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Emission trading: Examples

Several market are in operation

Vouluntary: UK Emission Trading Scheme

Sulfur Dioxide Trading System (US Acid Rain Program)
http://www.epa.gov/airmarkt/trading/factsheet.html
European Union Emission Trading Scheme (EU)

Two periods 2005-2007, 2008-2012
Allowances: EUA, cover
one tonne of CO2 equivalent emission
Contracts: EUA-Futures, European Call options on
EUA-futures



Principle:

Reduction by Cap-and-Trade-Mechanism
Administrator

distributes allowances
sets penalty for non-compliance
defines compliance dates

Emissions sources reduce penalty payments
by abatement

technological changes,
production shut down,
re-schedule of the production

Emission trading
physical (Spot)
financial (Forwards/Futures)



EUA 2007

Source: EEX



EUA 2012 can reach 100 Euro

Source: EEX



Modeling approaches

econometric models
(time series models for certificate prices)

equilibrium models
(agent’s preferences, strategies, uncertainties)
risk-neutral models (no-arbitrage certificate dynamics)

hybrid approach
(some equilibrium results from risk-neutral viewpoint)
reduced-form approach
(pure martingale modeling targeted on closed-form option
formulas)



In this talk

Reduced-form approach, we gradually move from

one compliance period [0,T ]
(allowance price (At)t∈[0,T ] finishes at 0 or π)

two compliance periods [0,T ], [T ,T ′]
(allowance prices (At)t∈[0,T ] (At)t∈[0,T ′] show relation
depending on regulations)

Important: results from one-period modeling are used as
building blocks in many-period models.

Target: Simple, easy-to-calibrate models, providing
easy-to-calculate option formulas



One-compliance period [0,T ]

consider emission certificate price evolution (At)t∈[0,T ]

assume that (At)t∈[0,T ] is futures price with maturity T
written on physical emission allowance price at compliance
date T
assume that there are two outcomes only

AT = 0 total emissions are within the target
AT = π market missed the target

for no-arbitrage reasons, make sure that (At)t∈[0,T ] follows
a martingale (with respect to spot martingale measure)



Idea

all we need is to specify on

filtered probability space (Ω,F ,Q, (Ft )t∈[0,T ])

the event N ∈ FT of non-compliance settles the terminal futures
price as

AT = π1N . (1)

giving

At = πEQ(1N |Ft), t ∈ [0,T ].

What is important for practitioner?



What is important for practitioner?

flexibility: having observed at time τ

recent price, price fluctuations

one needs a model which allows for to match of both by

Aτ , d [A]τ

calibration: the identification of parameters for this match
should be reliable and fast

calculation: valuation of options should be fast



To have more structure,

introduce the non-compliance case

N = {ΓT ≥ 1}.

as an event where a hypothetic ΓT exceeds the boundary 1.

This is convenient:

imagine that the total pollution ET exceeds the total
allocation γ

N = {ET /γ
︸ ︷︷ ︸

Γ

> γ}

remember digital options

At = πEQ(1{ΓT≥1} |Ft ), t ∈ [0,T ]



With this approach,

focus on

ΓT = Γ0e
∫ T

0 σsdWs−
1
2

∫ T
0 σ2

s ds, Γ0 ∈ (0,∞)

where

(σs)s∈]0,T [ is positive, continuous, squate-integrable

Given: allowance price is digital option on Geometric Brownian
Motion

To do: adjust allowance price volatility by that of underlying
Brownian Motion

Result: not easy!



Proposition

Assume ΓT = Γ0e
∫ T

0 σsdWs−
1
2

∫ T
0 σ2

s ds, Γ0 ∈ (0,∞)

with continuous and square-integrable (0,T ) 3 t ↪→ σt , then

at = EQ(1{ΓT≥1} | Ft) t ∈ [0,T ] (2)

is given by

at = Φ




Φ−1(a0)

√
∫ T

0 σ2
sds +

∫ t
0 σsdWs

√
∫ T

t σ2
s ds



 (3)

and it solves
dat = Φ′(Φ−1(at))

√
ztdWt (4)

with positive-valued

zt = σ2
t /

∫ T

t
σ2

udu, t ∈ (0,T ). (5)



There is a problem

with constant volatility

σs ≡ σ̄ ∈ (0,∞) for all s ∈ [0,T ]

since independently on its level, we have the same

at = Φ

(

Φ−1(a0)
√

T + Wt√
T − t

)

.

dat = Φ′(Φ−1(at))
1√

T − t
dWt

With σ̄ ∈]0,∞[, we can match both, the recent allowance price
and its fluctuation intensity.



