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|
Introduction

Deficiencies of Black-Scholes model

@ Black-Scholes model oversimplifies market mechanisms, e.g.:
lack of

transaction costs,

uncertain volatility,

(]
(]
e market illiquidity,
o ...

Improvement: Consider models with nonlinear volatility term:

Nonlinear Black-Scholes Equation

Vi + %02(1‘, S, Vss) - S?Vgs+ (r—q)SVs—rV =0
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Non-linear Models

0 Non-linear Models
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Transaction Costs Model

Leland’s model

081, S, Vss) == 0§ - (1 + A-sign(Vss))

2 k
A= \[ Leland-number),
T ooV ot ( )

og volatility of the underlying, k round-trip costs,
ot time between adjustments of portfolio

@ limited applicability: A < 1

[3 H.E. Leland
Option Pricing and Replication with Transactions Costs.
Journal of Finance, 40 (5), 1985
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Transaction Costs Model

Soner’s and Barles model
o85(t, S, Vss) := o - (1 +(eT-0g28? Vss)) ,

V(x)+1

V0= S 0 - x

,X#0, and WV(0)=0

@ aparameter for the transaction costs and risk aversion,
@ equation is obtained by utility maximation

@ G. Barles and H. M. Soner
Option pricing with transaction costs and a nonlinear Black-Scholes equation.
Finance and Stochastics, 2 (4), 1998
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Uncertain Volatility Model

UV model
o2 Ves < 0
e (1,5, Vos) = { B Veg > 0
min

@ volatility unknown, but assumed to lie between omax and omin,

@ V(S,t) are costs of dynamic hedging under worst-case volatility
path

@ M. Avellaneda, A. Levy and A. Paras
Pricing and hedging derivative securities in markets with uncertain volatilities.
Applied Mathematical Finance, 2 (2), 1995
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Market llliquidity Model

Frey’s illiquidity model

2
99

op(t, S, Vss) := (1= pSVsg)?

@ p parameter for the liquidity of the market
@ market is not perfectly liquid, thus feedback effect on the
underlying by hedging strategy

D R. Frey and P. Patie
Risk Management for Derivatives in llliquid Markets.
Advances in finance and stochastics, Springer, 2002
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e Discretization
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Preparations

log-money and reversed time

x=log 5. 7= Jo3(T 1), u(x.) = e o |
transformed problem
—Uy + F2(T, X, Uy, Uxy ) - (Ux + Uxx) + %ux =0, forx €[AB],T¢c {O, U‘Z’ZT}
u(xo, 0) = A(x),

u(A,7) = ofr; A),
u(B, 1) = B(r; B).

e.g. for Call: ag(r;A) =0, Be(m:B)=1—exp (——27 - B)
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Preparations

log-money and reversed time

V(S,1)
K

x = log ;3, T= %O’S(T— t), u(x,7)=e"*

transformed problem

.2 2r T
—U; + F°(T, X, Uy + Uxx) - (Ux + Uxx) + —Ux =0, for x € [A,B],7 € |0, ——

g 2
u(x,0) = A(x),
u(A 1) = a(r; A),
u(B, ) = 5(r; B).

e.g. for Call: ag(r;A) =0, Be(m:B)=1—exp (——27 - B)
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Discretization in space and time

o

A=x, B=x,,

Pascal Heider (EET) Methods for non-linear BS

space

A=x<...<xy=8B

time

. 02T
Ti=J AT, AT = F5

v

finite-differences

w! ~ u(x;, 7))
Sxw! & ux(x;, 75)
5xxW,l R Uxx(Xj, 77)

r{ = 5)(VV}/ + 5)()(le-'

v

- Equations 11. January, 2013
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BDF, Crank-Nicolson and BDF2

Replace differential-quotients by difference-quotients:

BDF (¢ = 0) and Crank-Nicolson (6 = 1/2)

» ] ~ i1 i1q 2r i+-1
—w W A (1-06) [02(7'/'+17Xi7 M-+ ?6XWI!+ ]
0

+AT -0 [&2(7,-, x;, T
0

) T+ 025XW{] -0
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BDF, Crank-Nicolson and BDF2

Replace differential-quotients by difference-quotients:

BDF (¢ = 0) and Crank-Nicolson (6 = 1/2)

