The WACC Fallacy

Philipp Krüger (GFRI, University of Geneva) Augustin Landier (Toulouse School of Economics) David Thesmar (HEC Paris & CEPR)

> Annual Meetings, January 2012, Chicago

The question

• Corp Finance 101: Modigliani-Miller

When computing project NPV, discount rate should depend on the risk of this project, not firm-wide cost of capital.

$$\begin{array}{c} \textbf{A1} \textbf{A2} \textbf{A3} \\ \textbf{Firm-wide cost of capital} \end{array} \begin{array}{c} r_A = \frac{A_1}{A} r_{A1} + \frac{A_2}{A} r_{A2} + \frac{A_3}{A} r_{A3} \\ \textbf{Firm-wide cost of capital} \end{array}$$

A=A1+A2+A3

The question

- **Survey evidence** (Graham&Harvey, 2001):
 - 75% of CFOs of public companies always use NPV in capital budgeting decisions
 - ...but, majority relies on one single company-wide discount rate.

→ corporations are **semi-sophisticated**

• This paper:

- Does semi-sophistication distort real investment?
- How much, if any, value does it destroy?

Example

• Anheuser-Busch Companies (ABC) in 2006:

Example:

Anheuser-Busch Companies (ABC)

- Core Division ("beer & liquor"): 81% of sales; β_A =0.1 r_f+ $\beta_A x(r_m-r_f) = 3\% + 0.1 \times 6\% = 3.5\%$

- Non-Core Division ("fun"): 11% of sales; β_A =0.9 3% + 0.7 x 6% = 7%

 If ABC values "fun" projects with cost of capital of "beer & liquor"

→NPV of perpetuity is overestimated by factor 2!
 →Investment in "fun" abnormally large

Empirical strategy (1)

• Show *distortion* in multi-industry firms:

Investment in non-core divisions (fun) sensitive to WACC of core divisions (beer)?

Empirical strategy (2)

- Evaluate the cost of the *distortion*:
- Look at diversifying acquisitions

– If $\beta_{bidder} < \beta_{target}$: bidder abnormal returns 0.8 % points lower.

 We find average excess payment of about \$16M per deal (4% of the average target value).

Literature

- Theory & Practice of Corporate Finance
 - Textbooks, Bierman(93); Graham&Harvey(01),
 Graham,Harvey,Puri(10); Stein (96)
- Behavioral Corporate Finance
 - Baker, Ruback, Wurgler (07): irrational investors and rational managers
 - Malmendier&Tate(05,08,11); Landier&Thesmar(09): irrational managers
- Internal Capital Markets
 - Stulz&Shin(98); Lamont(97); Rajan, Servaes, Zingales(00);
 Scharfstein&Stein(00); Ozbas&Scharfstein(10)

Roadmap

(1) Evidence of the fallacy: *look at multi-industry firms*

(2) Value effects of the fallacy: *look at diversifying acquisitions*

Testing for Investment Distortions

 Focus on non-core divisions and assume project discounted at

$$WACC_{core} = r_f + \beta_{core} x(r_m - r_f):$$

(1) if $\beta_{core} < \beta_{non-core}$ \rightarrow non-core division invests more (2) if $\beta_{core} > \beta_{non-core}$ \rightarrow non-core division invests less

→ Testable prediction:

 $CapX_{non-core}$ / $(\beta_{non-core} - \beta_{core})_{10}$

Data

Firm-level data

- Compustat for financials
- CRSP for stock returns
- Execucomp for CEO ownership

• Division-level data

- Compustat segment: 1987-2007
- Aggregate segments @ ff48 level
- Call each bundle of segments a "division"
 - get sales, capx and assets
 - average Tobin's q of standalones in the ff48 industry
- Conglomerate = # of "divisions" > 1
- "Core division" = division with highest sales

Data (contd.)

