

AGGREGATION OF EXPERTS FOR LOAD AND PRICE FORECASTING

Séminaire FIME, 20 Mars 2015, Institut Henri Poincaré

Yannig Goude Pierre Gaillard Raphaël Nédellec Gilles Stoltz EDF R&D, Université Paris-Sud EDF R&D, HEC Paris-CNRS EDF R&D HEC Paris-CNRS

ELECTRICITY LOAD FORECASTING

Electricity consumption is the main entry for optimising the production units

Focus here on Day+1 forecasts

HEAT DEMAND FORECASTING

 Optimize the use (satisfy the heat demand, minimize production cost) of a cogeneration (heat and electricity) plant in Poland

Focus on h+1, ..., h+72h forecasting

- competition GEFCOM 2014, sponsored by IEEE Power and Energy Society
 - september 2014-december 2014
 - □ Probabilistic forecast (quantile 1%,...,99%) of hourly electricity prices in US based on:
 - Zonal/total electricity load forecast
 - Past prices
 - Online forecasting of 15 days
 - Performance evaluation: pin-ball loss

Participation (nb of teams): Load (333), Price (250), Wind (208), Solar (218)

Focus on h+1, ..., h+24h forecasts

AGGREGATION OF EXPERTS

- a dynamic field of research in the machine learning community
- empirical literature is large and diverse
- massive development of new forecasting methods
 - implementation in open source softwares
 - Easier access to a large variety of forecasts
- aggregating them is a natural ambition
- in many recent forecasting challenges aggregation is a key point that often makes the difference:
 - the energy forecasting competition GEFCOM12, Hong, T.; Pinson, P. & Fan, S. *Global Energy Forecasting Competition 2012* International Journal of Forecasting, 2014, 30, 357 363
 - netflix competition Paterek, A. Predicting movie ratings and recommender systems a monograph 2012

SEQUENTIAL AGGREGATION OF EXPERTS

Each instance t

- Each expert suggests a prediction x_{i,t} of the consumption y_t
- We assign weight to each expert and we predict

$$\widehat{\mathbf{y}}_t = \widehat{\mathbf{p}}_t \cdot \mathbf{x}_t \ \left(= \sum_{i=1}^N \widehat{p}_{i,t} \mathbf{x}_{i,t} \right)$$

Our goal is to minimize our cumulative loss

$$\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2 = \min_{i=1,...,N} \sum_{t=1}^{T} (x_{i,t} - y_t)^2 + R_T$$
Our loss

Cour loss

Cour loss

Cood set of experts

Cood aggregating algorithm

Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press (2006)

SEQUENTIAL AGGREGATION OF EXPERTS

Each instance t

- Each expert suggests a prediction x_{i,t} of the consumption y_t
- We assign weight to each expert and we predict

$$\widehat{\mathbf{y}}_t = \widehat{\mathbf{p}}_t \cdot \mathbf{x}_t \ \left(= \sum_{i=1}^N \widehat{p}_{i,t} \mathbf{x}_{i,t} \right)$$

Our goal is to minimize our cumulative loss

$$\sum_{t=1}^{T} (\widehat{y_t} - y_t)^2 = \min_{\boldsymbol{q} \in \Delta_N} \sum_{t=1}^{T} (\boldsymbol{q} \cdot \boldsymbol{x_t} - y_t)^2 + R_T$$
Our loss

Loss of the best Estimation error convex combination

Good set of experts Good aggregating As varied as possible algorithm

EXPONENTIALLY WEIGHTED AVERAGE FORECASTER (EWA)

Each instance t

- Each expert suggests a prediction x_{i,t} of the consumption y_t
- We assign to expert i the weight

$$\widehat{p}_{i,t} = \frac{exp\left(-\frac{\eta}{N}\sum_{s=1}^{t-1}(x_{i,s} - y_s)^2\right)}{\sum_{j=1}^{N}exp\left(-\eta\sum_{s=1}^{t-1}(x_{j,s} - y_s)^2\right)}$$

- and we predict $\hat{y}_t = \sum_{i=1}^N \hat{p}_{i,t} x_{i,t}$

Our cumulated loss is upper bounded by

$$\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2 \leqslant \min_{i=1,...,d} \sum_{t=1}^{T} (x_{i,t} - y_t)^2 + \Box \sqrt{T \log N}$$
Our loss

Loss of the best expert

Estimation error

EXPONENTIATED GRADIENT FORECASTER (EG)