How about non-constant (σs)s∈[0,T ]?

There are many positive-valued functions, a parameterized
family would be appropriate.

Try a slight correction, introducing only two degrees of freedom

dat = Φ′(Φ−1(at))
√

β(T − t)−αdWt (6)

with α ∈ R, β ∈ (0,∞). (α = 1, β = 1 gives σ̄-model)

is it possible to find a corresponding (σs)s∈[0,T ]?

which α and β describe observed allowance prices

how to determine them?



Parameterized function family is

(zt (α, β) = β(T − t)−α)t∈(0,T ), β > 0 and α ∈ R.

(α ≥ 1 gives divergence of the integral to ensure AT ∈ {0, π}).

The corresponding (σt(α, β))t∈(0,T ) are

σt(α, β)
2 = zt(α, β)e−

∫ t
0 zu(α,β)du (7)

=

{

β(T − t)−αeβ T−α+1
−(T−t)−α+1

−α+1 for β > 0, α > 1
β(T − t)β−1T−β for β > 0, α = 1



Consider observations of the futures prices (At)t∈[0,T ] which we
transform as

ξt = Φ−1(at) = Φ−1
(

1
π

At

)

, t ∈ [0, t] (8)

It turns out that

dξt =
1
2

ztξtdt +
√

ztdWt



The objective measure P can be recovered from the spot
martingale measure Q via its Radon-Nikodym density

dP
dQ

= e
∫ T

0 Ht dWt−
1
2

∫ T
0 H2

t dt .

We assume that the market price of risk process (Ht)t∈[0,T ] is
constant and deterministic, Ht ≡ h for t ∈ [0,T ], for some fixed
h ∈ R.



Girsanov’s theorem ensures that

W̃t = Wt − ht for t ∈ [0,T )

is a Brownian motion with respect to the objective measure P,
and under this measure, ξt satisfies:

dξt = (
1
2

ztξt + h
√

zt)dt +
√

ztdW̃t

with solution

ξτ = e
1
2

∫ τ
t zsdsξt + h

∫ τ

t
e

1
2

∫ τ
s zudu√zsds +

∫ τ

t
e

1
2

∫ τ
s zudu√zsdW̃s.

for 0 ≤ t ≤ τ ≤ T



Having observed (ξti )
n
i=1, the conditional distribution of ξti given

ξti−1 is Gaussian with mean µi and variance σ2
i

µi(h, α, β) = e
1
2

∫ ti
ti−1

zsds
ξti−1 + h

∫ ti

ti−1

e
1
2

∫ ti
s zudu√zsds,

σ2
i (h, α, β) =

∫ ti

ti−1

zse
∫ ti

s zududs,

For a given realization (ξti )
n
i=1 ∈ Rn, the log-likelihood is

Lξt1
,...,ξtn

(h, α, β) =
n∑

i=1

(

−(ξti − µi(h, α, β))2

2σ2
i (α, β)

− ln(
√

2πσ2
i (α, β))

)

for all h, α, β ∈ R.



There is no closed-form estimate for the parameters h, α, β ∈ R.

However, the maximum of the likelihood function can be
determined numerically.

Given the historical futures prices of EUA with maturity in
December 2012,
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we use the integral approximations

µi(h, α, β) ∼ e
1
2 (ti−ti−1)zti−1 ξti−1 + h(ti − ti−1)

√
zti−1 e

1
2 (ti−ti−1)zti−1

σ2
i (h, α, β) ∼ (ti − ti−1)zti−1 e(ti−ti−1)zti−1

to calculate the log-likelihood.

Starting with initial parameter h := 0, α = 0.5, β = 0.5, a
numerical maximization method returned the maximizer

α∗ = 0.332, β∗ = 0.161, h∗ = −0.078.



