- Customer QoS constraints satisfied?

Can demand dispatch do all of this?

Control Architecture

Frequency Decomposition for Demand Dispatch

8 / 26

 QQ

イロト イ部 トメ ミト メミト 一毛

Today: PJM decomposes regulation signal based on bandwidth, $RegA + RegD$

Control Architecture

Frequency Decomposition for Demand Dispatch

Today: PJM decomposes regulation signal based on bandwidth, $\text{RegA} + \text{RegD}$

Proposal: Each class of DR (and other) resources will have its own bandwidth of service, based on QoS constraints [an](#page-28-0)[d](#page-30-0) [c](#page-27-0)[o](#page-28-0)[st](#page-29-0)[s](#page-30-0)[.](#page-18-0)

Control Architecture

Frequency Decomposition for Demand Dispatch

 Ω 9 / 26

Control Architecture Frequency Decomposition for Demand Dispatch

Balancing Reserves from Bonneville Power Administration:

BPA Reg signal (one week)

10 / 26

Ξ

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Control Architecture Frequency Decomposition for Demand Dispatch

Balancing Reserves from Bonneville Power Administration:

 -10.5 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$ Ω 10 / 26

Control Architecture Frequency Decomposition for Demand Dispatch

Balancing Reserves from Bonneville Power Administration:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$ QQ 10 / 26

Control of Deferrable Loads

K ロ ▶ (K @) (K @) (高)

一重

 299

Control of Deferrable Loads

Control Goals and Architecture

Context: Consider population of similar loads that are *deferrable*.

Examples: Chillers in HVAC systems, water heaters, residential TCLs, residential pool pumps
Randomized Control Architecture

Context: Consider population of similar loads that are deferrable.

Constraints: Grid operator demands reliable ancillary service; Consumer demands reliable service

Control strategy

- Requirements:
	- 1. Minimal communication. Each load should know the needs of the grid, and the status of the service it is intended to provide.

Randomized Control Architecture

Context: Consider population of similar loads that are deferrable.

Constraints: Grid operator demands reliable ancillary service; Consumer demands reliable service

Control strategy

Requirements:

- 1. Minimal communication. Each load should know the needs of the grid, and the status of the service it is intended to provide.
- 2. Aggregate must be controllable

Randomized Control Architecture

Context: Consider population of similar loads that are deferrable.

Constraints: Grid operator demands reliable ancillary service; Consumer demands reliable service

Control strategy

Requirements:

- 1. Minimal communication. Each load should know the needs of the grid, and the status of the service it is intended to provide.
- 2. Aggregate must be controllable

=⇒ Randomization

Randomized Control Architecture

Control strategy

Requirements:

- 1. Minimal communication. Each load should know the needs of the grid, and the status of the service it is intended to provide.
- 2. Aggregate must be controllable

=⇒ Randomization

Need: A practical theory for distributed control based on this architecture

Intelligent Appliances

メロメ メ都メ メミメ メミメ

 299

隱

[Local Markovian Dynamics and Mean Field Model](#page-41-0)

General Model Controlled Markovian Dynamics

Assumptions for Load Model:

General Model Controlled Markovian Dynamics

Assumptions for Load Model:

Continuous time: ith load $X^i(t)$ evolves on finite state space X

General Model Controlled Markovian Dynamics

Assumptions for Load Model:

- Continuous time: ith load $X^i(t)$ evolves on finite state space X
- Each load is subject to *common* controlled Markovian dynamics.

Signal $\zeta = \{\zeta_t\}$ is broadcast to all loads

General Model Controlled Markovian Dynamics

Assumptions for Load Model:

- Continuous time: ith load $X^i(t)$ evolves on finite state space X
- Each load is subject to *common* controlled Markovian dynamics.

Signal $\zeta = \{\zeta_t\}$ is broadcast to all loads

13 / 26

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

Controlled Markovian rate-matrix: For any two states $x^-, x^+ \in \mathsf{X}$,

$$
P\{X^{i}(t+s) = x^{+} | X^{i}(t) = x^{-}\} \approx s\mathcal{D}_{\zeta_{t}}(x^{-}, x^{+}) + O(s^{2})
$$

Aggregate model: N loads running independently, each under the command ζ .

Aggregate model: N loads running independently, each under the command ζ .

Empirical Distributions:

$$
\mu_t^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X}
$$

14 / 26

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Aggregate model: N loads running independently, each under the command ζ .