Each instance t

- Each expert suggests a prediction x_{i,t} of the consumption y_t
- We assign to expert i the weight

$$\widehat{p}_{i,t} \propto exp\left(-\eta \sum_{s=1}^{t} \ell_{i,s}\right)$$
 where $\ell_{i,s} = 2(\widehat{y}_s - y_s)x_{i,s}$

- and we predict $\hat{y}_t = \sum_{i=1}^N \hat{p}_{i,t} x_{i,t}$

Our cumulated loss is then bounded as follow

$$\sum_{t=1}^{T} (\widehat{y_t} - y_t)^2 \leqslant \min_{\boldsymbol{q} \in \Delta_N} \sum_{t=1}^{T} (\boldsymbol{q} \cdot \boldsymbol{x}_t - y_t)^2 + \square \sqrt{T \log N}$$
Our loss

Loss of the best Estimation error convexe combination

MULTIPLE LEARNING RATE-POLYNOMIAL, RIDGE

Algorithm 1 The polynomially weighted average forecaster with multiple learning rates (ML-Poly)

Input: $h \ge 1$, horizon of prediction

Initialize: For $t \leqslant h$, $p_t = (1/K, \dots, 1/K)$ and $R_1 = (0, \dots, 0)$

for each instance t = 1, 2, ..., n - h do

0. pick the learning rates

$$\eta_{k,t} = 1/\left(1 + \sum_{s=1}^{t} \left(\ell_s(\widehat{y}_s) - \ell_s(x_{k,s})\right)^2\right)$$
where $\ell_s : x \mapsto x(y_s - \widehat{y}_s)$.

1. form the mixture \widehat{p}_{t+h} defined component-wise by $\widehat{p}_{k,t+h} = \eta_{k,t} \left(R_{k,t} \right)_+ / \left[\eta_t \cdot (\boldsymbol{R}_t)_+ \right]$

where x_+ denotes the vector of non-negative parts of the components of x

- 2. predict $\hat{y}_{t+h} = \hat{p}_{t+h} \cdot x_{t+h}$ and observe y_{t+1}
- 3. for each expert k update the regret

$$R_{k,t+1} = R_{k,t} + \ell_t(\widehat{y}_{t+1}) - \ell_t(x_{k,t+1})$$

end for

Gaillard, P., Stoltz, G., van Erven, T.: *A second-order bound with excess losses*, **COLT proceedings** (2014).

Automatic calibration works well in practice

Fast tuning

Algorithm 2 The ridge regression forecaster (Ridge)

Input: $\lambda > 0$, learning rate; $h \ge 1$, horizon

Initialize: for $t \leq h$, $\widehat{p}_t = (1/K, \dots, 1/K)$

for each instance t = 1, 2, ..., n do

1. form the mixture \hat{p}_{t+h} defined by

$$\widehat{p}_t = \operatorname*{argmin}_{u \in \mathbb{R}^K} \left\{ \sum_{s=1}^t \left(y_s - u \cdot x_s \right)^2 + \lambda \left\| u - \widehat{p}_0 \right\|_2^2 \right\}$$

2. output prediction $\hat{y}_{t+h} = \hat{p}_{t+h} \cdot x_{t+h}$

end for

Stable weights

ELECTRICITY CONSUMPTION DATA

- Trend
- Yearly, Weekly, Daily cycles

ELECTRICITY CONSUMPTION DATA

- meteorological events
- Special days

GAM (GENERALIZED ADDITIVE MODELS)

A good trade-off complexity/adaptivity

$$y_t = f_1(x_t^1) + f_2(x_t^2) + \dots + f(x_t^3, x_t^4) + \dots + \varepsilon_t$$

$$\min_{\beta, f_j} ||y - f_1(x_1) - f_2(x_2) - \dots||^2 + \lambda_1 \int f_1^{\prime\prime}(x)^2 dx + \lambda_2 \int f_2^{\prime\prime}(x)^2 dx + \dots$$

Publications

- Application on load forecasting
 - A. Pierrot and Y. Goude, Short-Term Electricity Load Forecasting With Generalized Additive Models Proceedings of ISAP power, pp 593-600, 2011.
 - R. Nédellec, J. Cugliari and Y. Goude, *GEFCom2012: Electricity Load Forecasting and Backcasting with Semi-Parametric Models*, **International Journal of Forecasting**, 2014, 30, 375 381.
 - S.N. Wood, Goude, Y. and S. Shaw, *Generalized additive models for large datasets*, **Journal of Royal Statistical Society-C**, 2014.
 - A. Ba, M. Sinn, Y. Goude and P. Pompey, *Adaptive Learning of Smoothing Functions: Application to Electricity Load Forecasting* **Advances in Neural Information Processing Systems** 25, 2012, 2519-2527.