To verify the validity of our procedure, we determine the
residuals

wi =
ξti − µi(h∗, α∗, β∗)
√

σ2
i (h

∗, α∗, β∗)
, i = 1, . . . ,n.

Under the model assumptions, this series must be a realization
of independent standard normal random variables.

Thus, standard statistical can be applied to verify the the quality
of the model fit.



Statistical analysis of residuals
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Option pricing

The price of a European call with maturity τ ∈ [0,T ] and strike
K ≥ 0 written on an allowance futures maturing at the end T of
the compliance period is given at time t ∈ [0, τ ] by

Ct = e−
∫ τ

t rsds
∫

R

(πΦ(x)− K )+N(µt,τ , σ
2
t,τ )(dx) (9)

with µt,τ and σ2
t,τ given by formulas below.



µt,τ (α, β) =







ξt

(
T−t
T−τ

)(β/2)
if α = 1

ξt exp
[

β
2(1−α) [(T − t)1−α − (T − τ)1−α]

]

if α 6= 1.

σ2
t,τ (α, β) =







(
T−t
T−τ

)β
− 1 if α = 1

exp
[

β
1−α [(T − t)1−α − (T − τ)1−α]

]

− 1 if α 6= 1.



Our valuation technique differs from the traditional Black 76
formula.

However, the difference can be moderate, for parameters
relevant to current situation of the EU ETS and for low strike
prices.

Compare Call option price with maturity τo = 3.44 depending
on the strike K , calculated at t = 0 for the underlying futures
price of A0(τf ) = 17.54 and supposing that the futures contract
matures at τf = 3.46. Suppose that the time to compliance date
is T = 5 and set the short rate as r = 0.07.



Black 76 versus our model
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Quoted B76 volatilities

show indeed that the ECX prices EUA calls by B76.
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However, a constant B76 volatility does not explain the history
of daily call option prices quoted at ECX during 4th of January
2007 to 30th of September of 2009.
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To compare our technique to the market option prices, we
decided toto fit our model to the paid option prices.

To do so, we suggest to determine those parameters α and β
which minimize the sum of squared deviations between
historical market prices and their theoretical values, based on
our model.

Having implemented the function describing the sum of
squared deviations depending on model parameters α and β, a
numerical procedure, based on Nelder-Mead method was
applied to determine the minimizer

α? ≈ 0.318 β? ≈ 0.144 (10)

Which is very close to the parameters obtained from the
historical parameter estimation

α∗ = 0.332, β∗ = 0.161



Such a fit could be interpreted in favor of model validity.

Still, even for implicitly calibrated parameters, the deviation of
market prices from their theoretical values is strong.
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From this perspective, our model behaves not better that the
Black 76 pricing scheme.

This is simply because market has been pricing emission
allowance options in terms of Black 76 model until now.

We expect a change in the future, when market participants
realize differences between allowance price evolution and
model assumptions underlying Black 76 approach.

The differences become obvious closer to the compliance date.



Multi periods markets

So far, we focused on one compliance period.

This is a simplification since real-world markets are operating in
a multi-period framework

Usually, periods are connected by regulations.

Three regulatory mechanisms

Borrowing

Banking

Withdrawal



Three regulatory mechanisms

Borrowing allows for the transfer of a (limited) number of
allowances from the next period into the present one;

Banking allows for the transfer of a (limited) number of
(unused) allowances from the present period into the next;

Withdrawal penalizes firms which fail to comply in two
ways: by penalty payment for each unit of pollutant which
is not covered by credits and by withdrawal of the missing
allowances from their allocation for the next period.

Seemingly policy makers tend to admit unlimited banking,
forbid borrowing, and apply withdrawal rule.



Two period model

without borrowing, with unlimited banking and with withdrawal.

two periods [0,T ] and [T ,T ′]

two processes (At)t∈[0,T ], (A′
t)t∈[0,T ] for futures contracts

with maturities at compliance dates T , T ′ written on
allowance prices from the first and the second period
respectively.



Two period model

In the case of the first-period compliance the allowance price
drops

AT 1Ω\N = κA′
T 1Ω\N ,

where κ ∈ (0,∞) stands for discount factor

κ = e−
∫ T ′

T rsds.