- Two steps to calculate an industry-level cost of capital for each ff48-year:
 - (1) Equity beta (β_E):
 - Regress vw industry portfolio returns on vw CRSP index for rolling windows of 60 months
 - (2) Asset beta (β_A) :
 - Unlever: $\beta_A = \beta_E \times E/(E+D)$
 - Use aggregate industry capital structure

FF48	Industry	Description	β^E	$\frac{E}{D+E}$	β^A
1	Agric	Agriculture	0.77	0.68	0.53
2	Food	Food Products	0.64	0.61	0.38
3	Soda	Candy & Soda	0.76	0.50	0.38
4	Beer	Beer & Liquor	0.60	0.76	0.44
5	Smoke	Tobacco Products	0.77	0.58	0.44
6	Toys	Recreation	1.48	0.56	0.82
7	Fun	Entertainment	1.14	0.60	0.69
8	Books	Printing and Publishing	0.91	0.62	0.56
9	Hshld	Consumer Goods	0.90	0.66	0.58
10	Clths	Apparel	1.04	0.68	0.70
11	Hlth	Healthcare	0.92	0.55	0.49
12	MedEq	Medical Equipment	0.90	0.79	0.70
13	Drugs	Pharmaceutical Products	0.84	0.84	0.71
14	Chems	Chemicals	0.93	0.54	0.49
15	Rubbr	Rubber and Plastic Products	1.10	0.54	0.61
16	Txtls	Textiles	0.93	0.45	0.42
17	BldMt	Construction Materials	0.97	0.57	0.55
18	Cnstr	Construction	1.19	0.40	0.48
19	Steel	Steel Works Etc	1.16	0.49	0.57
20	FabPr	Fabricated Products	0.96	0.50	0.49
21	Mach	Machinery	1.20	0.55	0.66
22	ElcEq	Electrical Equipment	1.28	0.49	0.63
23	Autos	Automobiles and Trucks	1.05	0.30	0.31
24	Aero	Aircraft	0.95	0.53	0.50
25	Ships	Shipbuilding, Railroad Equipment	0.79	0.48	0.34
26	Guns	Defense	0.68	0.50	0.32
27	Gold	Precious Metals	0.55	0.83	0.44
28	Mines	Non-Metallic and Industrial Metal Mining	0.93	0.69	0.65
29	Coal	Coal	0.84	0.46	0.40
30	Oil	Petroleum and Natural Gas	0.64	0.63	0.40
31	Util	Utilities	0.42	0.38	0.16
32	Telcm	Communication	1.02	0.54	0.55

Firms with operations			Standalone Firms					
in only one		Mean	Median	SD	P25	P75	Ν	
FF48 industry	Firm Cash $Flow_t$	0.029	0.063	0.169	-0.015	0.120	107796	
•	Firm Size_t	4.300	4.277	2.456	2.631	5.939	122161	
	Firm Age_t	2.042	2.079	0.983	1.386	2.773	119127	
	Firm Investment _{t+1}	0.065	0.038	0.078	0.013	0.086	103730	
	$Leverage_t$	0.188	0.092	0.239	0.000	0.302	121064	
	$Sales_t$	3.937	4.104	2.658	2.345	5.749	122219	
	Sales Growth_t	0.126	0.086	0.367	-0.042	0.263	105363	
	$Q_{FIRM,t}$	1.879	1.417	1.271	1.037	2.265	93591	
	$\beta^A_{AVERAGE,t}$	0.631	0.600	0.339	0.390	0.830	115605	
				nglome	rate Firn	ns		
Firms with operations_		Mean	Median	SD	P25	P75	Ν	
in more than one	E'm Cal Elan	0.061	0.075	0.105	0.026	0 119	10150	
FF48 industry	Firm Cash Flow $_t$	U.001	0.075	0.105	0.030	0.113	10100	
	Firm Size $_t$	5.926 2.702	0.008	2.435	4.140 2.107	$\begin{array}{c} 1.121 \\ 2.526 \end{array}$	10307	
	Firm Age_t	2.192	3.045	0.933	2.197	3.520	10408 16917	
	Firm investment _{t+1}	0.000	0.047	0.054	0.025	0.078	10217	
	Leverage $_t$	0.229 0.557	0.201	0.190	0.074	0.320	16507	
	Splag	Z.007 K Q00	2.000	0.007 0.412	2.000	5.000	16507	
	Sales C rowth	0.000 0.100	0.041 0.072	2.415 0.260	4.204	1.509 0.178	10507 15714	
	Sales $Grow m_t$	0.102 0.722	0.072 0.742	0.200 0.172	-0.010	0.170	16/14	
	r irm $rocus_t$	0.700	0.745	0.175	0.394 1.007	0.004	10410	
	$\forall FIRM, t$	1.400 0.174	1.222 0.198	0.044	1.007	1.040	14002 12011	
	$\mathcal{SD}(\mathcal{Q}_{i,t})/\mathcal{Q}_{FIRM,t}$	0.174	0.120 0 527	0.100	0.003	0.252	16507	
	$\frac{\rho_{AVERAGE,t}}{SD(\beta_{i,t}^{A})}$	0.202	0.537 0.171	0.230 0.152	0.394	0.075	16507	

