

Numerical Methods for non-linear Black-Scholes Equations

Pascal Heider | E.ON Energy Trading

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January, 2013 1 / 37

Introduction

Deficiencies of Black-Scholes model

- Black-Scholes model oversimplifies market mechanisms, e.g.: lack of
 - transaction costs,
 - uncertain volatility,
 - market illiquidity,
 - ...

Improvement: Consider models with nonlinear volatility term:

Nonlinear Black-Scholes Equation

$$V_t + \frac{1}{2}\sigma^2(t, S, V_{SS}) \cdot S^2 V_{SS} + (r-q)SV_S - rV = 0$$

Outline

2

Non-linear Models

Discretization

- 2 Discretization
- 3 Convergence
- 4 American Options
- 5 Numerical Examples
- 6 Summary

Transaction Costs Model

Leland's model

$$\sigma_{\text{Le}}^2(t, S, V_{SS}) := \sigma_0^2 \cdot (1 + A \cdot \text{sign}(V_{SS}))$$

٥

$$A := \sqrt{\frac{2}{\pi}} \frac{k}{\sigma_0 \sqrt{\delta t}}$$

(Leland-number),

 σ_0 volatility of the underlying, *k* round-trip costs, δt time between adjustments of portfolio

• limited applicability: $A \leq 1$

< ロ > < 同 > < 回 > < 回 >

Transaction Costs Model

Soner's and Barles model

$$\begin{aligned} \sigma_{SB}^2(t, S, V_{SS}) &:= \sigma_0^2 \cdot \left(1 + \Psi(e^{r(T-t)}a^2 S^2 V_{SS}) \right), \\ \Psi'(x) &= \frac{\Psi(x) + 1}{2\sqrt{x\Psi(x) - x}}, x \neq 0, \quad \text{and} \quad \Psi(0) = 0 \end{aligned}$$

- a parameter for the transaction costs and risk aversion,
- equation is obtained by utility maximation

G. Barles and H. M. Soner Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance and Stochastics, 2 (4), 1998

伺 ト イ ヨ ト イ ヨ ト

Uncertain Volatility Model

UV model

$$\sigma^2_{ ext{ALP+}}(t, \mathcal{S}, \mathcal{V}_{SS}) := \left\{egin{array}{cc} \sigma^2_{max} & : & \mathcal{V}_{SS} \leq 0 \ \sigma^2_{min} & : & \mathcal{V}_{SS} > 0 \end{array}
ight.$$

- volatility unknown, but assumed to lie between σ_{max} and σ_{min} ,
- *V*(*S*, *t*) are costs of dynamic hedging under worst-case volatility path

M. Avellaneda, A. Levy and A. Parás Pricing and hedging derivative securities in markets with uncertain volatilities. Applied Mathematical Finance, 2 (2), 1995

< ロ > < 同 > < 回 > < 回 >

Market Illiquidity Model

Frey's illiquidity model

$$\sigma_{\text{FP}}^2(t, S, V_{SS}) := \frac{\sigma_0^2}{(1 - \rho S V_{SS})^2}$$

- ρ parameter for the liquidity of the market
- market is not perfectly liquid, thus feedback effect on the underlying by hedging strategy

R. Frey and P. Patie *Risk Management for Derivatives in Illiquid Markets.* Advances in finance and stochastics, Springer, 2002

4 3 > 4 3

< 6 k

- Convergence
- 4 American Options
- 5 Numerical Examples
- 6 Summary

Preparations

log-money and reversed time

$$x = \log \frac{S}{K}, \ \tau = \frac{1}{2}\sigma_0^2(T-t), \ u(x,\tau) = e^{-x}\frac{V(S,t)}{K}$$

transformed problem

$$\begin{aligned} -u_{\tau} + \tilde{\sigma}^{2}(\tau, x, u_{x}, u_{xx}) \cdot (u_{x} + u_{xx}) + \frac{2r}{\sigma_{0}^{2}}u_{x} &= 0, \text{ for } x \in [A, B], \tau \in \left[0, \frac{\sigma_{0}^{2}T}{2}\right] \\ u(x, 0) &= \Lambda(x), \\ u(A, \tau) &= \alpha(\tau; A), \\ u(B, \tau) &= \beta(\tau; B). \end{aligned}$$

e.g. for Call: $\alpha_{\mathcal{C}}(\tau; A) = 0$, $\beta_{\mathcal{C}}(\tau; B) = 1 - \exp\left(-\frac{2r}{\sigma_{a}^{2}}\tau - B\right)$