GAM (GENERALIZED ADDITIVE MODELS)

Spline basis expansion:

$$f_j(x) = \sum_{q=1}^{k_j} a_{j,q}(x)\beta_{j,q} \qquad y_i = X_i\beta + \sum_{q=1}^{k_1} a_{1,q}(x)\beta_{1,q} + \sum_{q=1}^{k_2} a_{2,q}(x)\beta_{2,q} + \dots + \varepsilon_i$$

L2 Penalized regression, GCV score optimisation

$$min_{\beta}||y - X\beta||^2 + \sum \lambda_j \beta^T S_j \beta$$

$$V_g(\lambda) = n\|y - X\widehat{\beta}_{\lambda}\|^2/(n - tr(F_{\lambda}))^2$$

$$F_{\lambda} = (X^T X + \sum \lambda_j S_j)^{-1} X^T X$$

GAM

$$y_t = f_1(T_t) + f_2(I_t) + f_3(H_t) + \varepsilon_t$$

CURVE LINEAR REGRESSION

Regressing curves on curves

- Dimension reduction, SVD of cov(Y,X), selection with penalised model selection
- Scale to big data sets (SVD+linear regression)

$$Y_i(u) = \mu_Y(u) + \int_{\mathscr{I}_2} \{X_i(v) - \mu_X(v)\} \beta(u, v) dv + \varepsilon_i(u)$$

Application on electricity load forecasting:

- H. Cho, Y. Goude, X. Brossat & Q. Yao, *Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach* **Journal of the American Statistical Association**, 2013, 108, 7-21.
- Cho, H.; Goude, Y.; Brossat, X. & Yao, Q, Modelling and forecasting daily electricity load using curve linear regression
 - to appear in Lecture Notes in Statistics: Modeling and Stochastic Learning for Forecasting in High Dimension.

CURVE LINEAR REGRESSION

OTHER MODELS

Random forest: a popular machine learning method for classification/regression

• Breiman, L., . Random Forests, **Machine Learning**, 45 (1), 2001.

Generalized Boosted Regression Models

- Hastie, T.; Tibshirani, R.; Friedman, J. H. (2009). "10. Boosting and Additive Trees". The Elements of Statistical Learning (2nd ed.). New York: Springer. pp. 337–384.
- Ridgeway, Greg (2007). Generalized Boosted Models: A guide to the gbm package.

KWF (Kernel Wavelet Functional): another approach for functional data forecasts

- See: Antoniadis, A., Brossat, X., Cugliari, J., Poggi, J., *Clustering functional data using wavelets.* In: **Proceedings of the Nineteenth International Conference on Computational Statistics(COMPSTAT),** 2010.
- Antoniadis, A., Paparoditis, E., Sapatinas, T., *A functional wavelet–kernel approach for time series prediction.* **Journal of the Royal Statistical Society: Series B** 68(5), 837–857, 2006.
- Prévision non paramétrique de processus à valeurs fonctionnelles. Application à la consommation d'électricité, Jairo Cugliari, PhD Université Paris-Sud, 2011.

APPLICATION ON LOAD FORECASTING

- initial « heterogenous » experts:
 - GAM
 - ¬ Kernel Wavelet Functional
 - Curve Linear Regression
 - □ Random Forest

- Designing a set of experts from the original ones: 4 « home made » tricks
 - Bagging: 60 experts
 - Boosting: trained on $y_t' = (y_t \gamma x_t)/(1 \gamma)$ such that $\gamma x_t + (1 \gamma)x_t'$ performs well 45 experts
 - Specializing: focus on cold/warm days, some periods of the year... 24 experts
 - Time scaling: MD with GAM, ST with the 3 initial experts
 - M. Devaine, P. Gaillard, Y. Goude & G. Stoltz, Forecasting electricity consumption by aggregating specialized experts A review of the sequential aggregation of specialized experts, with an application to Slovakian and French country-wide one-day-ahead (half-)hourly predictions **Machine Learning**, 2013, 90, 231-260.
 - Gaillard, P. & Goude, Y., Forecasting electricity consumption by aggregating experts; how to design a good set of experts to appear in Lecture Notes in Statistics: Modeling and Stochastic Learning for Forecasting in High Dimension, 2013.