» ] ~ i1 i1q 2r i+-1
—w W A (1-06) [02(7'/'+17Xi7 M-+ ?6XWI!+ ]
0

+A7 -0 |5%(17, X3, T
/

i

) T+ chsxw{] ~0

O v
BDF2
' Wl ' - 2r .
—3w/" +aw — w207 [&Q(TjH,Xi, EARD Y AR 25xW/j‘+1] -0
g,
0

v
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A non-linear (non-smooth) System

@ Write these equations neatly as

F(w*';w/) =0,

respectively, _ o
Fow ™, w/ w~") =0,

where F = (Fq, ..., Fy)T : RM+1 5 RM+1

@ Boundary data are incorporated by

Fo(wt1) .= Wit — a(7j,1; A)

Fu(W*) = wyy" — (7j:4: B)

@ Caution: System might be non-smooth.
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Generalized Jacobian

While 852(8}’"’” does not necessarily exist, the generalized derivative
W exists.

Generalized Derivatives

Le: o(&2(r,x,T)-T) 1+ A r>0
© ar 1-A : T<0
~D .

ar = (1 + \U(a,-r) + a,-F\U’(a,-F))
with o := e2'™/98 2 KeXi
~D ]

1+p-T
or (1-p-T)°
o(52(r, x,T)-T) o2 . <o
ALP+: b = Tmax N
* or o2, + >0
Pascal Heider (EET)

v
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Generalized Jacobian

In this sense define
Jacobian for BDF and CN
aFI le+1

oo =g 700

1 ’ +1 2 1
or’ ow,, o5 Ow

(52 (1, X, TPy o 2r a(&wi,’*‘))

and
Jacobian for BDF2

— = -3—— +2A7-
1 1
ow," ow,"

j+1 J+1 2 J+1
or; ow, oy Owy

OF; wit! (a(aE(T,-H,x,-,rf,Z*‘)rf,i“) aritt or a((sxw{“))
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Algorithm

Data: model; option parameters; payoff A(x)
Input: 6, temporal discretization N; spatial discretization M; cut-off interval

[A, B]
Output: W,fforj: 1,...,Nandi=0,....M
Set w0 «— A(x);
for j=0,...,N—1do
Setr<«— (j+1) Ar;
Set wt! «— wi;
repeat /* Newton iteration =/
Compute F(w/*1) ;
Compute DF(w/*1) ;
Solve DF(w/+)Aw = —F(w/*1);
Setwt! «+— wt! + Aw;
| until [[Aw] <¢;
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Convergence

e Convergence
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Convergence

Convergence Results

Theorem (Convergence of BDF)

The fully implicit BDF scheme converges to the viscosity solution,
whenever 52(t, x, Tl satisfies the following conditions:

@ 52(r, x,T) - T is continuous and monotone increasing in T

© there exists a constant c, > 0 so thatforallT € | ande > 0

F2(r,x,T+¢) - (T+¢)>5%(r,x,T) - T+cy-¢
° 2—-h _2r

Ci—— > .
+ h 70(2)
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Convergence

Convergence Results

o &2(7, x,T) - T is continuous and monotone increasing in I

@ 3o >0vrel, e>0:8%rx,T+e) (T+e)>52(rx,T) - THep e

2—h 2r
Q> B

Theorem (Convergence of CN)

The Crank-Nicolson - scheme converges to the viscosity solution,
whenever 52(I')I" satisfies conditions (1)-(3) and:

© there exists a constant c_ > 0 so that forallT €  ande > 0

52(r,x,T —¢)- (T —¢) > &%(r,x,T)[ —c_-¢

o
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Assumptions on Volatility term

With the generalized derivative one can compute:

¢y =min(52(r) -y
rel

c_ =max(53(T)- T
rel
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Assumptions on Volatility term

Transaction costs (Leland) ¢
CL = 1-A £ s
c.=1+A '

Uncertain volatility model o

o, o
C+ —_— O‘é’nln “% 0.04|
C- = Omax °
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Assumptions on Volatility term

Transaction costs (S. & B.)