Methods for non-linear BS - Equations

11. January, 2013 10 / 37

Preparations

log-money and reversed time

$$x = \log \frac{S}{K}, \ \tau = \frac{1}{2}\sigma_0^2(T-t), \ u(x,\tau) = e^{-x}\frac{V(S,t)}{K}$$

transformed problem

$$-u_{\tau} + \tilde{\sigma}^{2}(\tau, x, u_{x} + u_{xx}) \cdot (u_{x} + u_{xx}) + \frac{2r}{\sigma_{0}^{2}}u_{x} = 0, \text{ for } x \in [A, B], \tau \in \left[0, \frac{\sigma_{0}^{2}T}{2}\right]$$
$$u(x, 0) = \Lambda(x),$$
$$u(A, \tau) = \alpha(\tau; A),$$
$$u(B, \tau) = \beta(\tau; B).$$

e.g. for Call: $\alpha_{\mathcal{C}}(\tau; A) = 0$, $\beta_{\mathcal{C}}(\tau; B) = 1 - \exp\left(-\frac{2r}{\sigma_{a}^{2}}\tau - B\right)$

Methods for non-linear BS - Equations

11. January, 2013 10 / 37

Discretization in space and time

space

$$A = x_0 < \ldots < x_M = B$$

time $au_j = \mathbf{j} \cdot \Delta au, \Delta au := rac{\sigma_0^2 au}{2N}$

finite-differences

$$w_i^j \approx u(x_i, \tau_j)$$

$$\delta_x w_i^j \approx u_x(x_i, \tau_j)$$

$$\delta_{xx} w_i^j \approx u_{xx}(x_i, \tau_j)$$

$$\Gamma_i^j := \delta_x w_i^j + \delta_{xx} w_i^j$$

Methods for non-linear BS - Equations

BDF, Crank-Nicolson and BDF2

Replace differential-quotients by difference-quotients:

BDF ($\theta = 0$) and Crank-Nicolson ($\theta = 1/2$)

$$-w_{i}^{j+1} + w_{i}^{j} + \Delta \tau \cdot (1-\theta) \left[\tilde{\sigma}^{2}(\tau_{j+1}, x_{i}, \Gamma_{i}^{j+1}) \cdot \Gamma_{i}^{j+1} + \frac{2r}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j+1} \right] \\ + \Delta \tau \cdot \theta \left[\tilde{\sigma}^{2}(\tau_{j}, x_{i}, \Gamma_{i}^{j}) \cdot \Gamma_{i}^{j} + \frac{2r}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j} \right] = 0$$

BDF2

$$-3w_{i}^{j+1} + 4w_{i}^{j} - w_{i}^{j-1} + 2\Delta\tau \left[\tilde{\sigma}^{2}(\tau_{j+1}, x_{i}, \Gamma_{i}^{j+1}) \cdot \Gamma_{i}^{j+1} + \frac{2r}{\sigma_{\pi}^{2}}\delta_{x}w_{i}^{j+1}\right] = 0$$

11. January, 2013 12 / 37

э

BDF, Crank-Nicolson and BDF2

Replace differential-quotients by difference-quotients:

BDF ($\theta = 0$) and Crank-Nicolson ($\theta = 1/2$)

$$-w_{i}^{j+1} + w_{i}^{j} + \Delta \tau \cdot (1-\theta) \left[\tilde{\sigma}^{2}(\tau_{j+1}, x_{i}, \Gamma_{i}^{j+1}) \cdot \Gamma_{i}^{j+1} + \frac{2r}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j+1} \right] \\ + \Delta \tau \cdot \theta \left[\tilde{\sigma}^{2}(\tau_{j}, x_{i}, \Gamma_{i}^{j}) \cdot \Gamma_{i}^{j} + \frac{2r}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j} \right] = 0$$

BDF2

$$-3w_{i}^{j+1} + 4w_{i}^{j} - w_{i}^{j-1} + 2\Delta\tau \left[\tilde{\sigma}^{2}(\tau_{j+1}, x_{i}, \Gamma_{i}^{j+1}) \cdot \Gamma_{i}^{j+1} + \frac{2r}{\sigma_{0}^{2}}\delta_{x}w_{i}^{j+1}\right] = 0$$

11. January, 2013 12 / 37

э

イロト イポト イヨト イヨト

Discretization

A non-linear (non-smooth) System

Write these equations neatly as

$$\mathbf{F}(\mathbf{w}^{j+1};\mathbf{w}^{j})=\mathbf{0},$$

respectively,

$$\mathsf{F}(\mathbf{w}^{j+1};\mathbf{w}^{j},\mathbf{w}^{j-1})=0,$$

where $\mathbf{F} = (F_0, \dots, F_M)^T : \mathbb{R}^{M+1} \to \mathbb{R}^{M+1}$

Boundary data are incorporated by

$$F_0(\mathbf{w}^{j+1}) := w_0^{j+1} - \alpha(\tau_{j+1}; A)$$

$$F_M(\mathbf{w}^{j+1}) := w_M^{j+1} - \beta(\tau_{j+1}; B)$$

• Caution: System might be non-smooth.