Empirical Distributions:

$$
\mu_t^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X}
$$

Limiting model:

$$
\frac{d}{dt}\mu_t(x') = \sum_{x \in \mathsf{X}} \mu_t(x) \mathcal{D}_{\zeta_t}(x, x'), \quad y_t := \sum_x \mu_t(x) \mathcal{U}(x)
$$

via Law of Large Numbers for martingales

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900 14 / 26

Aggregate model: N loads running independently, each under the command ζ .

Empirical Distributions:

$$
\mu_t^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X}
$$

Mean-field model:

$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

$$
\zeta_t = f_t(\mu_0, \dots, \mu_t) \quad \text{by design}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900 14 / 26

Aggregate model: N loads running independently, each under the command ζ .

Empirical Distributions:

$$
\mu_t^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{X^i(t) = x\}, \qquad x \in \mathsf{X}
$$

Mean-field model:

$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

$$
\zeta_t = f_t(\mu_0, \dots, \mu_t) \quad \text{by design}
$$

Question: How to design D_{ζ} ? K ロ X K @ X K 경 X X 경 X X 경

Design

Mean Field Model

Goal: Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}$

Design: Consider first the finite-horizon control problem:

Mean Field Model

Goal: Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}\$

Design: Consider first the finite-horizon control problem: Choose distribution p_C to *maximize*

$$
\frac{1}{T}\Big(\zeta\mathsf{E}\Bigl[\int_{t=0}^T \mathcal{U}(X_t)\Bigr] - D(p_\zeta\|p_0)\Bigr)
$$

Expectation is w.r.t. p_c .

 D denotes relative entropy.

 p_0 denotes nominal Markovian model.

Mean Field Model

Goal: Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}\$

Design: Consider first the finite-horizon control problem: Choose distribution p_C to *maximize*

$$
\frac{1}{T}\Big(\zeta \mathsf{E}\Big[\int_{t=0}^T \mathcal{U}(X_t)\Big] - D(p_\zeta \| p_0)\Big)
$$

Expectation is w.r.t. p_c .

15 / 26

 D denotes relative entropy.

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

 p_0 denotes nominal Markovian model.

Explicit solution for finite T :

$$
p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \int_{t=0}^T \mathcal{U}(x_t) dt\right) p_0(x_0^T)
$$

Mean Field Model **Goal:** Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}$

Explicit solution for finite T :

$$
p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \int_{t=0}^T \mathcal{U}(x_t) dt\right) p_0(x_0^T)
$$

Markovian, but not time-homogeneous.

Mean Field Model **Goal:** Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}$

Explicit solution for finite T :

$$
p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \int_{t=0}^T \mathcal{U}(x_t) dt\right) p_0(x_0^T)
$$

As $T \to \infty$, we obtain rate-matrix \mathcal{D}_{ζ}

Mean Field Model **Goal:** Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}\$

Explicit solution for finite T :

$$
p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \int_{t=0}^T \mathcal{U}(x_t) dt\right) p_0(x_0^T)
$$

As $T \to \infty$, we obtain rate-matrix \mathcal{D}_{ζ}

Explicit construction via eigenvector problem:

Mean Field Model **Goal:** Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}\$

Explicit solution for finite T :

$$
p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \int_{t=0}^T \mathcal{U}(x_t) dt\right) p_0(x_0^T)
$$

As $T \to \infty$, we obtain rate-matrix \mathcal{D}_{ζ}

Explicit construction via eigenvector problem:

$$
\mathcal{D}_{\zeta}(x,y) = \frac{v(y)}{v(x)} \Big[\zeta \mathcal{U}(x) - \Lambda + \mathcal{D}_0(x,y) \Big]
$$

15 / 26

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900

Mean Field Model **Goal:** Construct a family of rate-matrices $\{\mathcal{D}_{\zeta} : \zeta \in \mathbb{R}\}\$

Explicit solution for finite T :

$$
p_{\zeta}^*(x_0^T) \propto \exp\left(\zeta \int_{t=0}^T \mathcal{U}(x_t) dt\right) p_0(x_0^T)
$$

As $T \to \infty$, we obtain rate-matrix \mathcal{D}_{ζ}

Explicit construction via eigenvector problem:

$$
\mathcal{D}_{\zeta}(x,y) = \frac{v(y)}{v(x)} \Big[\zeta \mathcal{U}(x) - \Lambda + \mathcal{D}_0(x,y) \Big]
$$

where $\widehat{\mathcal{D}}v = \Lambda v$, $\widehat{\mathcal{D}}(x, y) = \zeta \mathcal{U}(x) + \mathcal{D}_0(x, y)$

