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Outline

I A short summary of the structural econometrics literature of
auction data with a special emphasis on how to deal with
incomplete data

I then I will consider anonymous data which is the specific
form of incomplete data I am interested in.

I I will present mostly the unpublished parts (and related
research) of a previous working paper entitled “The
Econometrics of Auctions with Asymmetric Anonymous
Bidders”, part of which just appeared under the same title in
the Journal of Econometrics.

I More precisely: the part on testing procedures.

I I will talk a bit about identification (but not on estimation
which is the main part of the published paper).



Pure private value auction model

A model is a pair (F, γ), where F is a family of joint distributions
(corresponding to the latent random private values), γ is a mapping
(capturing the equilibrium prediction) γ : F → H where H is a family of
joint distributions (corresponding to the observable bids).
First issue : can we identify (nonparametrically) private values
from the bids ? In other words: is the function γ injective ?

I Estimation of F (identification can be vacuous if estimators
performs very poorly as it can be the case with nonparametric setup
due to the curse of dimensionality)

I Tests on F (e.g., are some bidders symmetric ? or are some bidders
stronger than others ?)

I Testing the model itself (is the function γ surjective ?)



Two kinds of difficulties

I The link between bids and values, i.e. we may not observe bidders
values directly as in first-price auctions. Seems the most
problematic point for identification but it is not necessarily the case
(however it can be highly problematic for estimation)

I In second-price or English (ascending) auctions, bids are equal to
values but we often do not observe the full set of bids: this is the
incomplete data problem which raises identification issues.

Next, I consider only second-price auction to focus solely on this last
aspect.



Some practical example

In many environment we do not observe all bids and all identities:

I In open auction (intrinsic incompleteness): in the Dutch auction we just observe
the winning bid, in the English auction the bid that the winner would have made
is not observed.

I In some auction data set (especially procurement), only the two highest bids are
disclosed. Furthermore, we may not observe also the number of participant

First lesson: we often observe only a limited set of order-statistics of the bids.

I Bidders identities may be not recorded in the data set: confidential data or lost.
Some bids remains confidential: on eBay the bid of the winner is not disclosed!

I the identities of non-winning bidders are often not disclosed to weaken the
sustainability of cooperative agreements. (French timber auctions by ONF but
also typically the case in daily auctions e.g. in electricity markets)

I Bids may be structurally anonymous due to the vacuous nature of bidders’
identities, e.g. in internet auctions. (if the seller bids on his own item, it will be
through a false-name since it is forbidden)

Second lesson: bids are often anonymous



Identification of the symmetric IPV model in the second
price auction: some (basic) results

IPV: bidders valuations are i.i.d.

I If the number of bidders is fixed. The model is identified from a
single order-statistic B i :n.

FB i :n(y) =
n!

(n − i)!(i − 1)!

∫ FB (y)

0

un−i (1− u)i−1du

I If the number of bidders is unknown and stochastic. The model is
identified from two order-statistic (Song, 2004). Let k2 > k1 the
order statistic that we observe, then denote by pk2|k1

(y |x) be the

density of the k th
1 highest value Y conditional on X the k th

2 highest
value. It corresponds to the k1 highest draw among k2 − 1 variables

that are drawn according to the distribution F (y)−F (x)
1−F (x) on [x , x ]. We

are back to the previous case.



Identification of the asymmetric IPV model in the second
price auction: some results

AIPV: bidders valuations are drawn independently but may be
asymmetric.

I If the set of bidders is known (and bidders supports are the same)
then the model is identified from a single order-statistic (useful for
Dutch auctions e.g.).

I This is an application of the competing risk problem (Meilijson 81,
Journal of Applied Probability). A machine is made of n
components i = 1, . . . , , n. The lifetime of each component is Xi is
not observable to the statistician. Let W be the lifetime of the
machine and I the set of component that are broken at time W
(the result of the autopsy of the machine).



Illustration: the English auction

Let F j
2:n the CDF of the price conditional on the winner of the auction

being j . For j = 1, · · · , n, those CDFs are observed.

I We obtain a system of ‘Pfaffian integral equations’ : for any j ∈ N

∏
i 6=j

Fi (w) =

∫ w

0

(1− Fj(u))−1dF j
2:n(u)

I This system has a unique solution.

I Identification from a single order-statistic relies crucially on the fact
that bids are non-anonymous !

I Comment: difficulty to estimate the lower tail of the bid distribution
if we observe only top order statistics.



Identification of the asymmetric IPV model in the second
price auction: anonymous data

I My main identifiability result: the asymmetric IPV model is
identified from the full vector of bids without observing the
identities of the bidders.