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January, 2013 13 / 37

Generalized Jacobian

While $\frac{\partial \tilde{\sigma}^2(\tau, x, \Gamma)}{\partial \Gamma}$ does not necessarily exist, the *generalized derivative* $\frac{\partial (\tilde{\sigma}^2(\tau, x, \Gamma) \cdot \Gamma)}{\partial \Gamma}$ exists.

Generalized Derivatives

Le:
$$\frac{\partial (\tilde{\sigma}^{2}(\tau, x, \Gamma) \cdot \Gamma)}{\partial \Gamma} = \begin{cases} 1 + A & : \quad \Gamma \geq 0\\ 1 - A & : \quad \Gamma < 0 \end{cases}$$

SB:
$$\frac{\partial (\tilde{\sigma}^{2}(\tau, x, \Gamma) \cdot \Gamma)}{\partial \Gamma} = (1 + \Psi(\alpha_{i}\Gamma) + \alpha_{i}\Gamma\Psi'(\alpha_{i}\Gamma))$$

with
$$\alpha_{i} := e^{2r\tau/\sigma_{0}^{2}}a^{2}Ke^{x_{i}}$$

FP:
$$\frac{\partial (\tilde{\sigma}^{2}(\tau, x, \Gamma) \cdot \Gamma)}{\partial \Gamma} = \frac{1 + \rho \cdot \Gamma}{(1 - \rho \cdot \Gamma)^{3}}$$

ALP+:
$$\frac{\partial (\tilde{\sigma}^{2}(\tau, x, \Gamma) \cdot \Gamma)}{\partial \Gamma} = \begin{cases} \sigma_{max}^{2} & : \quad \Gamma \leq 0\\ \sigma_{min}^{2} & : \quad \Gamma > 0 \end{cases}$$

Methods for non-linear BS - Equations

Generalized Jacobian

In this sense define

Jacobian for BDF and CN

$$\frac{\partial F_i}{\partial w_k^{j+1}} = -\frac{w_i^{j+1}}{\partial w_k^{j+1}} + \Delta \tau \cdot (1-\theta) \left(\frac{\partial (\tilde{\sigma}^2(\tau_{j+1}, x_i, \Gamma_i^{j+1}) \Gamma_i^{j+1})}{\partial \Gamma_i^{j+1}} \cdot \frac{\partial \Gamma_i^{j+1}}{\partial w_k^{j+1}} + \frac{2r}{\sigma_0^2} \cdot \frac{\partial (\delta_x w_i^{j+1})}{\partial w_k^{j+1}} \right)$$

and

Jacobian for BDF2

$$\frac{\partial F_i}{\partial w_k^{j+1}} = -3 \frac{w_i^{j+1}}{\partial w_k^{j+1}} + 2\Delta \tau \cdot \left(\frac{\partial (\tilde{\sigma}^2(\tau_{j+1}, x_i, \Gamma_i^{j+1}) \Gamma_i^{j+1})}{\partial \Gamma_i^{j+1}} \cdot \frac{\partial \Gamma_i^{j+1}}{\partial w_k^{j+1}} + \frac{2r}{\sigma_0^2} \cdot \frac{\partial (\delta_x w_i^{j+1})}{\partial w_k^{j+1}} \right)$$

