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More research is needed in high-dimensional stochastic control

algorithmic approach

high-dimensional solution methods

duality & pathwise diagnostics

applications in artificial intelligence



Motivation: Tiger game



Motivation: Tiger game

behind one door is a tiger, behind the other a present

open wrong door (tiger behind) costs $100

open correct door (present behind) gives $10

one can listen for $1, but listening may give wrong
observation, say with probability 1/3

upon a door is opened, tiger and present switch randomly,

game starts again

game played at times 0, . . . ,T .

Such problems (POMDPs) are important in artificial intelligence



Motivation: Tiger game



Tiger game: wrong door, $100 penalty



Tiger game: correct door $10 reward



Motivation: Optimal asset liquidation

A broker must liquidate an asset within a fixed time

When submitting orders

the time

the size

the order type

must be chosen optimally



Problem

At any time t = 0, . . . ,T , one knows

number p ∈ N of asset units remaining

current bid and ask prices

to decide on

the size of the sell order

the type of the sell order (limit/market)

limit order is valid for one step only



Problem

all randomness comes from the bid-ask spread, since price

direction not predictable

revenue difference in order types is due to the current bid-ask

spread

market order sells with high probability at the current bid

price

limit order sells uncertain asset number at some higher

(than current bid) price



Modeling as

Discrete time stochastic control problems of specific type

Efficient algorithms utilize linear state dynamics

Solution diagnostics (duality of C. Rogers) is available

Target

Solution (efficient implementation)

Diagnostics (distance-to-optimality)



Stochastic switching with linear state dynamics

is about control problems whose state is x = (p, z) ∈ P × R
d

Discrete part is controlled Markov chain:

Positions P (finite set)

Actions A (finite set)

Random jump (p,a) → α(p,a) ∈ P with probability

αa
p,p′ ∈ [0,1], p,p′ ∈ P, a ∈ A

Continuous part is uncontrolled: (Zt)
T
t=0 follows in R

d

Zt+1 = Wt+1Zt ,

with independent disturbance matrices (Wt+1)
T−1
t=0 .



For asset liquidation, this would be

Discrete component:

finite set P of asset levels, actions A determine order type and

size, whereas αa
p,p′ describes the level transition through the

order a

Continuous component:

Spread size (Zt)
T
t=0 follows Markov process.



This situation is frequent (Bermudian Put, Swing options,

Storage valuation).

Efficient solutions and diagnostics:

Optimal Stochastic Switching under Convexity Assumptions

SIAM Journal on Control and Optimization, 52(1), 2014

Using convex switching techniques for partially observable

decision processes, Forthcoming in IEEE TAC

Algorithms for optimal control of stochastic switching systems

Forthcoming in TPA

Stochastic switching for partially observable dynamics and

optimal asset allocation International Journal of Control

More papers on www.jurihinz.com



For switching problems

stochastic control is as usual:

Policy π = (πt)
T−1
t=0 is a sequence of decision rules

πt : P × R
d → A (p, z) 7→ πt(p, z)

Following π, one obtains for t = 0, . . . ,T − 1

aπ

t := πt(p
π

t ,Zt), pπ

t+1 := αt+1(p
π

t ,a
π

t ), Zt+1 = Wt+1Zt

started at pπ

0 = p0, Z0 = z0 ∈ R
d .



Policy value

vπ

0 (p0, z0) = E

(
T−1∑

t=0

rt(p
π

t ,Zt ,a
π

t ) + rT (p
π

T ,ZT )

)

with control costs:

Rewards at t = 0, . . . ,T − 1 from decision a in state (p, z)

rt : P × R
d × A → R (p, z,a) 7→ rt(p, z,a)

Scrap value at t = T , no action:

rT : P × R
d → R (p, z) 7→ rT (p, z)



Target

Determine a policy π∗ = (π∗
t )

T−1
t=0 which maximizes

π 7→ vπ

0 (p0, z0) = E

(
T−1∑

t=0

rt(p
π

t ,Zt ,a
π

t ) + rT (p
π

T ,ZT )

)

over all policies.

