An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Setup The MFG framework Simulations Generalization

An application of Mean Field Games to Oil Production

Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Research done with the support of the FDD and CFE.

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil productior Setup

The MFG framework Simulations Generalizatio

Mean field games - A brief historical overview:

- * ロ * * 個 * * 画 * * 画 * * 回 * * の < @

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Setup The MFG framework Simulations Generalization Mean field games - A brief historical overview:

 2004/2005: Seminal papers. Inception of the theory and very first applications (J.M. Lasry + P.L. Lions).

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Setup The MFG framework Simulations

- 2004/2005: Seminal papers. Inception of the theory and very first applications (J.M. Lasry + P.L. Lions).
- 2007: First applications in economics (A. Lachapelle, O. Guéant + J.M. Lasry + P.L. Lions).

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

ntroduction History Applications

Oil productio Setup The MFG framework

Generalization

- 2004/2005: Seminal papers. Inception of the theory and very first applications (J.M. Lasry + P.L. Lions).
- 2007: First applications in economics (A. Lachapelle, O. Guéant + J.M. Lasry + P.L. Lions).
- 2008: Numerical methods (Y. Achdou, A. Lachapelle + J. Salomon + G. Turinici).

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

ntroduction History Applications

OII production Setup The MFG framework Simulations Generalization

- 2004/2005: Seminal papers. Inception of the theory and very first applications (J.M. Lasry + P.L. Lions).
- 2007: First applications in economics (A. Lachapelle, O. Guéant + J.M. Lasry + P.L. Lions).
- 2008: Numerical methods (Y. Achdou, A. Lachapelle + J. Salomon + G. Turinici).
- 2009: Two generalized frameworks : congestion and planning (J.M. Lasry + P.L. Lions).

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

ntroduction History Applications

Oil productic Setup The MFG framework Simulations Generalization

- 2004/2005: Seminal papers. Inception of the theory and very first applications (J.M. Lasry + P.L. Lions).
- 2007: First applications in economics (A. Lachapelle, O. Guéant + J.M. Lasry + P.L. Lions).
- 2008: Numerical methods (Y. Achdou, A. Lachapelle + J. Salomon + G. Turinici).
- 2009: Two generalized frameworks : congestion and planning (J.M. Lasry + P.L. Lions).
- 2010-?: Applications are being developed in many places (Dauphine, Chicago, Austin, Cambridge, ...). Planning will have applications to design incentives in economics (*mechanism design*).

Applications developed by J.-M. Lasry, P.-L. Lions and I cover a large variety of topics...

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Setup The MFG framework Simulations Applications developed by J.-M. Lasry, P.-L. Lions and I cover a large variety of topics...

... in economics

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatio Applications developed by J.-M. Lasry, P.-L. Lions and I cover a large variety of topics...

... in economics

- Labor Market (PhD Dissertation)
- Portfolio Management (PhD Dissertation)
- Economic Growth (PhD Dissertation)
- Oil Production in the long run* (*Paris-Princeton Lectures* on Mathematical Finance)

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

The MFG framework Simulations Generalizatio Applications developed by J.-M. Lasry, P.-L. Lions and I cover a large variety of topics...

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

The MFG framework Simulations Generalizatio Applications developed by J.-M. Lasry, P.-L. Lions and I cover a large variety of topics...

... in other fields

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatio Applications developed by J.-M. Lasry, P.-L. Lions and I cover a large variety of topics...

... in other fields

- Spatial Distribution of Populations (*PhD Dissertation, Journal de Mathématiques Pures et Appliquées*)
- Mexican Wave (*Paris-Princeton Lectures on Mathematical Finance*)
- People arrival times at a Meeting (*Paris-Princeton Lectures on Mathematical Finance*)
- Viruses Propagation

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatio

Introduction

Oil production

- Setup
- The MFG framework
- Simulations
- Generalization

Framework

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatior

- Optimal oil extraction in the long run (100 to 150 years).
 - Continuum of producers: perfect competition and MFG.
 - The goal is to characterize the problem with 2 PDEs (HJB for the Value function of holding a certain quantity of oil Transport equation for the distribution of oil reserves)
 - Generalization to unusual optimization criteria

C			
<u> </u>	$\Delta 1$	- 11	n
\sim		-u	Ρ

An applica	
	o Oil
	OTK
	0
	PL

Setup

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup

The MFG framework Simulations Generalizatio

Supply side

- A continuum of producers. Same technology. Different oil reserves.
- Uniform instantaneous production cost for a quantity qdt: $C(q) = \alpha q + \frac{\beta}{2}q^2$.
- Optimization problem:

$$Max\mathbb{E}\int_0^\infty \left(p(t)q(t)-C(q(t))\right)e^{-rt}dt$$

 $dR(t) = -q(t)dt + \nu R(t)dW(t), \quad \forall t > 0, R(t), q(t) \ge 0$

Setup

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations

Supply side

- A continuum of producers. Same technology. Different oil reserves.
- Uniform instantaneous production cost for a quantity qdt: $C(q) = \alpha q + \frac{\beta}{2}q^2$.
- Optimization problem:

$$Max\mathbb{E}\int_0^\infty \left(p(t)q(t)-C(q(t))\right)e^{-rt}dt$$

 $dR(t) = -q(t)dt + \nu R(t)dW(t), \quad \forall t > 0, R(t), q(t) \ge 0$

Demand side

Isoelastic demand and economic growth: $D(t,p) = We^{\rho t}p^{-\sigma}$ or $D(t,p) = We^{\rho t}p^{-\sigma} - \delta$

The MFG framework

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatio In the deterministic case ($\nu = 0$), classical tools (lagrangian) and astute numerical methods give the result. Not possible to extend.