11. January, 2013 15 / 37

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Discretization

Algorithm

```
Data: model; option parameters; payoff \Lambda(x)
Input: \theta, temporal discretization N; spatial discretization M; cut-off interval
           [A, B]
Output: w_i^j for j = 1, ..., N and i = 0, ..., M
Set \mathbf{w}^0 \leftarrow \Lambda(\mathbf{x});
for j = 0, ..., N - 1 do
      Set \tau \leftarrow (i+1) \cdot \Delta \tau;
     Set \mathbf{w}^{j+1} \leftarrow \mathbf{w}^{j}:
      repeat
                                                                              /* Newton iteration */
            Compute \mathbf{F}(\mathbf{w}^{j+1});
            Compute D\mathbf{F}(\mathbf{w}^{j+1});
            Solve D\mathbf{F}(\mathbf{w}^{j+1})\Delta\mathbf{w} = -\mathbf{F}(\mathbf{w}^{j+1});
            Set \mathbf{w}^{j+1} \leftarrow \mathbf{w}^{j+1} + \Delta \mathbf{w}:
      until \|\Delta \mathbf{w}\| < \epsilon;
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1) Non-linear Models

- American Options
- 5 Numerical Examples

6 Summary

Convergence Results

Theorem (Convergence of BDF)

The fully implicit BDF scheme converges to the viscosity solution, whenever $\tilde{\sigma}^2(\tau, x, \Gamma)\Gamma$ satisfies the following conditions:

- **Ο** $\tilde{\sigma}^2(\tau, \mathbf{X}, \Gamma) \cdot \Gamma$ is continuous and monotone increasing in Γ
- 2 there exists a constant $c_+ > 0$ so that for all $\Gamma \in I$ and $\varepsilon > 0$

$$ilde{\sigma}^2(au, {f x}, {f \Gamma} + arepsilon) \cdot ({f \Gamma} + arepsilon) \geq ilde{\sigma}^2(au, {f x}, {f \Gamma}) \cdot {f \Gamma} + {f c}_+ \cdot arepsilon$$

$$c_+\frac{2-h}{h}\geq \frac{2r}{\sigma_0^2}.$$

3

(B) (A) (B) (A)

Convergence Results

$$\begin{array}{|c|c|c|c|} \tilde{\sigma}^{2}(\tau, x, \Gamma) \cdot \Gamma \text{ is continuous and monotone increasing in } \Gamma \\ \hline & \exists c_{+} > 0 \ \forall \Gamma \in I, \ \varepsilon > 0 : \tilde{\sigma}^{2}(\tau, x, \Gamma + \varepsilon) \cdot (\Gamma + \varepsilon) \geq \tilde{\sigma}^{2}(\tau, x, \Gamma) \cdot \Gamma + c_{+} \cdot \varepsilon \\ \hline & \exists c_{+} \frac{2-h}{h} \geq \frac{2r}{\sigma_{0}^{2}} \end{array}$$

Theorem (Convergence of CN)

The Crank-Nicolson - scheme converges to the viscosity solution, whenever $\tilde{\sigma}^2(\Gamma)\Gamma$ satisfies conditions (1)-(3) and:

() there exists a constant $c_- > 0$ so that for all $\Gamma \in I$ and $\varepsilon > 0$

$$ilde{\sigma}^2(au, \mathbf{X}, \mathbf{\Gamma} - arepsilon) \cdot (\mathbf{\Gamma} - arepsilon) \geq ilde{\sigma}^2(au, \mathbf{X}, \mathbf{\Gamma})\mathbf{\Gamma} - oldsymbol{c}_- \cdot arepsilon$$
 $\Delta au \leq rac{h^2}{c_-}$

6

3

Assumptions on Volatility term

With the generalized derivative one can compute:

$$c_{+} = \min_{\Gamma \in I} (\tilde{\sigma}^{2}(\Gamma) \cdot \Gamma)'$$

$$c_{-} = \max_{\Gamma \in I} (\tilde{\sigma}^{2}(\Gamma) \cdot \Gamma)'$$

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January, 2013 19 / 37

Assumptions on Volatility term

Assumptions on Volatility term

Theorem (Barles, Souganidis)

Any monotone, stable and consistent scheme converges to the unique viscosity solution.

12 N A 12

< 🗇 🕨

Definition

A discretization is monotone if

$$F_{i}(\mathbf{w}^{j+1} + \varepsilon^{j+1}, \mathbf{w}^{j} + \varepsilon^{j}) \geq F_{i}(\mathbf{w}^{j+1}, \mathbf{w}^{j})$$