AGGREGATION

AGGREGATION

Heat Demand forecasting

- Temperatures: T_t^{ECK} , the outside temperature; T_t^{KR} , the temperature at the airport nearby; T_t^w , the temperature of the water leaving the plant; T_t^{zad} , the setpoint temperature of the water asked by the network operator a few hours in advance (not known at the time of prediction);
- Z_t^{KR} , the cloud cover;
- Calendar variables: $Toy_t \in [0, 1]$, position in the year; $DayType_t \in \{Monday, ..., Sunday\}$.

2 REGIMES

- winter: heavy correlation between the outside temperature and the load. The primary goal of the plant is to product heat and electricity comes as an extra.
- summer: low correlation between the outside temperature and the load. There is no need to produce heating, and the primary goal of the plant is to produce electricity.

$$S_t = \mathbb{1}_{Y_t > 100}$$

FORECASTING MODELS

GAM: Generalized Additive Models

GAMMTCT: GAM middle Term+Short term correction

CLR: Curve Linear Regression

GAM: Generalized Addtitive Models - forecast Q

RF: Random Forest

GBM: Gradient Boosting Machine

forecast the regime S and Q/S

forecast Q/S

horizon of prediction going from 1 hour ahead to 72 hours ahead

RESULTS: rmse by horizon

RESULTS: rmse by month (horizon: 24 h)

GEFCOM14

competition GEFCOM 2014, sponsored by IEEE Power and Energy Society

- Online forecasting of 15 days
- Performance evaluation: pin-ball loss

$$L(q_a, y) = \begin{cases} (1 - a/100)(q_a - y), & \text{if } y < q_a; \\ a/100(y - q_a), & \text{if } y \ge q_a; \end{cases}$$

- We proposed 3 methods:
 - Aggregation of 13 experts
 - Non linear quantile regression: GAM quantile
 - Quantile Kernel lasso selection

ELECTRICITY PRICE DATA

GEFCOM14

- Aggregation of 13 experts:
 - autoregressive model (AR)

$$\log(P_t) = \alpha_1 \log(P_{t-24}) + \alpha_2 \log(P_{t-48}) + \alpha_3 \log(P_{t-168})$$
$$+ \alpha_4 \log(P.\min_{t-24}) + h(\text{DayType}_t) + \varepsilon_t$$

- An autoregressive model with forecasted electric loads as additional covariates (ARX).
- A threshold autoregressive model TAR defined as an extension of AR to two regimes depending of the variation of the mean price between a day and eight days ago.
- TARX the extension of ARX to the two regimes model.
- Spike pre-processed autoregressive model PAR
- PARX similar to PAR, but ARX is fitted with pre-processed prices.
 inspire from Weron, R., Misiorek, A., 2008. Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models. International Journal of Forecasting 24 (4), 744 763
- 2 linear regressions
- 2 GAMS
- 2 random forests
- GBM

$$\begin{split} \log(\mathsf{P}_{t}) &= \alpha_{1} \log(\mathsf{P}_{t-24}) + \alpha_{2} \log(\mathsf{P}_{t-48}) + \alpha_{3} \log(\mathsf{P}_{t-168}) \\ &+ \alpha_{4} \log(\mathsf{P}.\mathsf{max}_{t}) + \alpha_{5} \mathsf{FZL}_{t}^{(0.95)} + \alpha_{6} \mathsf{FTL}_{t}^{(0.95)} \\ &+ \alpha_{7} \mathsf{FZL}_{t}^{(0.8)} + \alpha_{8} \mathsf{FTL}_{t}^{(0.8)} + h(\mathsf{DayType}_{t}) + \varepsilon_{t} \end{split}$$

GEFCOM14

(Convex) Aggregation with pin-ball loss:

$$\widehat{y}_t = \sum_{i=1}^N \widehat{p}_{i,t} x_{i,t}$$

$$\widehat{p}_{k,t} = \frac{e^{-\eta \sum_{s=1}^{t-1} \ell_s(x_{k,s})}}{\sum_{i=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_s(x_{i,s})}}$$

$$I_t(x_{k,t}) = \rho_\tau(y_t - x_{k,t}) \longrightarrow$$

- Extension to linear aggregation:
 - \square substitute to original experts $\beta x_{1,t}, \ldots, \beta x_{K,t}, -\beta x_{1,t}, \ldots, -\beta x_{K,t}$