I A non linear inverse problem (non standard a priori?)



Preliminary intuition: The two coins example.

Consider two different coins with probability p1, p2 for Head
((1− p1), (1− p2) for Tail) respectively. Consider we observe a
infinite sequence of joint realizations where each coin realization is
supposed to be independent from the other one.

I We observe p(H,H), p(T ,T ) and p(H,T ) with the
constraint that p(H,H) + p(T ,T ) + p(H,T ) = 1

I By independence, we have: p(H,H) = p1 · p2 and
1 + p(H,H)− p(T ,T ) = p1 + p2

I A non-linear system of two equations-two unknowns.

I The system has a unique solution: the roots of the polynomial
X → a · X 2 + b · X + c where a = 1,
b = 1 + p(H,H)− p(T ,T ) and c = p(H,H)

I the model is thus identified.



The asymmetric IPV model is identified: two
reparametrizations.

Notation: let F k:p
B the CDF of the k order statistic of a vector of p elements taken at

random among the n elements taken from the vector of bids B. E.g. F k:n
B is the CDF

of kth order statistic. Let FBi
the CDF of bidder i values.

Under independence, we have the following nonlinear system of n equations with n
unknowns:

F
(1:1)
B (b) =

1

n
·

nX
i=1

FBi
(b)

F
(2:2)
B (b) =

1

n(n − 1)
·

X
i1,i2,i1 6=i2

FBi1
(b) · FBi2

(b)

.. .

F
(r :r)
B (b) =

1

n(n − 1) · · · (n − r + 1)
·

X
i1,·,ir ,ik 6=i

k′

Y
ik∈{i1,·,in}

FBik
(b)

.. .

F
(n:n)
B (b) =

1

n!
·

X
i1,·,in,ik 6=i

k′

Y
ik∈{i1,·,in}

FBik
(b)

(1)

where F
(k:k)
B (b) is obtained by a recursive use of the formula (valid for exchangeable

variables)

n − r

n
F

(r :n)
B (u) +

r

n
F

(r+1:n)
B (u) = F

(r :n−1)
B (u), ∀u, r ≤ n − 1 (2)



The two reparametrizations.

I The second one is linear. The corresponding matrix is
triangular with positive number on the diagonal. Thus
invertible [and also differentiable]

I The first reparametrization is non linear. Nevertheless it is
invertible [and differentiable only on points where “bidders
fully asymmetric”].

(FBi
(b))i=1,··· ,n = Υ(cn.F

(n:n)
B (b), · · · , c1.F

(1:1)
B (b)) where Υ

corresponds to the bijection between the n roots or a monic
polynomial of degree n and its n coefficients.

I Let Υ : [0, 1]n → Zn be the function such that
(ω1, · · · , ωn) = Υ(a0, · · · , an−1) (where ω1 ≥ · · · ≥ ωn) is the
ordered vector of the roots (possibly complex number)
counted with their order of multiplicity of the polynomial
Q(u) = un +

∑n−1
i=0 ai · (−1)n−iui , i.e. Q(u) =

∏n
i=1 (u − ωi ).



The asymmetric IPV model is identified.

I We have proved that for any bid b, the vector FBi
(b),

i ∈ [1, n] is identified up to a permutation (generalization of
the result with two coin to n coins). Furthermore, it gives a
path for estimation

I If the maps FBi
do not cross and since those map have to be

continuous, then there is a unique solution up to a
permutation for the CDFs FBi

, i ∈ [1, n]

I In general, i.e. with some intersections (or crossing points),

the observation of the CDFs F
(k:n)
B , k ∈ [1, n] is not sufficient

to recover the CDFs FBi
, i ∈ [1, n] in a unique way.

I But if the joint vector of bids, FB , is observed then we can
distinguish the different solution generated by the
intersections.





How to test the symmetry structure ?

Why ?: It is a key output before running the estimation
procedures that I develop since they perform badly if some bidders
are symmetric and that we do not take into account the symmetry
(because the Jacobian of Υ is non invertible). Testing is a key
step before estimation !

I A polynomial with real roots P(X ) of degree n has the root

structure (k1, · · · , kr(P)) where
∑r(P)

i=1 ki = n and

k1 ≥ · · · ≥ kr(P) ≥ 1 if P(X ) =
∏r(P)

i=1 (X − xi )
ki for some

{xi}i=1,··· ,r(P) such that xi 6= xj for all i , j . The integer r(P) is
the number of distinct roots.

I there is a literature on applied math on testing roots (but
without any statistical perspective). We will briefly recall
useful elements from this literature and then put statistics on
top of it.