Mean Division Investment Sorted by $\beta - \beta_{core}$

Mean Investment Ratios by Deciles of Beta Spread

Main Result (Table V)

-

	(1)	(2)	(3)	(4)
$\beta^A_{DIV,t} - \beta^A_{CORE,t}$	$\begin{array}{c} 0.0181^{***} \\ (8.13) \end{array}$	$\begin{array}{c} 0.0157^{***} \\ (6.71) \end{array}$	$\begin{array}{c} 0.0155^{***} \\ (6.53) \end{array}$	
$\beta^A_{DIV,t}$				$\begin{array}{c} 0.0150^{***} \\ (4.74) \end{array}$
$\beta^{A}_{CORE,t}$				-0.0162***
$Q_{DIV,t}$		$\begin{array}{c} 0.0073^{***} \\ (3.07) \end{array}$	$\begin{array}{c} 0.0074^{***} \\ (3.09) \end{array}$	$\begin{array}{c} 0.0077^{***} \\ (3.06) \end{array}$
$Q_{CORE,t}$		-0.0015 (-0.61)	-0.0015 (-0.63)	-0.0013 (-0.52)
Firm Cash Flow_t		$\begin{array}{c} 0.0915^{***} \\ (11.28) \end{array}$	$\begin{array}{c} 0.0889^{***} \\ (10.93) \end{array}$	$\begin{array}{c} 0.0889^{***} \\ (10.93) \end{array}$
Divison Size_t		$ \begin{array}{c} 0.0015^{**} \\ (2.42) \end{array} $	0.0020^{***} (2.95)	$\begin{array}{c} 0.0020^{***} \\ (2.99) \end{array}$
Firm Size_t		-0.0005 (-0.79)	-0.0007 (-1.03)	-0.0008 (-1.09)
$\operatorname{Firm}\operatorname{Age}_t$		-0.0015 (-1.49)	-0.0015 (-1.47)	-0.0015 (-1.47)
Firm $Focus_t$			0.0086 (1.60)	0.0085 (1.59)

Robustness

- Core-wacc, vs. average-wacc
- Control for sales-gr, diversity
- Industry fixed-effects
- Vertical integration
 - Control for firm-wide investment
 - Interact with « vertical relatedness » to core

Robustness Checks (Table VI)

Industry Adjusted Investment (Table A.II)

	(1)	(2)	(3)	(4)
$\beta^A_{DIV,t} - \beta^A_{CORE,t}$	0.0051^{**} (2.31)	0.0070^{***} (3.03)	0.0067^{***} (2.83)	
$\beta^A_{DIV,t}$				0.0067^{**} (2.14)
$\beta^{A}_{CORE,t}$ Strong	effect also			-0.0067** (-2.12)
Q _{DIV,t} investm excess	ent in of median	-0.0052** (-2.12)	-0.0050** (-2.02)	-0.0050^{*} (-1.89)
Q _{CORE,t} investm standal same in	ent of iones in the dustrv is	-0.0011 (-0.46)	-0.0011 (-0.46)	-0.0011 (-0.45)
Firm Cash] used . + usual controls .		$\begin{array}{c} 0.0844^{***} \\ (10.28) \end{array}$	$\begin{array}{c} 0.0818^{***} \\ (9.92) \end{array}$	$\begin{array}{c} 0.0818^{***} \\ (9.92) \end{array}$
$\begin{array}{c} \text{Observations} \\ R^2 \end{array}$	$\begin{array}{c} 23808\\ 0.004 \end{array}$	$22674 \\ 0.017$	$22288 \\ 0.018$	$22288 \\ 0.018$

What about vertical integration?