Extension/reinterpretation of [Todorov 2007] + [Kontoyiannis & M 200X] **KORK EX KEY STARK** 15 / 26

Linearized Dynamics

(ロ) (御) (唐) (唐) (唐) 2000

Mean-field model:

$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$

$$
\gamma_t = C\Phi_t
$$

イロト イ団 ト イをト イをトー \equiv QQ 16 / 26

Mean-field model:
$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

Linear state space model:
$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$

Interpretations: $|\zeta_t|$ is small, and π denotes invariant measure for $\mathcal{D}_0.$

 $\gamma_t = C \Phi_t$

Mean-field model:
$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$

$$
\gamma_t = C\Phi_t
$$

16 / 26

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

Interpretations: $|\zeta_t|$ is small, and π denotes invariant measure for $\mathcal{D}_0.$ • $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$, a column vector with

 $\Phi_t(x) \approx \mu_t(x) - \pi(x), x \in \mathsf{X}$

Mean-field model:
$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$

$$
\gamma_t = C\Phi_t
$$

16 / 26

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

Interpretations: $|\zeta_t|$ is small, and π denotes invariant measure for $\mathcal{D}_0.$

- $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$, a column vector with $\Phi_t(x) \approx \mu_t(x) - \pi(x), x \in \mathsf{X}$
- $\bullet \ \ \gamma_t \approx y_t y^0;$ deviation from nominal steady-state

Mean-field model:
$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$

$$
\gamma_t = C\Phi_t
$$

16 / 26

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

Interpretations: $|\zeta_t|$ is small, and π denotes invariant measure for $\mathcal{D}_0.$

- $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$, a column vector with $\Phi_t(x) \approx \mu_t(x) - \pi(x), x \in \mathsf{X}$
- $\bullet \ \ \gamma_t \approx y_t y^0;$ deviation from nominal steady-state
- $A = \mathcal{D}_0^{\tau}$, $C_i = \mathcal{U}(x^i)$, and input dynamics linearized:

Mean-field model:
$$
\frac{d}{dt}\mu_t = \mu_t \mathcal{D}_{\zeta_t}, \qquad y_t = \mu_t(\mathcal{U})
$$

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$

$$
\gamma_t = C\Phi_t
$$

16 / 26

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

Interpretations: $|\zeta_t|$ is small, and π denotes invariant measure for $\mathcal{D}_0.$

- $\Phi_t \in \mathbb{R}^{|\mathsf{X}|}$, a column vector with $\Phi_t(x) \approx \mu_t(x) - \pi(x), x \in \mathsf{X}$
- $\bullet \ \ \gamma_t \approx y_t y^0;$ deviation from nominal steady-state
- $A = \mathcal{D}_0^{\tau}$, $C_i = \mathcal{U}(x^i)$, and input dynamics linearized:

$$
B^{\mathsf{T}} = \frac{d}{d\zeta} \pi \mathcal{D}_{\zeta} \Big|_{\zeta = 0}
$$

[Linearized Dynamics and Passivity](#page-66-0)

Example: One Million Pools in Florida

How Pools Can Help Regulate The Grid

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

17 / 26

Needs of a single pool

 \triangleright Filtration system circulates and cleans: Average pool pump uses 1.3kW and runs 6-12 hours per day, 7 days per week

[Linearized Dynamics and Passivity](#page-67-0)

Example: One Million Pools in Florida

How Pools Can Help Regulate The Grid

メロト メ都 トメ ヨ トメ ヨト

17 / 26

Needs of a single pool

- \triangleright Filtration system circulates and cleans: Average pool pump uses 1.3kW and runs 6-12 hours per day, 7 days per week
- \triangleright Pool owners are oblivious, until they see frogs and algae

Example: One Million Pools in Florida

How Pools Can Help Regulate The Grid

17 / 26

Needs of a single pool

- \triangleright Filtration system circulates and cleans: Average pool pump uses 1.3kW and runs 6-12 hours per day, 7 days per week
- \triangleright Pool owners are oblivious, until they see frogs and algae
- \triangleright Pool owners do not trust anyone: Privacy is a big concern

Pools in Florida Supply G_2 – BPA regulation signal^{*} **Stochastic simulation** using $N = 10^5$ pools

∗ <transmission.bpa.gov/Business/Operations/Wind/reserves.aspx>

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ 18 / 26

Pools in Florida Supply G_2 – BPA regulation signal^{*} **Stochastic simulation** using $N = 10^5$ pools

Each pool pump turns on/off with probability depending on 1) its internal state, and 2) the BPA reg signal

Pools in Florida Supply G_2 – BPA regulation signal^{*} **Stochastic simulation** using $N = 10^5$ pools

Mean-field model: Input-output system stable? Passive?

