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Motivation

Consider a standard asset pricing factor model:

E [Rk ,t ] = β0kλ,

where

Rk ,t is the excess return of stock k at time t.

βk is the vector of factor loadings of stock j w.r.t. a set of factors.

λ is the vector of risk premia.

There are two ways developed in the literature to test the model:

Time-series tests.

Cross-sectional tests.

Today�s talk will focus on time-series tests.
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Time-series factor model

Assume that excess return of a given asset/porfolio k (k = 1, ...,M) at
time t is given by:

Rk ,t = αk + β0k ft + εk ,t ,

where

Rk ,t - excess return of the k�th asset/portfolio.

ft 2 RJ - vector of J tradeable factors (and so observed).

εk ,t - idiosyncratic error satisfying E [εk ,t jft ] = 0.
αk - intercept.

βk 2 RJ - vector of J factor loadings.
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Time-series factor model

Asset pricing hypothesis of factor model:

H0 : αk = 0, k = 1, ...M.

Usual tests are based on OLS estimates; see e.g. Gibbons, Ross and
Shanken (1989) [GRS]:

Permits joint tests across assets (k = 1, ...M).
Sampling variation of the alpha estimate is a¤ected by the sampling
variation of the beta estimate.
F -type tests of H0 follow χ2-distributions.
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Conditional Factor Model

Suppose the factor loadings, βk , are time-varying.

Strong empirical evidence that this is indeed the case even at
portfolio level - see e.g. Fama and French (1997), Lewellen and Nagel
(2006), Ang and Chen (2006).

Time variation in factor loadings distorts standard GRS-type factor
model tests.

As such, traditional statistical inference for the validity of a factor
model is in general misleading.
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Conditional Factor Model

In the case with time-varying betas, the following approaches have been
taken:

Instrument the betas (Shanken, 1990; Ferson and Harvey, 1991,
1993):

βt = a+ B
0Xt ,

for a set of observed instruments Xt .
Estimated factor loadings are very sensitive to the choice of Xt and
many instruments are only available at coarser frequencies.
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Conditional Factor Model

Latent variable Model (Ang and Chen, 2006):

βt = a+ B
0βt�1 + zt .

Relies on correct speci�cation of the dynamics of the betas;
computationally and statistically hard to estimate when dim (βt )
"large".

Rolling-window estimation (French, Scwert and Stambaugh, 1987;
Andersen et al, 2006; Lewellen and Nagel, 2006):
Estimate βt by OLS over (small) subsamples.

What is the correct (optimal) choice of the subsample size (aka
window width)?
No formal testing procedure of conditional factor model.
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Our contributions

New class of rolling-window estimators:
We develop nonparametric estimators of both conditional alphas and
betas given high-frequency data.
Estimators are on closed form and so simple to implement.
We also develop estimators of so-called long-run alphas and betas.

New tests of asset pricing hypothesis:
Given estimators, we propose new tests of H0 that are robust to
time-variation in alphas and betas.
In the case of constant betas and homoskedasticity, our tests collapse
to GRS.

New test for constancy of alphas and betas.
Inferential Tools:
Derive joint distributions of conditional and long-run estimates.
Derive distributions of test statistics.
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Application

Decile portfolios of stocks sorted on book-to-market ratios and past
returns (momentum).

Estimate conditional one-factor market model and conditional
three-factor Fama-French model.

Findings:

Reject that betas are constant.
Long-run alphas are jointly signi�cantly di¤erent from zero for both
models and in both sets of portfolios.
Find little evidence that conditional market betas increase during "bad"
times.
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Discrete-time model

Suppose we have observed assets and factors at n time points in the time
interval [0,T ],

0 < t1 < t2 < ... < tn < T .

Data comes from the factor model

Rti = α (ti ) + β (ti )
0 fti +Ω1/2 (ti ) zti .

Rt = (R1,t , ...,RM ,t )
0 is a vector of M excess returns.

ft = (f1,t , ..., fJ ,t )
0 is a vector of J factors.

α (t) = (α1 (t) , ..., αM (t))
0 is a vector of M time-varying intercepts.

β (t) = (β1 (t) , ..., βM (t))
0 is a (J �M)-matrix of time-varying

factor loadings.