A

C+:O(r_1>, N —oco -
c.=0(N), T—o ®

llliquidity model

SAnr

C+:O(r*2>, N— —oco

c.—oo, T—=1/p

-4
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Proof of the Theorems (Sketch)

Theorem (Barles, Souganidis)

Any monotone, stable and consistent scheme converges to the unique
viscosity solution.
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Proof of the Theorems (Sketch)

@ Monotonicity:
Definition
A discretization is monotone if
o foralli=0,...,M

Fi(w™ + e W+ &) > F(w*, w)

with €j+1 :(0770a‘€llt11’07€£1170a70) 201

e =(0,...,0,¢ ., & .,0..,00>0and

€1 € iy
Fi(w!* 4 &1, wh) < Fi(w/*', w))

with &' = (0,...,",...,0) >0,

1
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Proof of the Theorems (Sketch)

@ Monotonicity:
E.g.: Perturb w/ '] s w/t! 42, >0

Sl s 5wa+‘ - £

j-+1 j+1
5XXW{ — 5XXW{ + ﬁ
j+1 j+1 2—h
K=+ T

Fiwl ™ Wit e Wit wh) =

> i i
i i i 2—h I 2—h 2r e
AR =2 X i Jj+1 j+1 =
WI/. + Wll + AT |:o' (-rj+1,x,,rl. + 572’72 ) (ri + e o2 ) §XW/ dg 2h:| >
i i i i 2—h 2r i 2r e
_ +1 ~2 . R RaL J+1 P = +1_ = &
w4 wl o ar {u (Tm,x,,rl. )r/. +op e s +0(2)6wa 2 2h] >

’:i(VVI"+17 witl j+1 wi)

i—1 Vi T
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Proof of the Theorems (Sketch)

@ Stability:

e Stability guarantees that ||w/||., is bounded for any j =0,..., N
o Follows from the monotonicity of the scheme and the maximum
principle

© Consistency:
@ local discretization error of BDF vanishes as Ar,h — 0

Pascal Heider (EET) Methods for non-linear BS - Equations 11. January, 2013

20/37



American Options

© American Options
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Complementary and penalty formulation

Complementary formulation
As in linear Black-Scholes case:
Vi + %Uz(t, S, Vs, V53)82 Vss + (I’ — q)SVS —rv <o
V-VvV*>0

(Vx + %az(t, S, Vs, Vss)S? Vs + (r — q)SVs — fV) =0 v (V-V)=0

v
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Complementary and penalty formulation

Complementary formulation
As in linear Black-Scholes case:

Vi + %Uz(t, S, Vs, V53)82 Vss + (I’ — q)SVS —-rv<o
V-V*>0

(Vx + 1az(t, S, Vs, Vss)S? Vs + (r — q)SVs — fV) =0 v (V-V)=0

2

v

Penalty formulation
Idea: add a positive penalty term p to ensure V(S,t) > V*(S) —e.

1 -
Vi + 502“, S, Vss)32 Vss + (r — Q)SVS —rV+p- max( Ve — V,O) =0.
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New co-ordinates

log money and revesed time

2
X = Iog;, T = %(T— t), u(r,x)=e*

V(t, S)

K

transformed complementary formulation
With T := Uy + Uxx,

u, —2(r, x, N — Lr —a) Uy + z—qu >0

‘70 ‘70

2T
u(t,x)—u*(x) >0 forallTe [O, 00}

2

Uy — a2(r, X, N = (g 9 x+—U—0VU(TX)—“(X)

0 ‘70
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New co-ordinates

log money and revesed time

2
x=|og% = %(T—t), u(r, x) = e

transformed penalty formulation

2(r — 2
u, —a2(r,x,INr - chnux + <9

—u—p(u*—u)"=0
% %0

@ Transformed volatility 5 explicitly known by model

@ Transformed payoff u* also known explicitly
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Finite Differences for Penalty Formulation

Replace differential quotients by difference quotients:

BDF (¢ = 0) and Crank-Nicolson (6 = 1/2)

, - _ et 2(r— v 2q
WI[+1 _ WI] _ AT(1 _ 0) [02(7—]+17Xia r{‘+1)rji+1 + ( 02 q)(;XVV,l'+1 _ £M+1]

0 0
. A 20— g 20 e i
+ A76[52 (7, 3, T + =—=20w] — S wl] + p(w; — w]*™")*
O’O UO
finite differences
w ~ u(x;, 1) SxW! = Uy(X;, 77)
5XXW{ ~ Uxx (X1, 7)) r/,: = (SXW{ + 6XXW{
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Finite Differences for Penalty Formulation

@ Write this equation for fixed j compacitly

F/(W/'H; Wj) =0
with FI(WIH1) = (FJ(With, ... Fl,(WitT)T
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Finite Differences for Penalty Formulation