with $\varepsilon^{j+1} = (0, \dots, 0, \varepsilon^{j+1}_{i-1}, 0, \varepsilon^{j+1}_{i+1}, 0, \dots, 0) \geq \mathbf{0}$,
 $\varepsilon^{j} = (0, \dots, 0, \varepsilon^{j}_{i-1}, \varepsilon^{j}_{i}, \varepsilon^{j}_{i+1}, 0, \dots, 0) \geq \mathbf{0}$ and
 $F_{i}(\mathbf{w}^{j+1} + \varepsilon^{j+1}, \mathbf{w}^{j}) \leq F_{i}(\mathbf{w}^{j+1}, \mathbf{w}^{j})$
with $\varepsilon^{j+1} = (0, \dots, \varepsilon^{j+1}_{i}, \dots, 0) \geq \mathbf{0}$,

э

Monotonicity:

• E.g.: Perturb
$$w_{i-1}^{j+1} \mapsto w_{i-1}^{j+1} + \varepsilon$$
, $\varepsilon > 0$
• $\delta_x w_i^{j+1} \mapsto \delta_x w_i^{j+1} - \frac{\varepsilon}{2h}$
• $\delta_{xx} w_i^{j+1} \mapsto \delta_{xx} w_i^{j+1} + \frac{\varepsilon}{h^2}$
• $\Gamma_i^{j+1} \mapsto \Gamma_i^{j+1} + \varepsilon \frac{2-h}{2h^2}$

$$\begin{split} F_{i}(w_{i}^{j+1}, w_{i-1}^{j+1} + \varepsilon, w_{i+1}^{j+1}, w_{i}^{j}) &= \\ &- w_{i}^{j+1} + w_{i}^{j} + \Delta \tau \left[\tilde{\sigma}^{2} \left(\tau_{j+1}, x_{i}, \Gamma_{i}^{j+1} + \varepsilon \frac{2-h}{2h^{2}} \right) \left(\Gamma_{i}^{j+1} + \varepsilon \frac{2-h}{2h^{2}} \right) + \frac{2r}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j+1} - \frac{2r}{\sigma_{0}^{2}} \frac{\varepsilon}{2h} \right] \geq \\ &- w_{i}^{j+1} + w_{i}^{j} + \Delta \tau \left[\tilde{\sigma}^{2} \left(\tau_{j+1}, x_{i}, \Gamma_{i}^{j+1} \right) \Gamma_{i}^{j+1} + c_{+} \cdot \varepsilon \frac{2-h}{2h^{2}} + \frac{2r}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j+1} - \frac{2r}{\sigma_{0}^{2}} \frac{\varepsilon}{2h} \right] \geq \\ F_{i}(w_{i}^{j+1}, w_{i-1}^{j+1}, w_{i+1}^{j}, w_{i}^{j}) \end{split}$$

æ

イロト イヨト イヨト イヨト

- 2 Stability:
 - Stability guarantees that $\|\mathbf{w}^{j}\|_{\infty}$ is bounded for any $j = 0, \dots, N$
 - Follows from the monotonicity of the scheme and the maximum principle
- Consistency:
 - local discretization error of BDF vanishes as $\Delta \tau, h \rightarrow 0$

4 3 5 4 3 5

Non-linear Models

2 Discretization

3 Convergence

American Options

5 Numerical Examples

6 Summary

Complementary and penalty formulation

Complementary formulation

As in linear Black-Scholes case:

$$V_{t} + \frac{1}{2}\sigma^{2}(t, S, V_{S}, V_{SS})S^{2}V_{SS} + (r - q)SV_{S} - rV \leq 0$$
$$V - V^{*} \geq 0$$
$$V_{t} + \frac{1}{2}\sigma^{2}(t, S, V_{S}, V_{SS})S^{2}V_{SS} + (r - q)SV_{S} - rV = 0 \quad \forall \quad (V - V^{*}) = 0$$

Penalty formulation

Idea: add a positive penalty term $\widetilde{
oldsymbol{
ho}}$ to ensure $V(S,t) \geq V^*(S) - arepsilon$

$$V_t + \frac{1}{2}\sigma^2(t, S, V_{SS})S^2V_{SS} + (r - q)SV_S - rV + \tilde{p} \cdot \max(V^* - V, 0) = 0.$$

Complementary and penalty formulation

Complementary formulation

As in linear Black-Scholes case:

$$V_{t} + \frac{1}{2}\sigma^{2}(t, S, V_{S}, V_{SS})S^{2}V_{SS} + (r - q)SV_{S} - rV \leq 0$$
$$V - V^{*} \geq 0$$
$$V_{t} + \frac{1}{2}\sigma^{2}(t, S, V_{S}, V_{SS})S^{2}V_{SS} + (r - q)SV_{S} - rV = 0 \quad \forall \quad (V - V^{*}) = 0$$

Penalty formulation

Idea: add a positive penalty term $\tilde{\rho}$ to ensure $V(S, t) \ge V^*(S) - \varepsilon$.

$$V_t + \frac{1}{2}\sigma^2(t, S, V_{SS})S^2V_{SS} + (r-q)SV_S - rV + \tilde{p} \cdot \max(V^* - V, 0) = 0.$$

4 D K 4 B K 4 B K 4 B K

New co-ordinates

log money and revesed time

$$x = \log \frac{S}{K}, \ \tau = \frac{\sigma_0^2}{2}(T-t), \ u(\tau, x) = e^{-x} \frac{V(t, S)}{K}$$

transformed complementary formulation

With $\Gamma := u_x + u_{xx}$,

