Approximation of moving average options and valuation of oil-indexed gas supply contracts Journée de la Chaire FDD et du Laboratoire FiME

Marie Bernhart

EDF R&D, OSIRIS, Gestion des Risques Marchés et Valorisation Joint work with Peter Tankov (Paris 7) and Xavier Warin (EDF R&D)

December 6, 2011

edf

Outline

1 Introduction and motivations

Oil indexed gas supply contracts Difficulties and existing valuation methods

2 An approximation for pricing moving average options

A finite-dimensional approximation based on Laguerre decomposition Illustration for approximating uniformly-weighted moving averages

3 Numerical results

Black and Scholes framework Oil indexed gas contracts

Outline

Introduction and motivations

Oil indexed gas supply contracts Difficulties and existing valuation methods

2 An approximation for pricing moving average options

A finite-dimensional approximation based on Laguerre decomposition Illustration for approximating uniformly-weighted moving averages

3 Numerical results

Black and Scholes framework Oil indexed gas contracts

Introduction and motivations •000000	An approximation for pricing moving average options	Numerical results
Oil indexed gas supply contracts		

Oil indexed gas supply contracts are also known as gas Swing options.

- These contracts give to their buyer the right to purchase an amount of gas with spot price *S* to a strike price *M* which is indexed on moving average of various commodities.
- The volume of gas purchased is submitted to local and global constraints.

The payoff at exercise of a normalized Swing contract has the form :

$$\phi(S_t, M_t) = (S_t - M_t)^+$$
 with $M_t = K + \sum_{i=1}^d \alpha_i \overline{X}_t^i$.

- K is a fixed cost, standing for the fixed part of delivery.
- S^i , i = 1, ..., d are correlated commodity prices : gas oil, fuel oil, coal, etc.
- α_i is the weight attributed to commodity with price S^i .
- *X*ⁱ is the moving average of the price of commodity *i* over the δ months preceding the *l* last months before the last updating date : each *X*ⁱ is updated every *q* months.

Introduction and motivations	An approximation for pricing moving average options	Numerical results
Oil indexed gas supply contracts		

Three characteristic numbers of an indexed strike :

- δ is the length of the averaging period,
- I is the time delay (time lag),
- q is the validity period.

We shall consider typical Swing contracts where :

- strike prices are indexed on gas oil and fuel oil prices,
- the characteristic triple (δlq) is equal to (601), (301), (311), etc.

Introduction and motivations	An approximation for pricing moving average options	Numerical results
Oil indexed gas supply contracts		

Fuel oil price from June 2006 to December 2008 observed on the ARA oil market for West Europe (Amsterdam-Rotterdam-Anvers).

6/29

Introduction and motivations	An approximation for pricing moving average options	Numerical results
Oil indexed gas supply contracts		

Gas price from June 2006 to December 2008 observed on the Zeebrugge market. Indexed strike with oil prices from June 2006 to December 2009 observed on the ARA market and $M_t = 2.525 + 0.0286 \bar{X}_t^{fo} + 0.0259 \bar{X}_t^{go}$.

Marie Bernhart Clamart, December 6, 2011

7/29

Difficulties and existing valuation methods

0000000

Why is the valuation of such contrats difficult?

- Valuation of Swing options, see e.g. Jaillet et al. (2004), Bardou et al. (2009)
- The difficulty comes from the indexed strike M :
 - stochastic.
 - average of prices, on a rolling period in time.
- Do not confuse with the simpler problem of Asian American-style options.
- Even (S, S^{fo}, S^{go}) is Markovian, the process $(S, \overline{X}^{fo}, \overline{X}^{go})$ is not. \implies Infinite-dimensional stochastic control problem (in continuous time)
- In discrete time \implies Computational challenge due to high dimensionality

The dimension of the problem is related to the number of time steps within the averaging window : Dimension = $1 + 2(N_{\delta} + N_{I})$.

If the time step = 1 day:

Index type (δlq)	Dimension
(601)	$1 + 2(6 \times 30) = 361$
(311)	$1 + 2(3 \times 30 + 1 \times 30) = 241$

Introduction and motivations	An approximation for pricing moving average options	Numerical results
Difficulties and existing valuation met	hods	

- Due to high dimensionality, the Markovian resolution of the problem seems unfeasible in practice.
- The computational difficulty comes from the estimation of conditional expectations involved in the optimal exercise rule.