@ Write this equation for fixed j compacitly

F/(W/'H; Wj) =0
with FI(W/t1) .= (Fh(witty, ... FL(With))T

@ boundaries are included by

R W) o= Wi — (711, Xoin)

FII\IA(WjH) = Wﬁﬂ - V(Tj+1aXmax)

@ Caution: The system is not differentiable!
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Finite Differences for Complementary Formulation

e With o o ,
GUW) = Fl(W) 4 p- (wy — w/ ™)

@ define the function G/ : RIM+1) _, R(M+1) py

G(WH) = (G,(WH),...,G),(WtT)T.

discrete complementary problem
G(W+h)>o0
Wit — w* >0
GWth=0 v W _w=o.
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Numerical Scheme

Set W0 by w? «+— u*(x;) fori=0,...,M;
for j=0,....,N—1do
Setr+— (j+ 1) Ar;
Set Wit! «— Wi,
repeat /* Newton iteration x/
Solve DF/(WHAW = —F/(W/H);
Set W «— W + AW,
until |AW|/|WH!|| < ¢;

e DF/(W) is the generalized Jacobi-matrix and is known explicitly
e DF/(W) is tridiagonal, usually 2-3 Newton iterations per level
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First Results

General assumptions
Assume that Ax, At are sufficiently small, such that

°
1 1 r—q

— - >
2AX + Ax2) oBAX ~ 0

52(7-]'7 Xi, rl/)(

~ i 2 2q

2

1 —0AT (0’ (75, Xi, r{.)—sz + US) >0
and assume that

@ the transformed volatility 5(, x, ') is bounded
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First Results

Satz (M-matrix)

The Jacobian matrix DF/(W/*) is a M-matrix.
Consequently, DFI(W/+) is regular and the linear system

DFI(WFYAW = —F/(W/+)

can be solved by Gaussian elimination without pivoting.
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First Results

Lemma (Stability)
Let Wit be a solution of F/(W/*1) = 0. Then,

Wl < C.

with a positive constant C, which depends only on the payoff u*(x).

v

Pascal Heider (EET) Methods for non-linear BS - Equations 11. January, 2013 27/37



Penalty formulation — Complementary formulation
Theorem
Assume that the stability condition

AT

Ax2 SO

Then, for At,Ax — 0

G/(WH) >0

witt > S
P
G(Wthy=0 v Wt — wr gg

The constant C > 0 is independent of the penalty term p, At and Ax.

Hence, Wit solves the discrete complementary formulation for p — cc.
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Numerical Examples

© Numerical Examples
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Case Study 1 - Transaction costs (Soner and Barles)

20

Plain put \ - Z - 301
\\\ a =003
K =100, T = 0.25 Va 10
r=20.1,9=0.01 N
oc=0.25p=10° 0 e |
’ 80 100 5120 140

@ optimal convergence rates for BDF and Crank-Nicolson
@ penalty parameter p ~ 10° sufficient
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Case Study 1 - Transaction costs (Soner and Barles)

0.25
..... a=0
0.2 a =001
—— —a=002
O ~ =003
0.1
0.05
0
7580 8 90 95 100
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Case Study 2 - Uncertain Volatility

Butterfly Spread

Ky =90, Ko = 110
r=01,T=.25

Option Value

and

Omax — .25,Umjn = .15

v 0

70 80 920 100 110 120 130 140
Asset Price
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Case Study 2 - Uncertain Volatility

Choose:

M =1000,A=-5B=3

for stability:
2
ar < (0008 l
O min .

thus P

N > 44 N
Conv. Rates o |
BDF (diamonds) : -1 T “

CN (1) (stars) : -1.99
BDF2 (circles) : -2.63
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Case Study 3 - Transaction costs model (Leland)

Binary Option
K=100,T =1
op=.2,r=1

and

A=0,.5,.38,.9.99

(ACH)

Pascal Heider (EET)
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Case Study 3 - Transaction costs model (Leland)

Choose:

M =512, A= .95

for stability:

Option Value

N > 160

Plots are for N = 10:

wrong solution for CN

and BDF2! 0 5‘0 160 15‘0 260 :

Asset Price
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Numerical Examples

Case Study 4 - Transaction costs (Soner and Barles)

Barrier Option - DO el

3 r/ \\\

B =80,K =100, sl
(1) :().Z,I’:O.‘I7 § 2 ‘r’ \\\
T =1 5%1.5 ; )
and
0.5
a=20,0.01
4 80 90 100 110 120 130 140 150 160 170
Asset Price