Some elements on generalized discriminants

The Discrimination matrix of the monic polynomial
Q = X p +

∑p−1
i=0 ai .X

i is the (2p + 1)× (2p + 1) matrix:

Discr(Q) =



1 ap−1 ap−2 · · · a0

0 p (p − 1)ap−1 · · · a1

1 ap−1 · · · a1 a0

0 p · · · 2.a2 a1

· · · · · ·
· · · · · ·

1 ap−1 · · · a0

0 p · · · a1

1 ap−1 · · · a0


.



Some elements on generalized discriminants

I For k ∈ [1, n], let ∆(P, k) denote the determinant of the
submatrix formed by the first 2k rows and the first 2k
columns of Discr(P). The numbers ∆(P, k) are also called
generalized discriminants.

I Denote by P(i) the i th derivative of the polynomial P (with
P(0) = P).

I Note that the generalized discriminants ∆(P(i), k) are
polynomial functions of the coefficients of the primitive
polynomial P.



Lemma 1: Corollary of Theorem 2.1 in Yang (J.
Symbolic Computation)

A polynomial with real roots P has r(P) distinct real roots if and only if
∆(P, k) > 0 for k ≤ r(P) and ∆(P, k) = 0 for k > r(P)

Lemma 2

The polynomial P has the root structure (k1, · · · , kr(P)) if and only if the

number of distinct roots of the polynomials P(i) is given by

ρ(i) = n − i −
∑r(P)

j=1 (kj − 1− i)+ for i = 1, · · · , n − 2.

Combining the two previous lemmas we obtain:

Proposition

A polynomial with real roots P has the root structure (k1, · · · , kr(P)) if
and only if, for any i ∈ [0, n − 2],{ ∆(P(i), k) > 0 for 1 ≤ k ≤ ρ(i)

∆(P(i), k) = 0 for ρ(i) < k ≤ n − i ,
(3)

where ρ(i) = n − i −
∑r(P)

j=1 (kj − i − 1)+.



Statistical tests on bidders private values

Coming back to our framework, the probabilities
(FB∗

i ,Z(b, z))i=1,··· ,n are corresponding exactly to the n roots of the

polynomial P(b,z) of degree n: u →
∑n

i=0 ai (b, z) · (−1)n−i · ui ,
where an(b, z) = 1 and

ai (b, z) = n(n−1)···(i+1)
(n−i)! · F (n−i :n−i)

B,Z (b, z) · (fZ(z))n−i−1 for i < n.
For a given bid b and a given set of covariates z , the root structure

is characterized by the generalized discriminants ∆(P
(i)
b,z , k), which

can be easily estimated by their sample analogs

∆̂(P
(i)
b,z , k) = ∆(P̂

(i)
b,z , k) where P̂b,z is the sample analog of the

polynomial Pb,z , i.e. with ai (b, z) being replaced (for i < n) by

âi (b, z) = n(n−1)···(i+1)
(n−i)! · F̂ (n−i :n−i)

B,Z (b, z) · (f̂Z(z))n−i−1.



Statistical tests on bidders private values

Then various testing statistics can be build to test for some
underlying root structure. Popular examples are:

I Kolmogorov-Smirnov-type (KS) tests based on suprema, i.e.

based on Supb,z∆̂(P
(i)
b,z , k)

I Tests based on means, i.e. based on weighted expectations of

∆̂(P
(i)
b,z , k).

My Monte Carlo simulations have shown that tests based on
means outperforms Kolmogorov-Smirnov-type (KS) tests.



Testing symmetry

We develop next a test for full symmetry against the alternatives of
some asymmetry. In this case, the discrimination system reduces to
a single equation as stated below and can thus be easily tested
with standard one-sided tests (on the contrary, we can not provide
analytic formulas for tests involving multiple nonlinear inequality
constraints).

Corollary

A polynomial with real roots P of degree n has the root structure
(n) if and only if ∆(P, 2) = 0. If P has some distinct roots, then
∆(P, 2) > 0.

Note that we are allowing covariates.



Testing symmetry

H0 (full symmetry) : FB∗
1 ,Z(., .) = · · · = FB∗

n ,Z(., .)