Any maximizer is called optimal policy, and is denoted by

π∗ = (π∗
t )

T−1
t=0



Example: Bermudan Put option

with strike K , at interest rate ρ ≥ 0, for maturity T has fair price

sup
τ

{E(e−ρτ (K − Zτ )
+,0))

over all {0,1, . . . ,T}-valued stopping times τ .

Continuous part uncontrolled: (Zt)
T
t=0 follows

Zt+1 = Wt+1Zt , Z0 = z0 ∈]0,∞[

where (Wt)
T
t=1 are iid log-normal variables.



Example: Bermudan Put option

Discrete part:

Positions P = {stopped, goes}

Actions A = {stop, go}

Position change

[
αstop(stopped) αgo(stopped)
αstop(goes) αgo(goes)

]

=

[
stopped stopped

stopped goes

]

.

Thus we have with P = {1,2}, and A = {1,2}.

(αa(p))2
p,a=1 ∼

[
α1(1) α1(2)

α2(1) α2(2)

]

=

[
1 1

1 2

]

,



Example: Bermudan Put option

The reward at time t = 0, . . . ,T − 1 and scrap value are

rt(p, z,a) = e−ρt(K − z)+(p − αa(p)),

rT (p, z) = e−ρT (K − z)+(p − α1(p)),

for p ∈ P, a ∈ A, z ∈ R+



Theoretical solution

Define the original Bellman operator

Ttv(p, z) = max
a∈A



rt(p, z,a) +
∑

p′∈P

αa
p,p′E(v(p′,Wt+1z))



 ,

and introducer the Bellman recursion (backward induction)

vT = rT , vt = Ttvt+1 for t = T − 1, . . . ,0.

There exists a recursive solution (v∗
t )

T
t=0, called value functions,

they determines an optimal policy π∗ = (πt)
T−1
t=0 via

π∗
t (p, z) = argmaxa∈A



rt(p, z,a) +
∑

p′∈P

αa
p,p′E(v∗

t+1(p
′,Wt+1z))





for all p ∈ P, z ∈ R
d , t = 0, . . . ,T − 1.



Numerical solution

If reward and scrap functions are convex, then

instead of the original Bellman operator

Ttv(p, z) = max
a∈A



rt(p, z,a) +
∑

p′∈P

αa
p,p′E(v(p′,Wt+1z))



 ,

we consider the modified Bellman operator

T m,n
t (p, .) = SGmmax

a∈A



rt(p, ·,a)+
∑

p′∈P

αa
p,p′

n∑

k=1

νt+1(k)v(p
′,Wt+1(k)·)







For convex v(p, ·),

the modified Bellman operator is

T m,n
t (p, .) = SGmmax

a∈A



rt(p, ·,a)+
∑

p′∈P

αa
p,p′

n∑

k=1

νt+1(k)v(p
′,Wt+1(k)·)





where SGm stands for the sub-gradient envelope for the grid

Gm = {g1, . . . ,gm}:

g 1 2
g3 g4g



Sub-gradient envelope

of a function f on grid G is defined as maximum

SGf = ∨g∈G(▽gf )

of subgradients ▽g f of f on grid points g ∈ G.

Subradient envelope provides a good approximation from below

SGf ≤ f

and enjoys many useful properties.



Modified backward induction

Using modified Bellman operators T m,n, we introduce backward

induction

v
m,n
T = SGm rT ,

v
m,n
t = T m,n

t v
m,n
t+1 , t = T − 1, . . . 0.

which enjoys excellent asymptotic properties.



Using matrix representations of convex piecewise linear

functions, the modified backward induction boils down to simple

linear algebra.