Plot with BDF, M = 300
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Case Study 4 - Transaction costs (Soner and Barles)

BUT
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Numerical Examples

Case Study 4 - Transaction costs (Soner and Barles)

BDF, a=0 BDF, a=0.01
M N Value Difference  Ratio Value Difference  Ratio
150 40 | 0.01367 0.00027 0.03303
300 80 | 0.01355 0.00015 1.86 0.03394 0.00009
600 160 | 0.01348 0.00007 2.01 no conv.
1200 320 | 0.01344 0.00004 2.03 no conv.

no convergence for large M and a > 0

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January, 2013

33/37



Case Study 4 - Transaction costs (Soner and Barles)

WHY?

Pascal Heider (EET) Methods for non-linear BS - Equations 11. January, 2013 33/37



Numerical Examples

Case Study 4 - Transaction costs (Soner and Barles)

@ Jump discontinuity at x; at 7 = 0: thus I'% = O(—1/h?)
@ Remember: ¢, = O(r—1) O(h?) for T — —oc0
@ stability condition c+ =h > 25 will be violated for h — 0

Consider a Call:

e % =0(1/h)
ec, =0 M= O(h) for I — —o0
@ stability condition ¢, 222 h > 22 can be satisfied for h — 0
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Case Study 4 - Transaction costs (Soner and Barles)

Call option

K =100, 00 = 0.2
r=01,T=1

and

a=0,0.01,0.05

Option Value

40 60 80

120

140

Pascal Heider (EET)

160
Asset Price
BDF BDF2 CN (1)

M N Value Difference Ratio Value Difference Ratio Value Difference Ratio
64 150 0.14269 0.14280 0.14280
128 300 0.14554 0.00285 0.14560 0.00280 0.14560 0.00280
256 600 0.14622 0.00068 4.21 0.14629 0.00065 4.29 0.14625 0.00065 4.29
512 1200 0.14639 0.00017 3.93 0.14641 0.00016 412 0.14641 0.00016 411
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Case Study 5 - llliquidity model

@ Consider: Bull Spread as before, p = 0.01
e Wegetc, = O(h?)
@ Expect convergence problems for large M

BDF BDF2
M N Value Difference Ratio iter Value Difference Ratio iter
64 25 0.02671 3.0 0.02624 3.0
128 50 0.02118 -0.00552 2.86 0.02118 -0.00505 2.78

256 100 0.01982 -0.00137 4.04 2.59 0.01991 -0.00127 3.97 2.53
512 200 0.01975 -0.00007 19.79 2.39 0.01984 -0.00007 18.15 2.34

1024 400 0.01991 0.00016 -0.44 2.28 0.01998 0.00014 -0.51 2.26
2048 800 0.01947 -0.00004 -0.38 2.77 0.01491 -0.00506 -0.03 2.59
CN (1)
M N Value Difference Ratio iter
64 25 0.02624 3.0
128 50 0.02117 -0.00507 2.74

256 100 0.01990 -0.00127 3.98 2.49
512 200 0.01983 -0.00007 19.54 233
1024 400 0.01998 0.00014 -0.46 2245
2048 800 1.18652 1.16654 4.84

schemes destabilize for large M
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Case Study 5 - llliquidity model

Butterfly Spread .
Ki =90,K; =110
r=01,7T=1. :
and o

p = 0.01 , ‘ | ! ‘
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© summary
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Summary

@ Convergent, implicit schemes for non-linear BS-equations
© Stability of the scheme can be checked a priori
© Stability must be checked to avoid spurious solutions

© Behavior of the scheme depends strongly on the model equation

© Behavior depends on the payoff profile
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Disclaimer

The information contained herein is for informational purposes only and may
not be used, copied or distributed without the prior written consent of E.ON
Energy Trading SE. It represents the current view of E.ON Energy Trading SE
as of the date of this presentation. This presentation is not to be construed as
an offer, or an amendment, novation or settlement of a contract, or as a
waiver of any terms of a contract by E.ON Energy Trading SE. E.ON Energy
Trading SE does not guarantee the accuracy of any of the information
provided herein.

Pascal Heider (EET) Methods for non-linear BS - Equations 11. January, 2013 37/37



	Non-linear Models
	Discretization
	Convergence
	American Options
	Numerical Examples
	Summary