$$\begin{aligned} u_{\tau} - \widetilde{\sigma}^2(\tau, x, \Gamma) \Gamma - \frac{2(r-q)}{\sigma_0^2} u_x + \frac{2q}{\sigma_0^2} u &\geq 0 \\ u(\tau, x) - u^*(x) &\geq 0 \quad \text{for all } \tau \in \left[0, \frac{\sigma_0^2 T}{2}\right] \\ u_{\tau} - \widetilde{\sigma}^2(\tau, x, \Gamma) \Gamma - \frac{2(r-q)}{\sigma_0^2} u_x + \frac{2q}{\sigma_0^2} u &= 0 \lor u(\tau, x) - u^*(x) = 0 \end{aligned} \right\}$$

э

New co-ordinates

log money and revesed time

$$x = \log \frac{S}{K}, \ \tau = \frac{\sigma_0^2}{2}(T-t), \ u(\tau, x) = e^{-x} \frac{V(t, S)}{K}$$

transformed penalty formulation

$$u_{\tau} - \widetilde{\sigma}^2(\tau, x, \Gamma)\Gamma - \frac{2(r-q)}{\sigma_0^2}u_x + \frac{2q}{\sigma_0^2}u - p(u^*-u)^+ = 0$$

- Transformed volatility $\tilde{\sigma}$ explicitly known by model
- Transformed payoff *u*^{*} also known explicitly

A B F A B F

Finite Differences for Penalty Formulation

Replace differential quotients by difference quotients:

BDF ($\theta = 0$) and Crank-Nicolson ($\theta = 1/2$)

$$w_{i}^{j+1} - w_{i}^{j} = \Delta \tau (1-\theta) \left[\widetilde{\sigma}^{2}(\tau_{j+1}, x_{i}, \Gamma_{i}^{j+1}) \Gamma_{i}^{j+1} + \frac{2(r-q)}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j+1} - \frac{2q}{\sigma_{0}^{2}} w_{i}^{j+1} \right] \\ + \Delta \tau \theta \left[\widetilde{\sigma}^{2}(\tau_{j}, x_{i}, \Gamma_{i}^{j}) \Gamma_{i}^{j} + \frac{2(r-q)}{\sigma_{0}^{2}} \delta_{x} w_{i}^{j} - \frac{2q}{\sigma_{0}^{2}} w_{i}^{j} \right] + p(w_{i}^{*} - w_{i}^{j+1})^{+}$$

finite differences

$$\begin{split} \mathbf{w}_{i}^{j} &\approx \mathbf{u}(\mathbf{x}_{i},\tau_{j}) & \delta_{\mathbf{x}}\mathbf{w}_{i}^{j} &\approx \mathbf{u}_{\mathbf{x}}(\mathbf{x}_{i},\tau_{j}) \\ \delta_{\mathbf{xx}}\mathbf{w}_{i}^{j} &\approx \mathbf{u}_{\mathbf{xx}}(\mathbf{x}_{i},\tau_{j}) & \Gamma_{i}^{j} := \delta_{\mathbf{x}}\mathbf{w}_{i}^{j} + \delta_{\mathbf{xx}}\mathbf{w}_{i}^{j} \end{split}$$

Finite Differences for Penalty Formulation

Write this equation for fixed j compactly

 $\mathbf{F}^{j}(W^{j+1}; W^{j}) = 0$ with $\mathbf{F}^{j}(W^{j+1}) := (F_{0}^{j}(W^{j+1}), \dots, F_{M}^{j}(W^{j+1}))^{T}$

boundaries are included by

$$F_0^j(W^{j+1}) := w_0^{j+1} - \mu(\tau_{j+1}, x_{\min})$$

$$F_M^j(W^{j+1}) := w_M^{j+1} - \nu(\tau_{j+1}, x_{\max})$$

• Caution: The system is not differentiable!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finite Differences for Penalty Formulation

Write this equation for fixed j compactly

 $\mathbf{F}^{j}(W^{j+1}; W^{j}) = 0$ with $\mathbf{F}^{j}(W^{j+1}) := (F_{0}^{j}(W^{j+1}), \dots, F_{M}^{j}(W^{j+1}))^{T}$

boundaries are included by

$$F_0^j(W^{j+1}) := w_0^{j+1} - \mu(\tau_{j+1}, x_{\min})$$

$$F_M^j(W^{j+1}) := w_M^{j+1} - \nu(\tau_{j+1}, x_{\max})$$

• Caution: The system is not differentiable!

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January. 2013 24 / 37
Finite Differences for Complementary Formulation

With

$$G_i^j(W^{j+1}) := F_i^j(W^{j+1}) + p \cdot (w_i^* - w_i^{j+1})^+$$

• define the function $\mathbf{G}^{j}: \mathbb{R}^{(M+1)} \to \mathbb{R}^{(M+1)}$ by

$$\mathbf{G}^{j}(\mathbf{W}^{j+1}) := (G_{0}^{j}(\mathbf{W}^{j+1}), \dots, G_{M}^{j}(\mathbf{W}^{j+1}))^{T}.$$

discrete complementary problem

$$egin{aligned} \mathbf{G}^{j}(\mathcal{W}^{j+1}) &\geq 0 \ \mathcal{W}^{j+1} - \mathcal{W}^{*} &\geq 0 \ \mathbf{G}^{j}(\mathcal{W}^{j+1}) &= 0 \quad ee \quad \mathcal{W}^{j+1} - \mathcal{W}^{*} = 0. \end{aligned}$$