- Assume a firm has a core "toys" (ff48=6) and a noncore "trucks" (ff48=40)
 - it uses the trucks to transport toys
- If WACC_{toys} CapX_{toys}
 - the firm might expand toy production capacity to cater to investor sentiment.
- To ship the toys, the firm would also need more trucks: WACC_{toys} CapX_{trucks}
 - non-core division investment responsive to the $WACC_{core}$ for reasons other than the WACC Fallacy

Vertical integration (Table VII)

		(1)	(2)	(3)	(4)
	$\beta^A_{DIV,t} - \beta^A_{CORE,t}$	0.0163^{***} (6.75)	0.0150^{***} (3.80)	$\begin{array}{c} 0.0143^{***} \\ (3.60) \end{array}$	$\begin{array}{c} 0.0138^{***} \\ (3.48) \end{array}$
	Medium $V_{DIV,t} \times (\beta^A_{DIV,t} - \beta^A_{CORE,t})$		-0.0077 (-1.51)	-0.0058 (-1.12)	-0.0055 (-1.05)
	$\text{High } V_{DIV,t} \times (\beta^A_{DIV,t} - \beta^A_{CORE,t})$		$0.0082 \\ (1.42)$	0.0076 (1.27)	$\begin{array}{c} 0.0096 \ (1.55) \end{array}$
	$Q_{DIV,t}$	0.0084^{***} (3.47)	0.0079^{***} (3.26)	$\begin{array}{c} 0.0082^{***} \\ (3.38) \end{array}$	$\begin{array}{c} 0.0097^{***} \\ (2.79) \end{array}$
	Medium $V_{DIV,t} \times Q_{DIV,t}$				-0.0009 (-0.17)
Beta spread	$\text{High } V_{DIV,t} \times Q_{DIV,t}$				-0.0044 (-0.78)
not depend on	$Q_{CORE,t}$	-0.0022 (-0.91)	-0.0016 (-0.67)	-0.0044 (-1.45)	-0.0048 (-1.59)
relatedness.	Medium $V_{DIV,t} \times Q_{CORE,t}$			0.0099^{**} (2.21)	0.0101^{**} (2.18)
	High $V_{DIV,t} \times Q_{CORE,t}$			-0.0008 (-0.16)	$0.0011 \\ (0.21)$
	+ usuur controls	× /	× /	× /	× /
	$\begin{array}{c} \text{Observations} \\ R^2 \end{array}$	$\begin{array}{c} 21932 \\ 0.044 \end{array}$	$\begin{array}{c} 21932 \\ 0.048 \end{array}$	$\begin{array}{c} 21932 \\ 0.048 \end{array}$	$\begin{array}{c} 21932 \\ 0.048 \end{array}$

 $V_{DIV +}$ measures the flow of goods and services between the core and non-core division's industries (Measure of vertical relatedness)

Bounded rationality

- Key idea: heuristics used when « not too costly »
- \rightarrow if the cost of "wacc fallacy" is high, the investment sensitivity to $\beta \beta_{core}$ should be lower.

What causes the WACC Fallacy?

• Run the following regression

- Z = net benefit of taking the right WACC
- Bounded rationality hypothesis: b<0
 - if the cost of taking the wrong discount rate is high, the spread sensitivity should be lower.

Bounded Rationality? (Table VIII)