Using further approximations and techniques from data mining

(hierarchical clustering, next neighbor search) we obtain very

efficient implementations

Algorithms for optimal control of stochastic switching systems

Forthcoming in TPA



Asymptotic properties

This scheme enjoys excellent asymptotic properties:

Under appropriate assumptions it holds almost surely for

t = 0, . . . ,T that



Unlike for typical LS Monte-Carlo methods, we have

distribution sampling n and function approximation m

disentangled in convergence

convergence almost surely, uniformly on compact sets, to

the true value function



Assumptions required for this

rewards rt(p, .,a), rT (p, .) are convex and globally Lipschitz

continuous for all p ∈ P, a ∈ A

disturbances are integrable, E(‖Wt‖) < ∞, for all

t = 1, . . . ,T , a ∈ A

distribution sampling is appropriate (but Monte-Carlo OK)

grid sampling Gm ⊂ Gm+1, sucht that ∪m∈NGm is dense



Most important: Algorithmic issues

in the double-modified Bellman operator

T m,n
t v(p, .) = SGm max

a∈A

(

rt(p, .,a) +
1

n

n∑

k=1

v(α(p,a),Wt+1(k).)

)

one can bypass calculation of the argument

(

rt(p, .,a) +
1

n

n∑

k=1

v(α(p,a),Wt+1(k).)

)

carrying out all operations on the level of subgradients.



Algorithmic issues

piecewise linear functions appear due to subgradient envelopes

and matrices appear to represent these functions

A piecewise convex function f can be described by a matrix in

the spirit of

f : z 7→ max(a1z + b1,a2z + b2) = max

[
a1 b1

a2 b2

]

︸ ︷︷ ︸

F

[
z

1

]

Let us write the matrix representative relation as

f ∼ F



For piecewise convex functions, the result of

maximization

summation

composition with linear mapping

followed by sub-gradient envelope can be obtained using their

matrix representatives.

Say if

f1 ∼ F1, f2 ∼ F2

then

SG(f1 + f2) ∼ ΥG(F1) + ΥG(F2)

SG(f1 ∨ f2) ∼ ΥG(F1 ⊔ F2)

SG(f1(Wt+1(k)·)) ∼ ΥG(F1Wt+1(k))



Operators on matrices

Row-re-arrangement operator ΥG associated with the grid G

acts on matrix L as

(ΥGL)i ,· = Largmax(Lg i),· for all i = 1, . . . ,m.

binding-by-row operator ⊔ acts on matrices L(1), . . . ,L(J) as

⊔J
j=1L(j) =






L(1)
...

L(J)








Algorithm

Matrix representatives the backward induction can be rewritten

in terms of matrix operations.

Determine the matrix representatives

Rm
t (p,a), Rm

T (p)

of the subgradient envelopes

SGm rt(p, .,a), SGm rT (p, .)



Algorithmic implementation

Introduce V
n,m
t (p) ∼ v

n,m
t (p, ·) are obtained via

Initialization: start with the matrices

V
m,n
T (p) = Rm

T (p)
︸ ︷︷ ︸

∼SGm rT (p,·)

, for all p ∈ P

Recursion: and for t = T − 1, . . . ,1 calculate for p ∈ P

V
n,m
t (p) = ⊔a∈A




ΥGm Rm

t (p, a)
︸ ︷︷ ︸

SGm rt (p,·,a)

+
1

n

n∑

k=1

ΥGm [V n,m
t+1 (α(p, a)) · Wt+1(k)]






with binding-by row ⊔a∈A and some row-rearrangement ΥGm

operators.



Main problem

How far is an approximate solution is from the optimal one?

For optimal stopping: Duality idea of C. Rogers

Upper bound estimation: Let (Zt)
T
t=0 be adapted, and V be all

finite stopping times.

The optimal stopping value is attained at some stopping time τ∗

V ∗
0 := sup

τ∈V

E(Zτ ) = E(Zτ∗)

and dominated by the expectation of a pathwise maximum

V ∗
0 := sup

τ∈V

E(Zτ ) ≤ E( sup
0≤t≤T

Zt).