Numerical Scheme

$$\begin{array}{c} \hline \textbf{Set } W^0 \text{ by } w_i^0 \longleftarrow u^*(x_i) \text{ for } i=0,\ldots,M; \\ \textbf{for } j=0,\ldots,N-1 \text{ do} \\ & \quad \textbf{Set } \tau \longleftarrow (j+1) \cdot \Delta \tau; \\ & \quad \textbf{Set } W^{j+1} \longleftarrow W^j; \\ & \quad \textbf{repeat} \\ & \quad | \quad \textbf{Solve } D\mathbf{F}^j(W^{j+1})\Delta W = -\mathbf{F}^j(W^{j+1}); \\ & \quad \textbf{Set } W^{j+1} \longleftarrow W^{j+1} + \Delta W; \\ & \quad \textbf{until } \|\Delta W\|/\|W^{j+1}\| < \epsilon; \end{array} \right.$$

DF^j(W) is the *generalized* Jacobi-matrix and is known explicitly *DF^j(W)* is tridiagonal, usually 2-3 Newton iterations per level

First Results

General assumptions

Assume that $\Delta x, \Delta \tau$ are sufficiently small, such that

$$\widetilde{\sigma}^{2}(\tau_{j}, x_{i}, \Gamma_{i}^{j}) \left(-\frac{1}{2\Delta x} + \frac{1}{\Delta x^{2}}\right) - \frac{r-q}{\sigma_{0}^{2}\Delta x} \geq 0$$

$$1 - \theta \Delta \tau \left(\widetilde{\sigma}^{2}(\tau_{j}, x_{i}, \Gamma_{i}^{j}) \frac{2}{\Delta x^{2}} + \frac{2q}{\sigma_{0}^{2}}\right) \geq 0$$

and assume that

• the transformed volatility $\tilde{\sigma}(\tau, x, \Gamma)$ is bounded

A B F A B F

First Results

Satz (M-matrix)

The Jacobian matrix $DF^{j}(W^{j+1})$ is a *M*-matrix. Consequently, $DF^{j}(W^{j+1})$ is regular and the linear system

 $DF^{j}(W^{j+1})\Delta W = -F^{j}(W^{j+1})$

can be solved by Gaussian elimination without pivoting.

First Results

Lemma (Stability) Let W^{j+1} be a solution of $\mathbf{F}^{j}(W^{j+1}) = 0$. Then, $\|W^{j+1}\|_{\infty} \leq C_{*}$

with a positive constant C_* which depends only on the payoff $u^*(x)$.

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January, 2013 27 / 37

3

American Options

Penalty formulation \longrightarrow Complementary formulation

Theorem

Assume that the stability condition

1

$$\frac{\Delta \tau}{\Delta x^2} < c_1.$$

Then, for $\Delta \tau, \Delta x \rightarrow 0$

$$egin{aligned} \mathbf{G}^{j}(W^{j+1}) &\geq 0 \ W^{j+1} - W^{*} &\geq -rac{C}{p} \ \mathbf{G}^{j}(W^{j+1}) &= 0 \ ee \ \left| W^{j+1} - W^{*}
ight| &\leq rac{C}{p} \end{aligned}$$

The constant C > 0 is independent of the penalty term p, $\Delta \tau$ and Δx .

Hence, W^{j+1} solves the discrete complementary formulation for $p \to \infty$.

Pascal Heider (EET)

Methods for non-linear BS - Equations

1 Non-linear Models

- Discretization
- 3 Convergence
- American Options
- 5 Numerical Examples

6 Summary

Case Study 1 - Transaction costs (Soner and Barles)

optimal convergence rates for BDF and Crank-Nicolson

• penalty parameter $p \approx 10^6$ sufficient

< 🗇 🕨

Case Study 1 - Transaction costs (Soner and Barles)

11. January, 2013 30 / 37

Case Study 2 - Uncertain Volatility

11. January, 2013 31 / 37

3 > 4 3

- **A**

Case Study 2 - Uncertain Volatility

Choose:

M = 1000, A = -5, B = 3

Case Study 3 - Transaction costs model (Leland)

11. January, 2013 32 / 37

∃ ► < ∃ ►</p>

Case Study 3 - Transaction costs model (Leland)

11. January, 2013 32 / 37

4 3 > 4 3

Case Study 4 - Transaction costs (Soner and Barles)

Plot with BDF, M = 300

11. January, 2013 33 / 37

3 > 4 3

< 🗇 🕨

Numerical Examples

Case Study 4 - Transaction costs (Soner and Barles)

BUT

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January, 2013 33 / 37