Ω (t) is a (M �M) covariance matrix.
zt = (z1,t , ..., zM ,t ) satis�es E [zt jft ] = 0 and E [ztz 0t jft ] = IM .
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Hypotheses of interest

We are interested in testing

H0 : α (t) = 0 for all t.

We are also interested in testing a weaker hypothesis saying that the
alphas may be non-zero in the short-run but zero in the long-run.

Long-run alphas and betas:

αLR � lim
n!∞

1
n

n

∑
i=1

α(ti ), βLR � lim
n!∞

1
n

n

∑
i=1

β(ti ).

A weaker version of H0 is then

HLR : αLR = 0.

Ang and Kristensen (Columbia & UCL) Conditional Factor Models November 2011 11 / 32



Hypotheses of interest

We are interested in testing

H0 : α (t) = 0 for all t.

We are also interested in testing a weaker hypothesis saying that the
alphas may be non-zero in the short-run but zero in the long-run.

Long-run alphas and betas:

αLR � lim
n!∞

1
n

n

∑
i=1

α(ti ), βLR � lim
n!∞

1
n

n

∑
i=1

β(ti ).

A weaker version of H0 is then

HLR : αLR = 0.

Ang and Kristensen (Columbia & UCL) Conditional Factor Models November 2011 11 / 32



Hypotheses of interest

We are interested in testing

H0 : α (t) = 0 for all t.

We are also interested in testing a weaker hypothesis saying that the
alphas may be non-zero in the short-run but zero in the long-run.

Long-run alphas and betas:

αLR � lim
n!∞

1
n

n

∑
i=1

α(ti ), βLR � lim
n!∞

1
n

n

∑
i=1

β(ti ).

A weaker version of H0 is then

HLR : αLR = 0.

Ang and Kristensen (Columbia & UCL) Conditional Factor Models November 2011 11 / 32



Hypotheses of interest

We are interested in testing

H0 : α (t) = 0 for all t.

We are also interested in testing a weaker hypothesis saying that the
alphas may be non-zero in the short-run but zero in the long-run.

Long-run alphas and betas:

αLR � lim
n!∞

1
n

n

∑
i=1

α(ti ), βLR � lim
n!∞

1
n

n

∑
i=1

β(ti ).

A weaker version of H0 is then

HLR : αLR = 0.

Ang and Kristensen (Columbia & UCL) Conditional Factor Models November 2011 11 / 32



Conditional estimator

Rewrite model as

Rti = γ (ti )
0 Xti +Ω1/2 (ti ) zti ,

γ (t) = (α (t) , β (t)) , Xti =
�
1, f 0ti

�0
.

Local OLS: To obtain a consistent estimator of γ (t) at some given
value t, we modify the OLS estimator to only include relevant
information.

Suppose that t 7! γ (t) is slowly varying (continuous). Then
observations in a small time window around t will be informative
about γ (t).
Kernel-weighted OLS: For a given time point t 2 [0,T ],

γ̂ (t) =

"
n

∑
i=1
K
�
ti � t
hT

�
XtiX

0
ti

#�1 " n

∑
i=1
K
�
ti � t
hT

�
XtiR

0
ti

#
,

where the function K is a kernel (density) and h > 0 is a band- or
window-width.
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Conditional estimator

γ̂ (t) =

"
n

∑
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K
�
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hT

�
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0
ti

#�1 " n

∑
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K
�
ti � t
hT

�
XtiR

0
ti

#
.

Our estimator is simply a weighted least-squares estimator!

The kernel K and the bandwidth h > 0 jointly determine how much
weight should be given to individual observations in the weighted
least-squares estimator.