 $\left\{ \left\{ \bigcap \mathbb{P} \left| \mathbb{P} \right| \leq \left\{ \bigcap \mathbb{P} \right| \right\} \right\}$ λ = λ Ω 18 / 26

4 D F
Transfer Function

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$
\n
$$
\gamma_t = C\Phi_t \qquad \qquad A = \mathcal{D}_0^T, \quad C_i = \mathcal{U}(x^i), \quad B^T = \frac{d}{d\zeta}\pi \mathcal{D}_\zeta \Big|_{\zeta=0}
$$

19 / 26

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Linearized Dynamics Transfer Function

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$
\n
$$
\gamma_t = C\Phi_t \qquad \qquad A = \mathcal{D}_0^T, \quad C_i = \mathcal{U}(x^i), \quad B^T = \frac{d}{d\zeta}\pi \mathcal{D}_\zeta \Big|_{\zeta=0}
$$

19 / 26

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Transfer Function:

$$
G(s) = C[Is - A]^{-1}B = C[Is - D_0^T]^{-1}B
$$

Linearized Dynamics Transfer Function

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$
\n
$$
\gamma_t = C\Phi_t \qquad \qquad A = \mathcal{D}_0^T, \quad C_i = \mathcal{U}(x^i), \quad B^T = \frac{d}{d\zeta}\pi \mathcal{D}_\zeta \Big|_{\zeta=0}
$$

Transfer Function:

$$
G(s) = C[Is - A]^{-1}B = C[Is - D_0^T]^{-1}B
$$

Resolvent Matrix:

$$
R_s = \int_0^\infty e^{-st} e^{t\mathcal{D}_0} dt = [Is - \mathcal{D}_0]^{-1}
$$

19 / 26

Linearized Dynamics Transfer Function

Linear state space model:

$$
\frac{d}{dt}\Phi_t = A\Phi_t + B\zeta_t
$$
\n
$$
\gamma_t = C\Phi_t \qquad \qquad A = \mathcal{D}_0^T, \quad C_i = \mathcal{U}(x^i), \quad B^T = \frac{d}{d\zeta}\pi \mathcal{D}_\zeta\Big|_{\zeta=0}
$$

Transfer Function:

$$
G(s) = C[Is - A]^{-1}B = C[Is - D_0^T]^{-1}B
$$

$$
= C R_s^{\mathsf{T}} B \qquad \qquad \mathsf{TF} \text{ for L-MFM} \leftrightarrows \text{ Resolvent for one load}
$$

Resolvent Matrix:

$$
R_s = \int_0^\infty e^{-st} e^{t\mathcal{D}_0} dt = [Is - \mathcal{D}_0]^{-1}
$$

19 / 26

Passive Pools

Theorem: Reversibility \implies Passivity

イロメ イ団メ イモメ イモメー \equiv QQ 20 / 26

Passive Pools

Theorem: Reversibility \implies Passivity

Suppose that the nominal model is reversible. Then its linearization satisfies,

$$
\operatorname{Re} G(j\omega) = \operatorname{PSD}_Y(\omega), \qquad \omega \in \mathbb{R},
$$

where

$$
G(s) = C[Is - A]^{-1}B \quad \text{for } s \in \mathbb{C}.
$$

$$
\text{PSD}_Y(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} \mathsf{E}_{\pi}[\widetilde{\mathcal{U}}(X_0)\widetilde{\mathcal{U}}(X_t)] dt
$$

メロメ メ御き メミメ メミメ 画 QQ 20 / 26

Passive Pools

Theorem: Reversibility \implies Passivity

Suppose that the nominal model is reversible. Then its linearization satisfies,

$$
\operatorname{Re} G(j\omega) = \operatorname{PSD}_Y(\omega), \qquad \omega \in \mathbb{R},
$$

where

$$
G(s) = C[Is - A]^{-1}B \quad \text{for } s \in \mathbb{C}.
$$

$$
\text{PSD}_Y(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} \mathsf{E}_{\pi}[\widetilde{u}(X_0)\widetilde{u}(X_t)] dt
$$

