Mean field games and technology switch modeling

Aimé Lachapelle

CEREMADE
Conférence FiME, 29 juin 2010

The player's individual problem

- Space of states: Ω, time period $[0, T]$, initial distribrution of agents is given: m_{0}
- Controlled evolution of a player starting at x : $d X_{t}^{x}=\alpha_{t} d t+\sigma d W_{t}$
- $\alpha=$ control, $W_{t}=$ standard Brownian motion

Individual problem of a player starting at x :

$$
\inf _{\alpha} \mathbb{E}\left[\int_{0}^{T} L\left(X_{t}^{x}, \alpha_{t}\right)+V\left[m_{t}\right]\left(X_{t}^{x}\right) d t+g\left[m_{T}\right]\left(X_{T}^{x}\right)\right]
$$

- Key Point: the criteria depends on the mean field m_{t}, i.e. the distribution of agents at time t
- From here one can get the MFG system (HJB and Fokker-Planck PDEs)

Optimization setting of MFG

- Particular case: $\exists \Phi, \Psi$ s.t. $V=\Phi^{\prime}$ and $g=\psi^{\prime}$

Optimal control of Fokker-Planck:

$$
\left\{\begin{array}{l}
\inf _{\alpha} J(\alpha):=\int_{0}^{T}\left(\int_{\Omega} L(x, \alpha) m(t, x) d x+\Phi\left(m_{t}\right)\right) d t+\Psi\left(m_{T}\right) \\
\partial_{t} m-\frac{\sigma^{2}}{2} \Delta m+\operatorname{div}(\alpha m)=0, m(0, .)=m_{0}(.)
\end{array}\right.
$$

- The critical points verify the system (for $H=L^{*}$) :

(MFG) system

$$
\begin{gathered}
\partial_{t} m-\frac{\sigma^{2}}{2} \Delta m+\operatorname{div}\left(m \nabla_{p} H(., \nabla v)\right)=0, m(0, .)=m_{0}, \\
\partial_{t} v+\frac{\sigma^{2}}{2} \Delta v+H(x, \nabla v)=V(m), v(T, .)=g\left(m_{T}\right) .
\end{gathered}
$$

- we consider a case where Φ is concave (non-uniqueness)

The model: agents \& costs

 with J. Salomon and G. Turinici (M3AS, 2010)- Stylized model
- Arbitrage between insulation and heating. Any player has an insulation level $x \in[0,1](x=0$: no insulation, $x=1$: maximal insulation)
- Controlled process : $d X_{t}^{\times}=\alpha_{t} d t+\sigma d W_{t}+d N_{t}\left(X_{t}\right), \alpha \rightarrow$ insulation effort. Diffusion process with values in $[0,1]$.
- Insulation acquisition cost : $L(x, \alpha)=\frac{|\alpha|^{2}}{2}$
- Aggregate state cost (concave with respect to \mathbf{m}) :

$$
\Phi(m)(t):=\int_{0}^{1}\left(p(t)(1-0,8 x)+\frac{c_{0} x}{c_{1}+c_{2} m(t, x)}\right) m(t, x) d x
$$

The model: costs and global problem

- Heating cost: $p(t)(1-0,8 x)$, where $p(t)$ is the unit price of energy
- Insulation cost: $\frac{c_{0} x}{c_{1}+c_{2} m(t, x)}$, increasing in x and decreasing in m : scale effect and positive externalities. The agents should do the same choice (attraction).

Minimization problem :

$J(\alpha):=\int_{0}^{T}\left[\int_{0}^{1} \frac{\alpha(t, x)^{2}}{2} m(t, x) d x+\Phi(m)(t)\right] d t$

+ Fokker-Planck PDE with Neumann boundary conditions

Numerical method: discretization and monotonic algorithm

- Monotonic algorithms (have their roots in quantum control)
- $J(\alpha):=\int_{0}^{T}\left[\int_{0}^{1} \frac{\alpha(t, x)^{2}}{2} m(t, x) d x+\Phi(m)(t)\right] d t$

Concavity inequality leads to:

$$
J\left(\alpha^{\prime}\right)-J(\alpha) \leq \int_{0}^{T} \Delta\left(\alpha^{\prime}, \alpha ; t, m^{\prime}, m\right) \cdot\left(\alpha^{\prime}-\alpha\right) d t
$$

- The equation $\Delta\left(\alpha^{\prime}, \alpha ; t, m^{\prime}, m\right)=-\theta\left(\alpha^{\prime}-\alpha\right)$ has a solution $(\Delta($.$) is of course explicit). This strategy gives the$ monotonicity.
- Finite differences: Godunov scheme to preserve $m \geq 0$
- More details in my PhD dissertation
- Initial density is concentrated around 0.1 (agents consume energy)
- The unit price of energy $p(t)$ is time-dependent, it reaches a peak before decreasing to its low level

Figure: Question: In such a situation, can we find two MF equilibria, the first one being related to the expectation of a higher insulation level, the second to the expectation of heating ?

Test (2)

(a) solution with energy consumption (no switch)

(b) solution involving insulation (switch)

Test (3) : interpretations

- A possible technology switch/transition
- Olson's Paradox: The logic of collective action, Harvard UP, 1971
- Although self-interests could lead to a better (common interest, consensual) situation, they can carry on another equilibrium (switch or not to clean technologies, value of an equilibrium)
- Group behavior, free rider phenomenon
- Non-uniqueness: low cost incentive policies

