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Conférence FiME, 29 juin 2010



Mean field games and technology switch modeling

The player’s individual problem

I Space of states: Ω, time period [0,T ], initial distribrution of
agents is given: m0

I Controlled evolution of a player starting at x :
dX x

t = αtdt + σdWt

I α =control, Wt = standard Brownian motion

Individual problem of a player starting at x :

inf
α

E
[∫ T

0
L(X x

t , αt) + V [mt ](X x
t )dt + g [mT ](X x

T )

]
I Key Point: the criteria depends on the mean field mt , i.e.

the distribution of agents at time t

I From here one can get the MFG system (HJB and
Fokker-Planck PDEs)
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Optimization setting of MFG
I Particular case: ∃Φ,Ψ s.t. V = Φ′ and g = Ψ′

Optimal control of Fokker-Planck:{
inf
α

J(α) :=
∫ T

0

( ∫
Ω L(x , α)m(t, x)dx + Φ(mt)

)
dt + Ψ(mT )

∂tm − σ2

2 ∆m + div(αm) = 0 , m(0, .) = m0(.).

I The critical points verify the system (for H = L∗) :

(MFG) system

∂tm − σ2

2
∆m + div(m∇pH(.,∇v)) = 0 , m(0, .) = m0,

∂tv +
σ2

2
∆v + H(x ,∇v) = V (m) , v(T , .) = g(mT ).

I we consider a case where Φ is concave (non-uniqueness)
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The model: agents & costs

with J. Salomon and G. Turinici (M3AS, 2010)

I Stylized model

I Arbitrage between insulation and heating. Any player has an
insulation level x ∈ [0, 1] (x = 0: no insulation, x = 1:
maximal insulation)

I Controlled process : dX x
t = αtdt + σdWt + dNt(Xt), α→

insulation effort. Diffusion process with values in [0, 1].

I Insulation acquisition cost : L(x , α) = |α|2
2

I Aggregate state cost (concave with respect to m) :

Φ(m)(t) :=

∫ 1

0

(
p(t)(1− 0, 8x) +

c0x

c1 + c2m(t, x)

)
m(t, x)dx



Mean field games and technology switch modeling

The model: costs and global problem

I Heating cost: p(t)(1− 0, 8x), where p(t) is the unit price of
energy

I Insulation cost: c0x
c1+c2m(t,x) , increasing in x and decreasing in

m: scale effect and positive externalities. The agents
should do the same choice (attraction).

Minimization problem :

J(α) :=
∫ T

0

[∫ 1
0
α(t,x)2

2 m(t, x)dx + Φ(m)(t)
]

dt

+ Fokker-Planck PDE with Neumann boundary conditions
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Numerical method: discretization and monotonic algorithm

I Monotonic algorithms (have their roots in quantum control)

I J(α) :=
∫ T

0

[∫ 1
0
α(t,x)2

2 m(t, x)dx + Φ(m)(t)
]

dt

Concavity inequality leads to:

J(α′)− J(α) ≤
∫ T

0
∆(α′, α; t,m′,m) ·

(
α′ − α

)
dt

I The equation ∆(α′, α; t,m′,m) = −θ(α′ − α) has a solution
(∆(.) is of course explicit). This strategy gives the
monotonicity.

I Finite differences : Godunov scheme to preserve m ≥ 0

I More details in my PhD dissertation
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Test (1)
I Initial density is concentrated around 0.1 (agents consume

energy)
I The unit price of energy p(t) is time-dependent, it reaches a

peak before decreasing to its low level

Figure: Question: In such a situation, can we find two MF
equilibria, the first one being related to the expectation of a higher
insulation level, the second to the expectation of heating ?
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Test (2)

(a) solution with energy consumption
(no switch)

(b) solution involving insulation
(switch)
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Test (3) : interpretations

I A possible technology switch/transition

I Olson’s Paradox : The logic of collective action, Harvard UP,
1971

I Although self-interests could lead to a better (common
interest, consensual) situation, they can carry on another
equilibrium (switch or not to clean technologies, value of an
equilibrium)

I Group behavior, free rider phenomenon

I Non-uniqueness: low cost incentive policies