The MFG framework

An application of Mean Field Games to Oil Production

Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

 $\nu > 0$

Introductior History Applications

Oil production

Setup The MFG framework Simulations Generalizatio In the deterministic case ($\nu = 0$), classical tools (lagrangian) and astute numerical methods give the result. Not possible to extend.

Mean field games are necessary in general:

Bellman function

$$u(t,R) = \sup_{q(\cdot)} \int_t^\infty \left(p(s)q(s) - C(q(s)) \right) e^{-r(s-t)} ds$$

s.t. R(t) = R, dR(s) = -q(s)ds +
u R(s)dW(s) $orall s > t, R(s), q(s) \ge 0$

• Distribution of reserves m(t, R)

D	D	Ec	
	$\boldsymbol{\nu}$	LS	

PDEs I

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatio

Hamilton-Jacobi-Bellman

$$\partial_t u(t,R) - ru(t,R) + \frac{\nu^2}{2}R^2\partial_{RR}^2 u(t,R) + \frac{\beta}{2}q^*(t,R)^2 = 0$$

PDEs I

An application of Mean Field Games to Oil Production

> Jean Miche LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Setup The MFG framework

Generalization

Hamilton-Jacobi-Bellman

$$\partial_t u(t,R) - ru(t,R) + rac{\nu^2}{2}R^2\partial_{RR}^2 u(t,R) + rac{\beta}{2}q^*(t,R)^2 = 0$$

Kolmogorov

$$\partial_t m(t,R) + \partial_R \left(-q^*(t,R)m(t,R)\right) = \partial_{RR}^2 \left[\frac{\nu^2}{2}R^2m(t,R)\right]$$

where $q^*(t, R)$ is the optimal extraction function. HJB is backward. Kolmogorov is forward with m(0, R) given.

PDEs II

An application of Mean Field Games to Oil Production

PDEs II

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatio

Optimal extraction

$$q^*(t,R) = rac{(p(t) - lpha - \partial_R u(t,R))_+}{eta}$$

We see that $\partial_R u(t, R)$ is the Hotelling rent.

PDEs II

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Oil production

Setup The MFG framework Simulations Generalizatio

Optimal extraction

$$q^*(t,R) = rac{(p(t) - lpha - \partial_R u(t,R))_+}{eta}$$

We see that $\partial_R u(t, R)$ is the Hotelling rent.

Price

 $\mathsf{Demand} = \mathsf{Supply} \Rightarrow$

$$p(t) = D(t, \cdot)^{-1} \left(-\frac{d}{dt} \int Rm(t, R) dR \right)$$

Price is a (complex) function of m

Evolution of production

Figure: $r = 5\%, \rho = 2\%, \alpha = 10, \beta = 100, \sigma = 1.2, \delta = 0.1$

(日) 《聞) 《問》 《聞》 《日)

Evolution of *u*

Figure: $r = 5\%, \rho = 2\%, \alpha = 10, \beta = 100, \sigma = 1.2, \delta = 0.1$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Evolution of *m*

Figure: $r = 5\%, \rho = 2\%, \alpha = 10, \beta = 100, \sigma = 1.2, \delta = 0.1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ ���

Generalization

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

ntroduction History Applications

Setup The MFG framework Simulations Generalization

- *p* was a function of *m*. Why not considering more general functions?
- Example: Producers do not want to be the last ones to extract oil (risk of nationalization, ...)
- Slightly modified model: only the HJB equation changes.

Generalization

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Jil productio Setup The MFG framework Simulations Generalization

- *p* was a function of *m*. Why not considering more general functions?
- Example: Producers do not want to be the last ones to extract oil (risk of nationalization, ...)
- Slightly modified model: only the HJB equation changes.

HJB with ranking

$$\partial_t u(t,R) + \frac{\nu^2}{2} R^2 \partial_{RR}^2 u(t,R) - ru(t,R)$$
$$-\epsilon \int_0^R m(t,\phi) d\phi + \frac{1}{2\beta} \left[(p(t) - \alpha - \partial_R u(t,R))_+ \right]^2 = 0$$

Simulations

An application of Mean Field Games to Oil Production

> Jean Michel LASRY (joint work with PN Giraud, O Guéant, PL Lions)

Introduction History Applications

Dil production

Setup The MFG framework Simulations Generalizati

Effect of the additional term:

Figure: r = 5%, $\rho = 2\%$, $\alpha = 10$, $\beta = 100$, $\sigma = 1.2$, $\delta = 0.1$, $\nu = 2\%$