GEFCOM14

Results

GEFCOM14

Results: 1st rank of the competition

Task	Tololo	quantGAM	quantMixt	quantGLM
Jun. 06	XX	0.72	0.85	1.87
Jun. 17	1.06	1.15	1.37	0.71
Jun. 24	1.91	1.31	1.58	3.05
Jul. 04	1.71	2.06	1.27	1.59
Jul. 09	1.45	0.99	3.31	1.57
Jul. 13	1.10	2.23	1.20	1.18
Jul. 16	2.01	2.63	2.28	5.02
Jul. 18	9.15	5.13	7.90	11.72
Jul. 19	4.68	4.80	6.45	13.27
Jul. 20	1.59	1.90	2.35	2.80
Jul. 24	0.75	0.75	1.78	1.42
Jul. 25	2.46	2.30	0.84	2.12
Dec. 06	2.96	0.82	1.03	0.86
Dec. 07	1.35	3.63	3.23	3.22
Dec. 17	3.56	3.83	4.26	2.87

	Load		Price	
Ranking	Team	Rating	Team	
1	Tololo	50,0%	Tololo	
2	Adada	49,0%	Team Poland	
3	Jingrui (Rain) Xie	48,0%	GMD	
4	OxMath	47,6%	C3 Green Team	
5	E.S. Mangalova	45,4%	pat1	

RANDOM MODEL GENERATION (WORK IN PROGRESS)

Random GAM:

$$y_i = X_i \beta + \sum_{q=1}^{k_1} a_{1,q}(x) \beta_{1,q} + \sum_{q=1}^{k_2} a_{2,q}(x) \beta_{2,q} + \dots + \varepsilon_i$$

- X are choosen at random among an initial subset of covariates
- □ k are randomly sample in a realistic range (e.g. [3,50])
- Subsampling the estimation set
 - weights can be initialized in an out of bag fashion (OUT-OF-BAG ESTIMATION, Leo Breiman https://www.stat.berkeley.edu/~breiman/OOBestimation.pdf)
 - « scale » to potentially a high number of experts
- Shrinkage algorithm
 - Calculate weights on the out of bag sample
 - · Select experts adding a significant contribution (e.g.: significant average weights) to the aggregated forecast
 - Running the aggregation algorithm with these selected experts on the forecasting set

RANDOM MODEL ESTIMATION


```
[1] "Load ~ Temp1 + s( NumWeek , k = 16 , bs = 'cr' )"
[2] "Load ~ Time + NumWeek + Temp + IPI_CVS"
[3] "Load ~ NumWeek + Temp + Temp1 + s( Temp , k = 12 , bs = 'cr' )"
[4] "Load ~ s( NumWeek , k = 16 , bs = 'cr' ) + s( Temp , k = 13 , bs = 'cr' ) + s( Temp1 , k = 17 , bs = 'cr' ) + s( IPI_CVS , k = 5 , bs = 'cr' )"
...
[9500] "Load ~ Time + NumWeek + Temp + Temp1 + IPI_CVS + s( NumWeek , k = 3 , bs = 'cr' ) + s( Load1 , k = 15 , bs = 'cr' )"
```


RANDOM MODEL GENERATION

10000 EXPERTS

RANDOM MODEL SELECTION

RANDOM MODEL GENERATION

1000 « BEST »

RANDOM MODEL GENERATION

100 « BEST »

AGGREGATION OF 10 000 RANDOM EXPERTS

AGGREGATION OF 10 000 RANDOM EXPERTS

CONCLUSION/PERSPECTIVES

Forecasting methods:

- Industrial implementation on the way (national, substations, cogeneration central in poland: 30% better with GAM than with previous solution)
- CLR: improve automatic clusturing, forecasting the clusters (HMM), derive probablistic forecasts

Aggregation of experts:

R package OPERA (Online Prediction through ExpeRts Aggregation) – maintainer Pierre Gaillard

```
mixture(y, experts, aggregationRule = "MLpol", w0 = NULL, awake = NULL,
    href = 1, period = 1, delay = 0, y.ETR = NULL)
```

- Automatic generation of experts
- Combining a large number of experts: scale to very large number? (probably yes)

THANK YOU!