If K is chosen as the uniform density on [�1/2, 1/2],

γ̂ (t) =

"
∑

i :jti�t j�hT /2
XtiX

0
ti

#�1 "
∑

i :jti�t j�hT /2
XtiR

0
ti

#
.

Thus, our estimator can be seen as a generalization of
rolling-window/realized covariance estimators.
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Conditional estimator

Small bandwidth: Only observations very close to t are used to
estimate γ (t). As h! 0,

γ̂ (t) �
�
XtX 0t

��1 �XtR 0t �

Large bandwidth: All observations are used to estimate γ̂ (τ). As
h! ∞,

γ̂ (t) � γ̂OLS.
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Long-run estimator

To estimate the long-run alphas and betas, we simply plug in the
conditional estimates that we have just proposed:

α̂LR �
1
n

n

∑
i=1

α̂(ti ), β̂LR �
1
n

n

∑
i=1

β̂(ti ).
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Continuous-time model

For the theoretical analysis of the proposed estimators, we introduce a
continuous-time version of the discrete-time factor model:

ds (t) = α (t) dt + β (t)0 dF (t) + Σ1/2 (t) dBs (t) ,

dF (t) = µF (t) dt +Λ1/2
FF (t) dBF (t) .

s (t) - observed M asset prices.

F (t) - observed J factors.

Bs (t) and BF (t) are standard Brownian motions.

This is the ANOVA model considered in Andersen et al. (2006) and
Mykland and Zhang (2006).
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Continuous-time model

Let ∆ � ti � ti�1 be the (constant) time distance between the
individual observations from the continuous-time version.

De�ning

Rti =
s (ti )� s (ti�1)

∆
, fti =

F (ti )� F (ti�1)
∆

,

the continuous-time model implies that (as ∆ ! 0)

Rti � α (ti ) + β (ti )
0 fti +Ω1/2 (ti ) zti ,

where zti � N (0, IM ) and Ω (t) = Σ (t) /∆.
Natural estimators of α (t) and β (t) therefore take on the same form
as the discrete-time estimators.

In particular, β̂ (t) is simply a localized version of the well-known
realized beta estimator considered by Andersen et al (2006) and
Mykland and Zhang (2006).
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Properties of conditional beta estimator

Extending the arguments in Kristensen (2010), as ∆ ! 0:

E [β̂ (t)] ' β (t) + (hT )2 β(2) (t) ,

Var(β̂ (t)) ' 1
nh
� κ2Λ�1

FF (t)
 Σ (t) ,

where β(2) (t) = 2nd derivative of β (t) and κ2 =
R
K 2 (z) dz .

In particular, as nh! ∞ and nT 4h5 ! 0:
p
nhfβ̂ (t)� β (t)g � N

�
0, κ2Λ�1

FF (t)
 Σ (t)
�

in large samples.

Slower rate of convergence than parametric estimators:
p
nh versusp

n. Do not need T ! ∞.
Properties are similar to those of other nonparametric estimators in
di¤usion models; see e.g. Bandi and Phillips (2003), Kanaya and
Kristensen (2010), and Kristensen (2010).
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Properties of conditional alpha estimator

We show that as ∆ ! 0:

E [α̂ (t)] ' α (t) + (Th)2 α(2) (t) , Var (α̂ (t)) ' 1
Th
� κ2Σ (t) .

Bias is of same order as for β̂(t), but variance vanishes slower,
1/(Th) versus 1/(nh).
The slower rate of convergence of Var(α̂(t)) is a well-known feature
of nonparametric drift estimators in di¤usion models, as in Bandi and
Phillips (2003), and is due to the smaller amount of information
regarding the drift relative to the volatility found in data.
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Properties of conditional alpha estimator

Bias and variance of α̂ (t) are perfectly balanced. To remove the bias,
we have to let Th! 0, but with this bandwidth choice the variance
explodes.

Consequence: Not possible to state formal results regarding the
asymptotic distribution of α̂ (t). However, informally, with h chosen
"small enough" such that the bias is negiglible, we have

p
Thfα̂ (t)� α (t)g � N (0, κ2Σ (t)) in large samples.

To formalize the above statement, one can impose that

α (t) = a(t/T ) and Σ (t) = S (t/T ) .

This is similar to the time normalization used in the analysis of
break-point estimators.
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Properties of estimators of LR versions

While it is in general not possible to consistently estimate conditional
(short-run) alphas, we can still estimate the long-run (LR) versions
without any time normalization.

We show that, as h! 0 at a suitable rate:
p
T (α̂LR� αLR) � N (0,ΣLR,αα) ,

p
n(β̂LR� βLR) � N

�
0,ΣLR,ββ

�
.