In the case of first period non-compliance agent pays penalty in
addition to next-period certificate which must be withdrawn at
spot price

AT 1N = κA′
T 1N + π1N .



The difference

At − κA′
t = EQ(AT − κA′

T | Ft) = EQ(π1N | Ft) t ∈ [0,T ]

is a digital martingale, use the same methodology as in one
period model

At − κA′
t = πΦ(X 1

t ) t ∈ [0,T ],

where (X 1
t )t∈[0,T ] is Gaussian process with (σs)s∈[0,T ] in

parameterized form and driven by a Brownian motion
(W 1

t ,Ft)t∈[0,T ′].



Second-period price

can be modeled only if a continuation of the system is specified.

If there is no decision yet the process (A′
t)t∈[0,T ] should be

modeled exogenously

Simplest choice is to suppose that the system will be
terminated, hence

A′
t = πΦ(X 2

t ) t ∈ [0,T ′].

with a {σ2
s}s∈[0,T ] in parameterized form, and driven by another

Brownian motion (W 2
t ,Ft)t∈[0,T ′].



Option pricing

with these regulatory assumptions, consider European Call with
strike price K ≥ 0 and maturity τ ∈ [0,T ] written on futures
price of allowance from the first period

the payoff is

Cτ = (Aτ − K )+ at time τ ∈ [0,T ].

the fair price is

C0 = e−
∫ τ

0 rsdsEQ((Aτ − K )+)



Using decomposition

(Aτ − K )+ = (Aτ − κA′
τ + κA′

τ − K )+,

we express terminal payoff as

(Aτ − K )+ = (πΦ(X 1
τ ) + κπΦ(X 2

τ )− K )+

and fair price is found as

C0 = e−
∫ τ

0 rsdsEQ((Aτ − K )+)

= e−
∫ τ

0 rsdsEQ((πΦ(X 1
τ ) + κπΦ(X 2

τ )− K )+)



where for β1 > 0, β2 > 0 we have

X 1
τ = Φ−1(

A0 − κA′
0

π
)

√

(
T

T − τ
)β1 + β

1
2
1

∫ τ
0 (T − u)

β1−1
2 W 1

u du

(T − τ)
β1
2

X 2
τ = Φ−1(

κA′
0

π
)

√

(
T ′

T ′ − τ
)β2 + β

1
2
2

∫ τ
0 (T

′ − u)
β2−1

2 W 2
u du

(T ′ − τ)
β2
2

.

with correlated Brownian motions

[W 1,W 2]dt = ρdt , ρ ∈ [−1,1],

apply the same argumentation to calculate the price



Proposition

Price of Call with strike price K ≥ 0 and maturity τ ∈ [0,T ] written on
first-period allowance futures price at time t ∈ [0, τ ] is

Ct = e−

∫
τ

t rsds
∫

R2
(πΦ(x1) + κπΦ(x2)− K )+N(µt,τ , νt,τ )(dx1, dx2)

µ1
t,τ = Φ−1(

At − κA′

t

π
)

√

(
T − t
T − τ

)β1

µ2
t,τ = Φ−1(

κA′

t

π
)

√

(
T ′ − t
T ′ − τ

)β2

ν1,1
t,τ = Var(X1

τ ) =

(
T − t
T − τ

)β1

− 1

ν2,2
t,τ = Var(X2

τ ) =

(
T ′ − t
T ′ − τ

)β1

− 1

ν1,2
t,τ = ν2,1

t,τ = β
1
2
1 β

1
2
2

∫ τ

t (T − u)
β1−1

2 (T ′ − u)
β2−1

2 ρdu

(T − τ)
β1
2 (T ′ − τ)

β2
2

.



Implementation in R

Call1<-function(ta, Tmat1, Tmat2 , A1,A2, K, r, beta1, beta2, rho)

ta corresponds to τ − t, time to options maturity

Tmat1 stands for T1 − t, time to the first period compliance

Tmat2 stands for T2 − t, time to the second period compliance

A1 stands for At, first-period allowance futures price

A2 stands for A′

t , second-period allowance futures price

beta1, beta2 stands for β and β′ respectively

rho denotes the correlation ρ

penalty, K, r, correspond to the model parameters π, K, r



Implementation in R
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Parameter dependence
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Thank you!