H1 (some asymmetry) : FB∗
i ,Z(b, z) 6= FB∗

j ,Z(b, z),

for some i and j on a positive measure of b and z . The discriminant
∆(P, 2) is equal to

n2(n − 1)
(
(F

(1:1)
B,Z (b, z))2 − F

(2:2)
B,Z (b, z) · fZ(z)

)
. From corollary [1], our

testing hypothesis can be written as:

H0 (full symmetry) : H = 0

H1 (some asymmetry) : H > 0,

where H =
∫ ∫ (

(F
(1:1)
B,Z (b, z))2 − F

(2:2)
B,Z (b, z) · fZ(z)

)
dF

(1:1)
B,Z (b, z). A

straightforward calculation gives H as a function of (FB∗
i ,Z(b, z))i=1,··· ,n:

H =

Z Z
1

2n2(n − 1)
.

nX
i=1

nX
j=1

“
FB∗i ,Z(b, z)− FB∗j ,Z(b, z)

”2
d

 
1

n
.

nX
i=1

FB∗i ,Z(b, z)

!
.



Testing symmetry

The sample analog of H is

Ĥ =
1

Ln

L∑
t=1

n∑
k=1

(
[F̂ (1:1)(X t

k ,Z t)]2 − F̂ (2:2)(X t
k ,Z t).f̂Z(Z t)

)
.

After a tedious calculation with U-statistics:

Proposition

Suppose that KFBp|Z
and KfZ are kernels and hFBp|Z

and hfZ converges to
zero as L →∞.

√
L.

(
Ĥ − H

)
→d N (0,Σ).

Under H0, we have Σ2 = EZ t [[f (Z t)]4]/(45n(n− 1)). Without covariates,
the expression of Σ2 is reduced to 1

45n(n−1) .



Testing symmetry

I Define the test statistic: t =
√

L. bH√cΣ2
, where

Σ̂2 = 1
45n(n−1) ·

1
L

∑L
l=1 [f̂ (Zl)]

4 is the sample analog of Σ2.

I Σ̂2 is a consistent estimate of Σ2 converging at the rate
√

L with
some covariates. Without covariates, Σ2 is known.

Two main questions:

1. Are asymptotic approximations accurate for small data sets under
H0?

2. Has the test enough power to reject the null under H1 ?

The answer is yes in both cases.



Testing symmetry

L = 40 L = 200
n 2 4 6 2 4 6
share of p-values < 10% 0.13 0.13 0.12 0.11 0.11 0.10
share of p-values < 5% 0.06 0.05 0.06 0.05 0.06 0.05

Table: Performance of the asymptotic version of the test based on the Means. 5000
replications for the simulated statistics.



Testing symmetry
Under the alternative H1, we have no tractable asymptotic approximation
for the standard deviation of the test statistic. However, the median of
the test statistic coincides asymptotically with the mean which is known.
Finally, we obtain the following corollary about the way to reach the
power 50%.

Corollary

Asymptotically, our test reject symmetry with a probability greater than
one half if and only if the variable H is greater than q1−αΣ√

L
.

Equivalently, it says that for a given degree of asymmetry H > 0, the
necessary size L∗ of the data to reject symmetry at the level α with

probability at least one half is approximately
(

q1−αΣ
H

)2

. Without

covariates, the expression simplifies to:

L∗ = q2
1−α ·

4(n − 1)

45n
·

 1

n2
.

n∑
i=1

n∑
j=1

E [
(
FB∗

i
(b)− FB∗

j
(b)

)2

]

−2

,

where the expectation is for b distributed according to the CDF∑n
i=1 FB∗

j
(.)/n.



Application of the previous result

I To gauge, what kind of asymmetries are the most difficult to detect.
Consider two kinds of bidders stang versus weak and a fixed number
of bidders n.

I Let k ∈ [1, n − 1] be the number of Strong bidders. Then the term

in bracket is equal to 2k(n−k)

n2 .
“
E [(FS (b)− FW (b))2]

”−2
. As a function

of k, this term is symmetric with respect to k = n/2: it is
decreasing from 1 to n/2 and then increasing. The ‘balanced’
panel with k = [n/2] is the best one to reject symmetry.

I Numerical application with data taken from Flambard and Perrigne
(2006): we obtain L∗ = 190 (L∗ = 115) for the 5% level (10% level)
when there are 3 weak and 3 strong bidders as in their dataset.
Those figures do not vary much when we slightly perturbate the
structure of the bidders. For 8 [resp. 4] bidders while 4 [resp. 2]
being Strong bidders, we obtain L∗ = 199 and L∗ = 120 [ L∗ = 171
and L∗ = 104] for the 5% and 10% levels.