Duality idea of C. Rogers:

Subtracting any martingale (Mt)
T
t=0 ∈ M0 starting at the origin

M0 = 0, we have

V ∗
0 = sup

τ∈V

E(Zτ − Mτ ) ≤ E( sup
0≤t≤T

(Zt − Mt)).

this estimate is tight and is attained at some martingale (M∗
t )

T
t=0

V ∗
0 = E( sup

0≤t≤T

(Zt − M∗
t )).



Duality idea of C. Rogers

Random upper bound: Given simulated sample paths of

(Zt − Mt)
T
t=0, determine the maximum on each trajectory and

calculate their empirical mean.

There are many ideas how to chose the best martingale (close

to (M∗
t )

T
t=0)

Random lower bound: Take some stopping time τ , stop

trajectories of (Zt − Mt)
T
t=0 and average.

Self-tuning: The closer the stopping time τ and the martingale
(Mt)

T
t=0 are to their optimal counterparts τ∗ and (M∗

t )
T
t=0, the

narrower are the bounds, the lower is the Monte-Carlo variance.



Bound estimation

for our stochastic switching systems, the arguments are similar,
but instead of martingale we have a family of martingale

increments.



Main problem

Given: A numerical scheme returns approximate value

functions (vt )
T
t=0, approximate expected value functions (vE

t )T
t=0

along with corresponding policy (πt)
T−1
t=0 given by

πt(p, z) = argmax(rt(p, z,a) +
∑

p′∈P

αa
p,p′vE

t+1(p
′, z)))

Question: How far we are from the optimality? In other words,

at a given a point (p0, z0), estimate the performance gap

[vπ

0 (p0, z0), v
π
∗

0 (p0, z0)].



Solution by bounds estimation:

Explicit construction of random variables

v
π,ϕ

0 (p0, z0), v
ϕ

0 (p0, z0)

satisfying

E(vπ,ϕ

0 (p0, z0)) = vπ

0 (p0, z0) ≤ vπ
∗

0 (p0, z0) ≤ E(v̄ϕ

0 (p0, z0)).

Using MC, one estimates both means with confidence bounds

to understand the performance gap.

Self-tuning: The better is the approximate solution (vt)
T
t=0

(vE
t )T

t=0, the narrower the gap, the lower the variance of MC.



We prove inductively

Lower bound (variance reduction)

1) Given approximate solution (vt)
T
t=0 (vE

t )T
t=0 with the

corresponding policy (πt)
T−1
t=0 , implement control variables

(ϕt )
T
t=1 as

ϕt(p, z,a) =
∑

p′∈P

αa
p,p′(

1

I

I∑

i=1

vt(p
′,W

(i)
t z) − vt(p

′,Wtz)),

for all p ∈ P, a ∈ A, z ∈ R
d , where (W

(1)
t , . . . ,W

(I)
t ,Wt) are

independent identically distributed.



2) Chose a number K ∈ N of Monte-Carlo trials and obtain for
k = 1, . . . ,K independent realizations (Wt(ωk ))

T
t=1 of

disturbances.

3) Starting at zk
0 := z0 ∈ R

d , define for k = 1, . . . ,K trajectories

(zk
t )

T
t=0 recursively

zk
t+1 = Wt+1(ωk )z

k
t , t = 0, . . . ,T − 1

and determine realizations

ϕt (p, z
k
t−1,a)(ωk ), t = 1, . . . ,T , k = 1, . . . ,K .