Two main approximations are used in practice :

1 Deterministic index The oil indexed strike is assumed to be exogenous.

- Dimension = 1, see e.g. Bardou et al. (2009)
- Equivalent to assume a zero volatility coefficient of the oil prices
- Do not take into account the correlation between the prices of gas and oil

2 Non-Markovian approximation Practioners compute conditional expectations estimators by using only explanatory variables (*S*, *M*).

- Dimension = 2, see e.g. Broadie et Cao (2008)
- Forget the whole history of oil prices on the averaging window (path-dependence)
- Introduce a bias : the resulting solution is suboptimal

Difficulties and existing valuation methods

Our motivations were twofold :

- Propose a new (Markovian) method for pricing moving average options
- 2 Quantify the error made by the non-Markovian approximation most often used in practice

Basic idea of our approach :

- Find a finite-dimensional approximation of the moving average process M
- Reduce the problem dimension (< 8) so that the Markovian resolution becomes feasible by using Monte Carlo techniques

A Finite-Dimensional Approximation for Pricing Moving Average Options, Marie Bernhart, Peter Tankov and Xavier Warin, SIAM Journal on Financial Mathematics, Vol. 2, pp. 989-1013, November 2011

Outline

Introduction and motivations

2 An approximation for pricing moving average options

A finite-dimensional approximation based on Laguerre decomposition Illustration for approximating uniformly-weighted moving averages

Introduction and motivations	An approximation for pricing moving average options	Numerical results
A finite dimensional approximation ba	sed on Laguerre decomposition	

We consider the simplified problem of moving average American option pricing :

$$\sup_{\tau \leq T} \mathbb{E}\left[\phi\left(S_{\tau}, M_{\tau}\right)\right] \quad \text{with} \quad M_t = \int_0^{+\infty} S_{t-u}h(u)du, t \geq 0.$$

- φ is the payoff function.
- S is a Markov process. We set $S_t := S_0, \forall t \leq 0$.
- *h* is a density on $[0, +\infty)$: *M* arithmetic \Rightarrow uniform density $h = \frac{1}{\delta} \mathbb{I}_{[I, I+\delta]}$.

Nota Bene Results directly generalizable to multi-asset models and valuation of multiple-exercise options (Swing).

We would like to find a finite-dimensional approximation of the moving average M:

- find *n* processes $Y := (X^0, \ldots, X^{n-1})$
- such that $(S, X^0, \ldots, X^{n-1})$ are jointly Markov
- and M_t is approximated by some M_t^n which depends deterministically on $(S_t, X_t^0, \ldots, X_t^{n-1})$.

Introduction and motivations

Numerical results

A finite-dimensional approximation based on Laguerre decomposition

 M linear in S ⇒ Assume that Y := (X⁰,...,Xⁿ⁻¹) satisfies a linear SDE and Mⁿ depends deterministically on Y :

$$dY_t = -AY_t dt + \mathbf{1} (\alpha S_t dt + \beta dS_t) \quad \text{and} \quad M_t^n = B^{\perp} Y_t,$$

$$\implies \quad M_t^n = \int_{-\infty}^t B^{\perp} e^{-A(t-u)} \mathbf{1} (\alpha S_u du + \beta dS_u) = K_n S_t + \int_0^{+\infty} S_{t-u} h_n(u) du.$$

• This implies that h_n is of the form (Hankel approximation) :

$$h_n(u) = \sum_{k=1}^{K} e^{-p_k u} \sum_{i=0}^{n_k} c_i^k u^i, \quad n_1 + \ldots + n_K + K = n.$$

• We focus on a subclass of solutions for which h_n has the form :

$$h_n(u) = e^{-pu} \sum_{i=0}^{n-1} c_i u^i$$
 : known as Laguerre approximation.