Structure 1/1 1/2 1/3 2/2 3/3
Range of L 40 200 40 200 40 200 40 200 40 200
Degree of asymetry
Distribution, ε = ± 1

2

share of p-values < 10% 0.20 0.44 0.16 0.31 0.15 0.21 0.16 0.31 0.14 0.25
share of p-values < 5% 0.12 0.31 0.09 0.19 0.08 0.12 0.09 0.19 0.07 0.14
Distribution, ε = ± 3

4

share of p-values < 10% 0.44 0.90 0.29 0.70 0.21 0.38 0.30 0.72 0.22 0.54
share of p-values < 5% 0.31 0.83 0.19 0.56 0.11 0.24 0.20 0.57 0.13 0.37
Distribution, ε = ±1
share of p-values < 10% 0.78 1.00 0.54 0.98 0.30 0.67 0.57 0.99 0.41 0.91
share of p-values < 5% 0.67 1.00 0.39 0.94 0.18 0.50 0.43 0.97 0.27 0.82

Table: Monte Carlo Results. Test based on Means. 5000 replications for each
experiment.



Maximum likelihood with categorical data

I At this stage, I have dealt only with continuous data.

I A similar analysis could be useful for categorical data (under
categorical data, the model reduces to a finite set of
parameter) and to understand how maximum likelihood
performs.

I Anonymity is related to possible singularities....



Related Literature

Asymptotic properties of ML estimators for i.i.d. samples and
related tests are well-known under some standard regularity
assumptions (Aitchison and Silvey, Ann. Math. Stat. 58).
ML in Nonregular econometrics models

I Unbounded likelihood in finite normal-mixture model (Hathaway,
Annals of Stat. 85) or in heteroscedastic regression models (Crisp
and Burridge, Biometrika 94)

I Discontinuous likelihood in models with a jump in the conditional
density (Smith, Biometrika 85, Chernozhukov and Hong,
Econometrica 04)

I The true parameter is on the boundary of the parameter space:
Constrained Statistical Inference (Silvapulle and Sen, Wiley 2004)

I The information matrix is singular (and the model is identifiable) in
Stochastic Frontier Function Model (Lee, Econometric Theory 93).
See also Sargan, Econometrica 83



A Maximum Likelihood perspective?

I In a regular problem, ML estimator is asymptotically unbiased
and achieves the Cramer Rao lower bound. To test a ’richer’
model 2 against another 1 by a difference of f parameter
(degree of freedom), just take 2.[λ2 − λ1] and compare to the
χ2 statistic with f degrees of freedom.

I It seems a priori the best candidate for testing. In general, the
big issue is its computational tractability.

I When the problem is not regular, ML estimators may perform
badly and the related tests may not work....



Some notation

I A for asymmetric; S for symmetric, I for independent and C
for correlated. We consider the AI, SI, AC and SC models.

I K is the number of categories. T is the sample size. n is the
number of variables.

I The vector α labels the parameters of the underlying sampling
scheme. E.g. in the AI model αk

i is the theoretical probability
that the variable i lie in the category k.

I The vector p labels the observed proportion in each
realizations. E.g. under non-anonymous data, pk

i is the
observed proportion of realizations such that the variable i lies
in the category k. Under anonymous data, p(e1,··· ,eK ) with∑K

k=1 ek = n be the observed proportion of the draws with ek

variables in the category k.



The Likelihood under non-anonymous data: the AI model

λAI ((α
i
1, · · · , αi

K )i=1,··· ,n) = T .

K∑
k=1

n∑
i=1

pk
i . log[αi

k ],

where αi
K = 1−

∑K−1
k=1 αi

k for all i .
The solution that maximizes the likelihood is immediately given by:

α̂i
k = pi

k .

The estimated proportions under ML are corresponding to the
empirical proportions.



The Likelihood under anonymous data

Let E be the set of the events e = (e1, · · · , eK ) with
∑K

k=1 ek = n
and denote by Ano(K , n) + 1 its cardinality. E is the set of feasible
events.

λAI (α) = T .
∑
e∈E

pe . log[
∑
σ∈Σ

K∏
k=1

∏ek
j=1 α

j+σ(
P

s<k es)

k

ek !
],

where αi
K = 1−

∑K−1
k=1 αi

k for all i .
The sum in the Logarithm due to anonymity breaks the separability.
Standard algorithms may fail to find the maximum!



Some remarks

I The intuition is that we would like to set our estimator α̂ such
that:

∑
σ∈Σ

K∏
k=1

∏ek
j=1 α̂

j+σ(
P

s<k es)

k

ek !
= pe ,∀e ∈ E

I Ano(K , n) is the dimension of the observable variables
whereas we need to identify n.(K − 1) variables.

I We have Ano(K , n) ≥ n.(K − 1) with equality only in the case
K = 2.

I Thus for K > 2, the likelihood is ‘overidentified’ and
maximum likelihood is hardly tractable.