LR estimators converge at standard parametric rates,
p
n and

p
T

respectively. This is due to the additional smoothing taking place
when we average over the preliminary short-run estimates.

We can test HLR : αLR = 0 by the following Wald-type statistic:

WLR = T α̂0LRΣ̂�1LR,ααα̂LR � χ2M in large samples.
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Testing for constant alphas and betas

Hk (α) : αk (t) = αk 2 R, for all t 2 [0,T ] ,
Hk (β) : βk (t) = βk 2 RJ , for all t 2 [0,T ] .

Under either hypothesis, the corresponding LR estimator is a
consistent.

So a natural way to test the two hypotheses is by comparing the LR
and SR estimators:

Wk (α) � 1
n

n

∑
i=1

σ̂�2kk (ti ) [α̂k (ti )� α̂LR,k ]
2 ,

Wk (β) � 1
n

n

∑
i=1

σ̂�2kk (ti )
�
β̂k (ti )� β̂LR,k

�0
Λ̂FF (ti )

�
βk (ti )� β̂LR,k

�
.

For suitable location and scale parameters (given in paper):

Wk (α)�m (α)
v (α)

� N (0, 1) , Wk (β)�m (β)
v (β)

� N (0, 1) .
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Testing factor model

The factor model hypothesis,

H0 : α (t) = 0 2 R, for all t 2 [0,T ] ,

is nested within the hypothesis of constant alphas. Thus, we can test
H0 by

W0 �
1
n

n

∑
i=1
[α̂ (ti )� α̂LR]

0 Σ̂�1 (ti ) [α̂ (ti )� α̂LR]

It then follows that (with m0 and v0 given in the paper):

W0 �m0
v0

� N (0, 1) .
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Choice of kernel and bandwidth

We use a two-sided symmetric kernels because the bias is smaller
than for one-sided �lters as used by Andersen et al. (2006) and
Lewellen and Nagel (2006).

Two di¤erent bandwidths needed for conditional and long-run
estimates as the two converge at di¤erent rates.

Bandwidth for conditional estimates selected using a two-step plug-in
method which minimizes RMSE. Prior is that betas for portfolios vary
slowly and the plug-in method accommodates this prior information.

Bandwidth for long-run estimates scales down the conditional
bandwidth by T�1/3 since minimizing RMSE for long-run estimates
requires a bandwidth of order O

�
T�1/3�.
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Application - data

Data is at the daily frequency from July 1963 to December 2007.

Returns: Two types of portfolios constructed by Kenneth French.

Decile portfolios sorted by book-to-market ratios.

Decile portfolios sorted on past returns (momentum).

�book-to-market strategy� - 10-1 decile portfolio that goes long value
stocks and shorts growth stocks.
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Application - data

Factors: Fama and French (1993) factors,

MKT - excess return of market portfolio.

SMB - small-big return spread.

HML - high-low return spread.

We only present empirical results for the CAPM version with ft = MKT .
See paper for results on the three-factor model.
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Short-run (conditional) alpha estimates
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Conditional Alphas Growth (Annualized)
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Long-Run alpha estimates
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Short-Run (conditional) Betas
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Short-run betas and recessions
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Characterizing Conditional Value-Growth Betas
I II III IV V

Dividend yield 4.55* 16.5**

Default spread -1.86

Industrial production 0.18

Short rate -7.33**

Term spread -3.96

Market volatility -1.38** -0.96*

cay -0.74

NBER Recession -0.07*

Market risk premium 0.37*

Adjusted R2 0.06 0.15 0.55 0.01 0.06

Market risk premium = fitted predictive regression

following Petkova and Zhang (2005)
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Conclusion

New methodology for estimation and testing of regression
models with time-varying coe¢ cients.

Straightforward implementation and interpretation.

Formalises rolling window estimation procedures. In particular, we
develop a theory regarding choice of window width with corresponding
data-driven window width selection.

Application: Testing asset pricing models with time-varying
factor loadings.
Use data set constructed by Kenneth French.

Substantial time variation is found.

The APT is rejected in both the short and long run.
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Future Work

Extend methods to nonlinear dynamic models.

Forecasting.

Develop more rigorous bandwidth selection procedures
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