Case Study 4 - Transaction costs (Soner and Barles)

			BDF, <i>a</i> = 0		BDF, <i>a</i> = 0.01			
M	Ν	Value	Difference	Ratio	Value	Difference	Ratio	
150	40	0.01367	0.00027		0.03303			
300	80	0.01355	0.00015	1.86	0.03394	0.00009		
600	160	0.01348	0.00007	2.01	no conv.			
1200	320	0.01344	0.00004	2.03	no conv.			

no convergence for large M and a > 0

Methods for non-linear BS - Equations

Numerical Examples

Case Study 4 - Transaction costs (Soner and Barles)

WHY?

Pascal Heider (EET)

Methods for non-linear BS - Equations

11. January, 2013 33 / 37

Case Study 4 - Transaction costs (Soner and Barles)

- Jump discontinuity at x_{i^*} at $\tau = 0$: thus $\Gamma_{i^*}^0 = O(-1/h^2)$
- Remember: $c_+ = O(\Gamma^{-1}) = O(h^2)$ for $\Gamma \to -\infty$
- stability condition $c_+ rac{2-h}{h} \geq rac{2r}{\sigma_0^2}$ will be violated for h o 0

Consider a Call:

- $\Gamma^0_{i^*} = O(1/h)$
- $c_+ = O(\Gamma^{-1}) = O(h)$ for $\Gamma \to -\infty$
- stability condition $c_+ rac{2-h}{h} \geq rac{2r}{\sigma_0^2}$ can be satisfied for h o 0

Case Study 4 - Transaction costs (Soner and Barles)

		BDF			BDF2			CN (1)		
M	N	Value	Difference	Ratio	Value	Difference	Ratio	Value	Difference	Ratio
64	150	0.14269			0.14280			0.14280		
128	300	0.14554	0.00285		0.14560	0.00280		0.14560	0.00280	
256	600	0.14622	0.00068	4.21	0.14629	0.00065	4.29	0.14625	0.00065	4.29
512	1200	0.14639	0.00017	3.93	0.14641	0.00016	4.12	0.14641	0.00016	4.11

11. January, 2013 33 / 37

3 → 4 3

< 🗇 🕨

Case Study 5 - Illiquidity model

- Consider: Bull Spread as before, $\rho = 0.01$
- We get $c_+ = O(h^2)$
- Expect convergence problems for large M

			BDF			BDF2				
М	N	Value	Difference	Ratio	iter	Value	Difference	Ratio	iter	
64	25	0.02671			3.0	0.02624			3.0	
128	50	0.02118	-0.00552		2.86	0.02118	-0.00505		2.78	
256	100	0.01982	-0.00137	4.04	2.59	0.01991	-0.00127	3.97	2.53	
512	200	0.01975	-0.00007	19.79	2.39	0.01984	-0.00007	18.15	2.34	
1024	400	0.01991	0.00016	-0.44	2.28	0.01998	0.00014	-0.51	2.26	
2048	800	0.01947	-0.00004	-0.38	2.77	0.01491	-0.00506	-0.03	2.59	
			CN (1)							
М	N	Value	Difference	Ratio	iter					
64	25	0.02624			3.0					
128	50	0.02117	-0.00507		2.74					
256	100	0.01990	-0.00127	3.98	2.49					
512	200	0.01983	-0.00007	19.54	2.33					
1024	400	0.01998	0.00014	-0.46	2.245					
2048	800	1.18652	1.16654		4.84					

schemes destabilize for large M

Pascal Heider (EET)

3

Numerical Examples

Case Study 5 - Illiquidity model

11. January, 2013 34 / 37

э

- 1 Non-linear Models
- 2 Discretization
- 3 Convergence
- 4 American Options
- 5 Numerical Examples

Summary

- Convergent, implicit schemes for non-linear BS-equations
- Stability of the scheme can be checked a priori
- Stability must be checked to avoid spurious solutions
- Behavior of the scheme depends strongly on the model equation
- Behavior depends on the payoff profile

< ロ > < 同 > < 回 > < 回 >

Disclaimer

The information contained herein is for informational purposes only and may not be used, copied or distributed without the prior written consent of E.ON Energy Trading SE. It represents the current view of E.ON Energy Trading SE as of the date of this presentation. This presentation is not to be construed as an offer, or an amendment, novation or settlement of a contract, or as a waiver of any terms of a contract by E.ON Energy Trading SE. E.ON Energy Trading SE does not guarantee the accuracy of any of the information provided herein.