I For K = 2, the above intuition works and can be used to
construct maximum-likelihood based estimator for K > 2.



The Likelihood under anonymous data and K = 2

Let pj , j ∈ [0, n] be the observed proportion of the draws with j
variables in the first category. Let αi be the theoretical proportion
of the first category for the variable i .

λ(α) = T .[pn. log[
n∏

i=1

αi ] + · · ·+

+ · · ·+ pk . log[
∑

i1,·,ir ,ik 6=ik′

∏
ik∈{i1,·,in}

αik .
∏

ik /∈{i1,·,in}

(1− αik )] + · · ·+

+ · · ·+ p1. log[
n∑

i=1

αi

∏
j 6=i

(1− αj)] + p0. log[
n∏

i=1

(1− αi )]]



The Likelihood in general with 2 categories

The information matrix Iα = {aij}1≤i ,j≤n where aij = [∂λ(α,p)
∂αi .αj

]p=pα

is singular if αi = αj . Is it immediate from the symmetry of the
likelihood function such that the scores of linearly dependent.
More generally, the information matrix has the same rank as the
VanderMonde matrix with the coefficients {α1, · · · , αn}.

Proposition

The information matrix Iα is of rank k where k is the number of
distinct elements in {α1, · · · , αn}. In case of the strict asymmetric
model, the information matrix is non-singular.

With a suitable reparametrization of the likelihood (given that we
know the symmetry structure), we can avoid the singularity.



We would like to choose the ML-estimator α̂i such that:

n∏
i=1

α̂i = pn

..

..∑
i1,·,ir ,ik 6=ik′

∏
ik∈{i1,·,in}

α̂ik .
∏

ik /∈{i1,·,in}

(1− α̂ik ) = pk

..
n∑

i=1

α̂i .
∏
j 6=i

(1− α̂j) = p1

(4)

It guarantees that
∏n

i=1 (1− α̂i ) = p0.



The issue

I Does a feasible solution with α̂i ∈ [0, 1] exists?

I If yes, it is the ML-estimor and the maximum of the likelihood
is equal to

n∑
j=0

pj . log[pj ]

I Can we ’easily’ solve the nonlinear system (tractable)? Is
there a unique solution (identifiability)?



First Transformation (linear)

I Let αr :m denotes the probability to have r variables in the first
category in a random draw of m variables among the n
variables for the random process with α.

I The left-hand terms of the previous system are corresponding
exactly to αr :n for r = 1, · · · , n.

I We have the following recursive relationship (similar to the
one for CDF derived in Athey and Haile, Econometrica 2002,
p.2128)

m − r

m
α(r :m)(u)+

r + 1

m
α(r+1:m)(u) = α(r :m−1)(u),∀u, r ≤ m−1

(5)

I Thus there is a bijection H such that
(αi :i )i=1,··· ,n = H[(αi :n)i=1,··· ,n] (linear equation with a
triangular matrix)



First Transformation (linear)

I Let (pi :i )i=1,··· ,n = H[(pi )i=1,··· ,n]. It corresponds to the
’estimated’ probability to have r variables in the first category
in a random draw of m variables among the n variables.

I The previous system of equation is then equivalent to:

nY
i=1

bαi = pn:n

..

..X
i1,·,ir ,ik 6=ik′

Y
ik∈{i1,·,ir}

bαik = pk:k

..

nX
i=1

bαi = p1:1

(6)



Second Transformation (nonlinear)

I From the definition of αi :i , we also have:

n∏
i=1

(X − αi ) =
n∑

i=1

αi :i .(−1)n−i .X i

I Conclusion: the previous system of equation is thus equivalent
to (α̂i )i=1,··· ,n being the n-roots of the polynomial
X →

∑n
i=1 pi :i .(−1)n−i .X i .

Two possibilities:

I All the roots are real numbers. Then the job is done provided
that all the roots belongs to [0, 1]. It is guaranteed by the fact
that p1:1 ≥ p2:2 ≥ · · · ≥ pn:n which is easily verified.

I Some of the roots are complex number. Then the maximum
of the likelihood is reached at a boundary solution, i.e. a
solution with some multiple roots.



The reparametrized likelihood maximization in the AI
model

I

λ((αi :n)i=1,··· ,n) =
n∑

j=0

pj . log[αj :n]

with the constraint that the roots of the polynomial
X →

∑n
i=1 αi :i .(−1)n−i .X i are all real.

I The real roots constraints can be expressed as n − 1
discriminants being positive which are polynomials of the
coefficients. (see Yang and Xia MM Research Preprints 97,
Yang J. Symbolic Computation 99, Basu et al Springer 04)

I The (nonlinear) constraints are Chernoff regular, i.e. can be
approximated by a cone.