4) For each k = 1, . . . ,K initialize the recursion at t = T as

v
π,ϕ

T (p, zk
T )(ωk ) = rT (p, z

k
T ) for all p ∈ P

and continue for t = T − 1, . . . ,0 and for all p ∈ P by

v
π,ϕ

t (p, zk
t )(ωk ) = rt(p, z

k
t , πt(p, z

k
t )) + ϕt+1(p, z

k
t , πt(p, z

k
t ))(ωk )

+
∑

p′∈P

α
πt(p,z

k
t )

p,p′ v
π,ϕ

t+1(p
′, zk

t+1)(ωk )

5) Calculate sample mean

1

K

K∑

k=1

v
π,ϕ

0 (p0, z0)(ωk )

to estimate E(vπ,ϕ

0 (p0, z0)) with confidence bounds.



Upper bound (duality of C. Rogers)

replace in the step 4)

v
π,ϕ

t (p, zk
t )(ωk ) = rt(p, z

k
t , πt(p, z

k
t )) + ϕt+1(p, z

k
t , πt(p, z

k
t ))(ωk )

+
∑

p′∈P

α
πt(p,z

k
t )

p,p′ v
π,ϕ

t+1(p
′, zk

t+1)(ωk )

by

v
ϕ

t (p, z
k
t )(ωk ) = max

a∈A

(
rt(p, z

k
t ,a) + ϕt+1(p, z

k
t ,a)(ωk )

+
∑

p′∈P

αa
p,p′v

ϕ

t+1(p
′, zk

t+1)(ωk )
)

with the same initialization

v
ϕ

T (p, z
k
T )(ωk ) = rT (p, z

k
T ) for all p ∈ P



Illustration Bermudan Put

confidence LSM LSM

S0 σ maturity interval mean se

36 0.2 1 [4.4763, 4.4768] 4.472 .0100

36 0.2 2 [4.8296, 4.8312] 4.821 .0120

36 0.4 1 [7.0989, 7.0992] 7.091 .0200

36 0.4 2 [8.4965, 8.4968] 8.488 .0240

38 0.2 1 [3.2481, 3.2489] 3.244 .0090
38 0.2 2 [3.7355, 3.7370] 3.735 .0110

38 0.4 1 [6.1451, 6.1452] 6.139 .0190

38 0.4 2 [7.6580, 7.6583] 7.669 .0220

40 0.2 1 [2.3119, 2.3129] 2.313 .0090

40 0.2 2 [2.8765, 2.8776] 2.879 .0100

40 0.4 1 [5.3093, 5.3094] 5.308 .0180



Illustration Bermudan Put

confidence LSM LSM

S0 σ maturity interval mean se

40 0.4 1 [5.3093, 5.3094] 5.308 .0180

40 0.4 2 [6.9075, 6.9077] 6.921 .0220

42 0.2 1 [1.6150, 1.6158] 1.617 .0070

42 0.2 2 [2.2053, 2.2060] 2.206 .0100

42 0.4 1 [4.5797, 4.5798] 4.588 .0170

42 0.4 2 [6.2351, 6.2354] 6.243 .0210

44 0.2 1 [1.1081, 1.1087] 1.118 .0070
44 0.2 2 [1.6836, 1.6843] 1.675 .0090

44 0.4 1 [3.9449, 3.9450] 3.957 .0170

44 0.4 2 [5.6324, 5.6326] 5.622 .0210



Swing option numerical results

CSS MH

Position confidence confidence

(Rights + 1) interval interval

2 [4.737, 4.761] [4.773, 4.794]

3 [9.005, 9.031] [9.016, 9.091]

4 [13.001, 13.026] [12.959, 13.100]

5 [16.805, 16.830] [16.773, 16.906]

6 [20.465, 20.491] [20.439, 20.580]

11 [37.339, 37.363] [37.305, 37.540]
16 [52.694, 52.718] [52.670, 53.009]

21 [67.070, 67.095] [67.050, 67.525]

31 [93.811, 93.835] [93.662, 94.519]



Swing option numerical results

CSS MH

Position confidence confidence

(Rights + 1) interval interval

41 [118.639, 118.663] [118.353, 119.625]

51 [142.059, 142.084] [141.703, 143.360]

61 [164.368, 164.392] [163.960, 166.037]

71 [185.757, 185.781] [185.335, 187.729]

81 [206.362, 206.386] [205.844, 208.702]

91 [226.284, 226.308] [225.676, 228.985]

101 [245.601, 245.625] [244.910, 248.651]



Asset liquidation: Position control

Remember: p ∈ P is the number of asset units. Actions are

A = {0, . . . ,amax} × {1} ∪ {0, . . . ,amax} × {2}

with the interpretation that (a,1), (a,2) stand for the limit and
market order of size a = 0, . . . ,amax respectively.