Implication for control: $G(s)$ is positive real

Linearized Dynamics Example Without Passivity

Example: Eight state model

Not reversible

K ロ ト K 御 ト K 澄 ト K 差 ト B 2990 21 / 26

Linearized Dynamics Example Without Passivity

Example: Eight state model $a = c = 10, b = 1$

 $G(s) = C[Is-A]^{-1}B$ not positive real

イロメ 不優 メイミメ 不思 メー **E** 2990 21 / 26

Conclusions and Extensions

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결

 299

A particular approach to distributed control is proposed

A particular approach to distributed control is proposed

The grid level control problem is simple because:

 \star Mean field model is simple, and good approximation of finite system

A particular approach to distributed control is proposed

The grid level control problem is simple because:

- \star Mean field model is simple, and good approximation of finite system
- \star LTI approximation is **positive real**

A particular approach to distributed control is proposed

The grid level control problem is simple because:

- \star Mean field model is simple, and good approximation of finite system
- \star LTI approximation is **positive real**

Analysis:

Transfer function \leftrightarrows Resolvent for one load

not the Kalman–Yakubovich–Popov lemma

Conclusions Extensions

The minimum phase condition was observed in all of our applications, even though the nominal model was not reversible $-$ mystery

Conclusions

Extensions

- The minimum phase condition was observed in all of our applications, even though the nominal model was not reversible $-$ mystery
- Performance for an individual load: Gaussian approximations for QoS

Conclusions

Extensions

- The minimum phase condition was observed in all of our applications, even though the nominal model was not reversible $-$ mystery
- Performance for an individual load: Gaussian approximations for QoS

There will be "rare events" in which QoS is poor.

Conclusions Extensions

- The minimum phase condition was observed in all of our applications, even though the nominal model was not reversible $-$ mystery
- Performance for an individual load: Gaussian approximations for QoS There will be "rare events" in which QoS is poor.

Remedy: Additional layer of control at each load \implies hard constraints on performance can be assured.

Conclusions

Thank You!

24 / 26

 $2Q$

E

イロメ イ団メ イミメ イモメー

References: Demand Response

- F S. Meyn, P. Barooah, A. Bušić, and J. Ehren. Ancillary service to the grid from deferrable loads: the case for intelligent pool pumps in Florida (Invited). In Proceedings of the 52nd IEEE Conf. on Decision and Control, 2013. Journal version to appear, Trans. Auto. Control.
-

A. Bušić and S. Meyn. Passive dynamics in mean field control. ArXiv e-prints: arXiv:1402.4618. 53rd IEEE Conf. on Decision and Control (Invited), 2014.

- S. Meyn, Y. Chen, and A. Bušić. Individual risk in mean-field control models for decentralized control, with application to automated demand response. 53rd IEEE Conf. on Decision and Control (Invited), 2014.
- F

J. L. Mathieu. Modeling, Analysis, and Control of Demand Response Resources. PhD thesis, Berkeley, 2012.

- D. Callaway and I. Hiskens, Achieving controllability of electric loads. Proceedings of the IEEE, 99(1):184–199, 2011.
-

S. Koch, J. Mathieu, and D. Callaway, Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services, in Proc. PSCC, 2011, 1–7.

H. Hao, A. Kowli, Y. Lin, P. Barooah, and S. Meyn Ancillary Service for the Grid Via Control of Commercial Building HVAC Systems. ACC 2013

(much more on our websites)

E

References: Markov Models

- Ħ
- I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab., 13:304–362, 2003.

I. Kontoyiannis and S. P. Meyn. Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electron. J. Probab., 10(3):61–123 (electronic), 2005.

- E. Todorov. Linearly-solvable Markov decision problems. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems, (19) 1369–1376. MIT Press, Cambridge, MA, 2007.
- M. Huang, P. E. Caines, and R. P. Malhame. Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Automat. Control, 52(9):1560–1571, 2007.
-
- H. Yin, P. Mehta, S. Meyn, and U. Shanbhag. Synchronization of coupled oscillators is a game. IEEE Transactions on Automatic Control, 57(4):920–935, 2012.
- 晶 P. Guan, M. Raginsky, and R. Willett. Online Markov decision processes with Kullback-Leibler control cost. In American Control Conference (ACC), 2012, 1388–1393, 2012.

V.S.Borkar and R.Sundaresan Asympotics of the invariant measure in mean field models with jumps. Stochastic Systems, 2(2):322-380, 2012.