Likelihood under anonymous data: summary

I The AC model is not identified [the likelihood is maximized
for a SC model among AC models].

I The SI and SC likelihood are not altered and the
ML-estimator still corresponds to empirical proportions as
under non-anonymous data.

I Only the AI model needs care.

I The key element for the tractability of the likelihood
maximization: separability in the variables!

I Then the goal is: test HSI versus HAI or a partial test for HAI

versus HAC . We also need a complete estimation procedure of
the AI model and the corresponding large sample distributions.



The different likelihood maximizations

The likelihood is concave and should be maximized under some
additional set of constraints.

λ((αi :n)i=1,··· ,n) =
n∑

j=0

pj . log[αj :n]

I SC model: no additional constraint

I AI model:
with the constraint that the roots of the polynomial
X →

∑n
i=1 αi :i .(−1)n−i .X i are all real.

I SI model: with the constraint αi :n =
(n

i

)
αi .(1− α)n−i

Intermediate symmetry assumption discussed later and
maximum-likelihood based estimators are developed.



The SC versus the AI model

In the SC model, what is the interpretation of the additional
constraints the roots of the polynomial X →

∑n
i=1 αi :i .(−1)n−i .X i

are all real.

I For n = 2, it is equivalent to negative correlation.

I Corollary: we can distinguish the symmetric positively
correlated model from the AI model!



Aim of the reparametrization

I The original likelihood is singular under symmetry, hardly
tractable under standard algorithms

I After the reparametrization, the likelihood is not singular,
tractable but the true parameter can lie on the boundary of
the parameter space (under symmetry)



Extensions: maximum likelihood based approaches

Consistent Estimator that root-finding of polynomials (instead of
complex optimization...)

I For K > 2 the general maximum likelihood is not tractable
but an estimator can be constructed that uses the idea for
K = 2 as in Lamy (mimeo 07) for continuous variables.

I For general symmetry structures. E.g. suppose a double root
then first estimate the roots of the derivative polinomial P ′

and for each roots β compute the roots of the polynomial
Q/(X − β)2 where Q is the primitive of P ′ such that β is a
double root. Pick the solution among the different candidates
that maximizes the likelihood.

I With incomplete data set and some symmetry assumption.



The Sylvester Matrix

The Sylvester matrix of P and Q, denoted by Syl(P,Q), is the
(p + q)× (p + q) matrix:

ap · · · · · · · · · · · · a0 0 · · · 0

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 ap · · · · · · · · · · · · a0

bq · · · · · · · · · b0 0 · · · · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 bq · · · · · · · · · b0



,



The Sylvester Matrix

I where P =
∏p

i=1 (X − xi ) =
∑p

i=0 aiX
i and

Q =
∏q

i=1 (X − yi ) =
∑q

i=0 biX
i

I

det(Syl(P,Q)) = aq
pbp

q

p∏
i=1

q∏
j=1

(xi − yj)

I det(Syl(P,Q)) 6= 0 if and only if P and Q are coprime.



The Sylvester Matrix

I

m : Cq × Cp → Cp+q

(Q,P) → QP

I The Jacobian matrix of m is the Sylvester matrix of P and Q
and the Jacobian of m is the resultant.

I Denote by IndSyl(k,P,Q) the matrix:[
Ik 0
0 Syl(P,Q)

]



The Sylvester Matrix: corollary

m : Cq1 × · · · × Cql → Cq1+···+ql

(Q1, · · · ,Ql) →
∏l

i=1 Qi

m is regular at any point (Q1, · · · ,Ql) such that each couple
(Qi ,Qj), j 6= i are coprime. The jacobian matrix of m is given by:

Jm =
l−2∏
k=0

IndSyl(
k∑

j=1

qj ,Qk+1,

l∏
i=k+2

Qk)

since m = ml−1 ◦mk ◦m1 where

mk : Cq1 × · · · × Cqk × C
Pl

i=k+1 qi → Cq1 × · · · × Cqk−1 × C
Pl

i=k qi

(Q1, · · · , , Qk+1) → (Q1, · · · ,Qk−1,Qk .Qk+1)



I Let
f y : Cn → Cn

(αn−1, · · · , α0) → (an−1, · · · , a0)

such that the polynomials X n + an−1.X
n−1 + · · ·+ a0 and

(X − y)n + αn−1.(X − y)n−1 + · · ·+ α0. f y corresponds
indeed to a change of base and is regular. The jacobian
matrix (f y

ij ) 1≤i≤n
1≤j≤n

is given by

f y
ij = 0 if i > j

f y
ij = 1 if i = j

f y
ij =

(j−1
i−1

)
(−y)j−i if i < j

Proposition

The linear function f is invertible.