	(1)	(2)	(3)	(4)
$\beta^A_{DIV,t} - \beta^A_{CORE,t}$	$\begin{array}{c} 0.0264^{***} \\ (5.52) \end{array}$	$\begin{array}{c} 0.0182^{***} \\ (4.64) \end{array}$	$\begin{array}{c} 0.0302^{***} \\ (3.23) \end{array}$	0.0295^{*} (1.82)
$(1992-1996) \times (\beta^A_{DIV,t} - \beta^A_{CORE,t})$	-0.0038 (-0.71)			
$(1997-2001) \times (\beta^A_{DIV,t} - \beta^A_{CORE,t})$	-0.0112* (-1.84)			
$(2002-2007) \times (\beta^A_{DIV,t} - \beta^A_{CORE,t})$	-0.0196^{***} (-3.45)			
Med Relative Importance _t × $(\beta^A_{DIV,t} - \beta^A_{CORE,t})$		0.0011 (0.22)		
High Relative Importance _t × $(\beta_{DIV,t}^A - \beta_{CORE,t}^A)$		-0.0094^{*}		
Med $SD(\beta_{i,t}^{A}) \times (\beta_{DIV,t}^{A} - \beta_{CORE,t}^{A})$		(-1.00)	-0.0017 (-0.17)	
High $SD(\beta_{i,t}^A) \times (\beta_{DIV,t}^A - \beta_{CORE,t}^A)$			-0.0185^{*} (-1.95)	
High CEO Share Ownership $_t$				$0.0007 \\ (0.19)$
High CEO Share Ownership _t × $(\beta_{DIV,t}^A - \beta_{CORE,t}^A)$				-0.0243***
+ usual controls & main effects	S			(-2.96)
Observations R^2	$22289 \\ 0.038$	$22288 \\ 0.037$	$22288 \\ 0.038$	5434 0.038 ²⁴

Bounded rationality: results

- Investment sensitivity to beta spread stronger when:
 - Division small relative to Core
 - Firm's divisions are homogeneous (in beta)
 - Earlier years (t<1996)
 - Lower CEO ownership

Value Effect

- Diversifying acquisition: bidder buys an asset belonging to a different ff48 industry.
- Four reasons for diversifying acquisitions:
 (1) Easily observable investment projects
 - (2) The cost of capital of the investment project can be computed: WACC of the target
 - (3) Reasonable estimate of project NPV: Stock price reaction of the bidder upon announcement
 - (4) Large enough so that impact of the project on the value of the acquirer is detectable in a credible way

Value Effect: Prediction

- Assume WACC_{bidder} < WACC_{target}
 - Bidder uses a low WACC to value the target
 - Bidder more likely to **overpay** and stock market should react **less** favorably.
- \rightarrow Testable predictions:
 - 1. WACCbidder<WACCtarget more frequent?
 - 2. Bidder announcement return lower if WACC_{bidder}<WACC_{target}

Data

- 6,206 diversifying acquisitions from SDC (1988-2007)
 - Eventually successful deals
 - >1% of bidder's equity value,
 - Deal value >\$1m
 - → Mostly small private or subsidiary targets (Average Deal Size: \$200M)

Sample characteristics

Panel A: Deal Characteristics				
	All Deals (N=6,115)	Public (N=687)	Private (N=3,334)	
$(\beta_{BIDDER,t}^{A} - \beta_{TARGET,t}^{A} > 0)$	0.41	0.48	0.41	
	(0.49)	(0.50)	(0.49)	
$(Q_{BIDDER,t} - Q_{TARGET,t} > 0)$	0.49	0.50	0.49	
	(0.50)	(0.50)	(0.50)	
V _{TARGET,t}	186.15	864.61	65.73	
	(1082.05)	(3033.24)	(211.98)	
EBIDDER.t-1	1905.68	6764.01	1090.06	
	(7708.39)	(17664.76)	(5094.96)	
$V_{TARGET,t}/E_{BIDDER,t-1}$	0.25	0.37	0.21	
	(0.57)	(0.65)	(0.48)	
m n 11 o		4.00	0.00	

First prediction

|--|--|

Panel B: Bidder and Target Characteristics

	All I	All Deals (N=6,115)				
$egin{aligned} η_{i,t} \ &Q_{i,t} \end{aligned}$	Bidder	Target	Diff			
	0.592	0.640	-0.048***			
	(0.401)	(0.342)	(0.405)			
	1.487	1.487	-0.001			
	(0.390)	(0.388)	(0.420)			

Bidder Cumulative Abnormal Returns All Acquisitions

Conclusion

- Evidence that firms use a single WACC
 - distorts internal capital market allocation
 - Bounded rationality
- Evidence that this behavior reduces gains from asset acquisitions
 - Bidder announcement returns about 0.8 % points lower (excess payment due to valuation mistakes)