Asset liquidation: Position control

For illustration, we use

1 Limit orders: α
(a,1)
p,(p−a)∨0

=







0.3 if a = 1;
0.2 if a = 2;
0.1 if a = 3;

and

α
(a,1)
p,p = 1 − α

(a,1)
p,(p−a)∨0

.

2 Market orders: α
(a,2)
p,(p−a)∨0

=







1 if a = 1;
0.9 if a = 2;
0.8 if a = 3;

and

α
(a,2)
p,p = 1 − α

(a,2)
p,(p−a)∨0

.



Asset liquidation: Spread evolution

We model it as auto-regression and realize as the first

component (Z
(1)
t )t∈N of the linear state space process (Zt)t∈N

defined by the recursion

[

Z
(1)
t+1

Z
(2)
t+1

]

︸ ︷︷ ︸

Zt+1

=

[
−φ σNt+1

0 1

]

︸ ︷︷ ︸

Wt+1

[

Z
(1)
t

Z
(2)
t

]

︸ ︷︷ ︸

Zt

,

[

Z
(1)
0

Z (2)

]

=

[
z0

1

]

where (Nt)t∈N is an iid sequence.



Asset liquidation: Reward functions

are given by

rt(p, z,a) = −gt(bt − p)− (µ+ z(1))(a2 − 1), t = 0, . . . ,T − 1

rT (p, z) = −gT (bT − p).

where −(µ+ z(1))(a2 − 1) is a loss from crossing the spread

when placing market order a2 = 2

where gt(bt − p) is a penalty on the deviation bt − p of the

current long position p from a pre-determined benchmark level

bt ∈ R.

we use different time-dependent penalizations



CSS Lower Bound Upper Bound
γt z0 Point Range Point Range Point Range

1 -1 -26.9405 -6.0797 -26.8207(.0124) -5.9593(.0124) -26.8203(.0124) -5.9579(.0121)
0 -28.7044 -7.8424 -28.5869(.0121) -7.7243(.0121) -28.5865(.0121) -7.7231(.0118)
1 -27.4605 -6.6270 -27.3505(.0128) -6.5169(.0128) -27.3500(.0128) -6.5158(.0125)

1
50

t -1 -15.7198 -4.2042 -15.5985(.0124) -4.0832(.0124) -15.5971(.0124) -4.0822(.0120)

0 -17.0048 -5.5145 -16.8850(.0121) -5.3955(.0121) -16.8833(.0121) -5.3944(.0117)
1 -15.9406 -4.4212 -15.8275(.0127) -4.3092(.0127) -15.8260(.0127) -4.3082(.0124)

1
20

t -1 -29.4207 -6.3232 -29.3147(.0110) -6.2028(.0110) -29.3140(.0110) -6.2017(.0123)

0 -30.8077 -7.7448 -30.7045(.0105) -7.6270(.0105) -30.7037(.0105) -7.6260(.0120)
1 -29.6721 -6.5819 -29.5759(.0112) -6.4709(.0112) -29.5752(.0112) -6.4698(.0127)



Conclusion

for switching problems,

there is similarity to optimal stopping since stochastic

dynamics is uncontrolled

an adaptation of duality estimates is possible

instead of martingale, we have a family of martingale

increments

we provide a unified view on variance reduction and duality

we suggest constructing martingale increments from

approximate solution

we obtain tight bounds for practical problems



Thank you!