Use of the previous results

Corollary

If all the roots are distinct, then the Jacobian of the map linking
the coefficient of a polynomial to its roots is inversible.

Next when we consider some multiplicity of the roots (e.g. some
symmetry)



Links between the roots of a polynomial and the roots of
the derivatives

Lemma
Let P a polynomial of degree p with p real roots (counted with the
order of multiplicity) x1 ≤ · · · ≤ xp, then the polynomial P’ has
p − 1 real roots x ′1 ≤ · · · ≤ x ′p−1 such that x ′i ∈ [xi , xi+1], for
i = 1, · · · , p

Corollary

Suppose that P of degree p is a polynomial with p real roots. The
i th derivative P(i) of the polynomial P has a root x of multiplicity
k > 1 if and only if x is a root of P with multiplicity k + i .

To test that the highest multiplicity of the roots of P is k, then we
can derive P k − 2 times and test multiplicity of order 2!



Estimation of the roots

I The estimated coefficient αi :i of the polynomial are normally
distributed (asymptotic of a multinomial distribution + the
linear transformation H)

I The tricky point is to go from the estimation of the coefficient
to the roots of the polynomials. This point has been lead by
Pantula and Fuller (Biometrika 93) who were motivated by
the analysis of an autoregressive polynomial for time-series
analysis. Their analysis is restricted to polynomials of order 2.
Ours is general!

I Thus our analysis may be useful outside the anonymous data
framework!



Large Sample Distribution of the roots

Proposition
Let P =

Ql
i=1 (X − αi )

ki with
Pl

i=1 ki = n and α1 < · · · < αl be the true value of
the polynomial. Then the maximum likelihood estimator of the AI model without the

constraints and denoted by bα1
1, · · · , · · · , bαk1

1 , · · · , bα1
l , · · · , bαkl

l is distributed such:

√
T .

0BBBBBBBBBBBBBBBBB@

(bα1
1 − α1)k1

...

(bαk1
1 − α1)k1

...

...
(bα1

l − αl )
kl

...

(bαkl
l − αl )

kl

1CCCCCCCCCCCCCCCCCA

→d N (0, Σ),

where the matrix Σ can be expressed as Σ = ΠJHΣ0H′J′Π′



Decomposition of the covariance matrix Σ

I √
T .(p̂m − pm) →d N (0,Σ0)

where Σ0 = {pi
m(δij − pj

m)}1≤i ,j≤n and δij is Kronecker’s delta
(asymptotic of a multinomial distribution).

I H is the linear transformation to go from pm to pi :i

I J is the jacobian of the nonlinear bijection that transform the
coefficients pi :i into the coefficient of the ‘polynomial
decomposition’, i.e. the coefficients of the l polynomials with

degree kj denoted by X kl +
∑kj−1

i=0 ai
j . [it is the inverse of the

determinant of some sylvester matrix]

I Π is the projection that keeps only the coefficient
corresponding to the lowest order term of each polynomial,
i.e. the terms a0

j .



Comments

I If all roots of P are single roots, then the convergence rate is
in
√

T .

I For a multiple root of order ki , the convergence rate is T
1

2ki .
The roots of αi are distributed according to the kth

i roots of a
normal distribution.

I Corollary: If ki > 2, the probability that all estimated roots
are real converge to zero as T goes to infinity.

I The estimation procedure is ‘bad’ if the true sampling scheme
contains some symmetry. Need for a testing/estimation
procedure such that we estimate the order of multiplicity of
each roots and then estimates the roots. A procedure that
always converges in

√
T



ML-based estimator under some symmetry

Let P =
∏l

i=1 (X − αi )
ki with

∑l
i=1 ki = n and α1 < · · · < αl be

the true value of the polynomial which is now known to the
econometrician. The following algorithm builds a

√
T -consistent

estimator.

I Pick the estimated polynomial. Take the maximum of the ki .

I Derive ki − 1 times the polynomial and pick all the roots.
Successively consider the n − ki + 1 roots and do

I Integrate the polynomial such that the chosen root is of order
ki and repeat the algorithm for the quotient that is
theoretically equal to P =

∏
j 6=i (X − αj)

kj .

I At the end consider among all the candidate solution the one
that maximize the likelihood.



Comments

I Note that the ki − 1 lowest order term of the original
estimated polynomial have not been used except at the last
stage!

I Application for incomplete data set...
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