Introduction and motivations	An approximation for pricing moving average options ○○●○○○○○○○○	Numerical results
A Contraction of the second se	and the descent of the second s	

A finite-dimensional approximation based on Laguerre decomposition

- Finding a finite-dimensional approximation M^n for $M \iff$ Finding an approximation of the form $K_n \delta_0(du) + h_n(u) du$ for the weighting measure of M, h(u) du.
- Laguerre functions are used e.g. in signal processing for approximating infinite-dimensional systems, see Mäkilä (1990).

Let p > 0 be a scale parameter. The scaled Laguerre functions $(L_k^p)_{k>0}$ defined by

$$L_k^p(x) := \sqrt{2p} P_k(2px)e^{-px}, \quad \forall x \ge 0, \forall k \ge 0$$

form an orthonormal basis of $(L^2([0,\infty)), \langle \cdot, \cdot \rangle)$ with P_k , simple Laguerre polynomial.

• Let $H(x) := \int_{x}^{+\infty} h(u) du$. Decomposition of H in a Laguerre series :

$$H_n^p(x) = \sum_{k=0}^{n-1} A_k^p L_k^p(x), \quad A_k^p := \langle H, L_k^p \rangle.$$

• Setting
$$h_n^p(x) = -\frac{d}{dx}H_n^p(x)$$
, we get $h_n^p(x) = \sum_{k=0}^{n-1} a_k^p L_k^p(x)$.

ROD

Introduction and motivations	An approximation for pricing moving average options	Numerical results
A finite dimensional approximation ba	sed on Laguerre decomposition	

• Approximation of the moving average M_t by

$$\begin{split} M_t^{n,p} &= (H(0) - H_n^p(0))S_t + \int_0^{+\infty} S_{t-u} h_n^p(u) du, \quad \forall t \ge 0 \\ &= (H(0) - H_n^p(0))S_t + \sum_{k=0}^{n-1} a_k^p X_t^{p,k}, \end{split}$$

where $X_t^{p,k} := \int_0^{+\infty} S_{t-u} L_k^p(u) du$, $\forall k \le n-1$ Laguerre processes.

• The Laguerre processes have Markovian dynamics :

$$\begin{cases} dX_t^{p,0} = \left(\sqrt{2p}S_t - pX_t^{p,0}\right) dt, \\ \vdots \\ dX_t^{p,k} = \left(\sqrt{2p}S_t - 2p\sum_{i=0}^{k-1}X_t^{p,i} - pX_t^{p,k}\right) dt, \end{cases}$$

with initial values $X_0^{p,k} = S_0(-1)^k \frac{\sqrt{2p}}{p}, \forall k \ge 0.$

A finite-dimensional approximation based on Laguerre decomposition

Proposition : Finite-dimensional approximation of the problem

The process $(S, X^{p,0}, X^{p,1}, \dots, X^{p,n-1})$ is Markovian so that the approximate problem

$$\sup_{\tau \leq T} \mathbb{E}\left[\phi\left(S_{\tau}, M_{\tau}^{n, p}\right)\right]$$

is (n+1)-dimensional where :

- p is the scale parameter of the Laguerre functions,
- *n* is the number of Laguerre functions used in the decomposition.

Assumption (A) : The price process S is a continuous Itô process :

$$S_t = S_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \text{ with } \mathbb{E}\left[\sup_{0 \le t \le T} |b_s|\right] + \mathbb{E}\left[\sup_{0 \le t \le T} |\sigma_s|^{1+\gamma}\right] < \infty$$

for some $\gamma > 0$. Then, it can be shown, see Fischer and Nappo (2010), that :

$$\mathbb{E}\left[\sup_{t,u\in[0,T]:|t-u|\leq h}|S_t-S_u|\right]\leq C\varepsilon(h),\quad \varepsilon(h):=\sqrt{h\ln\left(\frac{2T}{h}\right)}.$$

A finite-dimensional approximation based on Laguerre decomposition

Theorem : Convergence of the finite-dimensional approximation

• Let (A) be satisfied and assume that *h* has compact support, finite variation and is constant in the neighborhood of zero. Then

$$\mathcal{E}^{n,p} := \mathbb{E}\left[\sup_{0 \le t \le T} |M_t - M_t^{n,p}|\right] \le C\varepsilon(n^{-\frac{3}{4}}).$$

• If in addition ϕ is Lipschitz in its second variable, then the pricing error is such that :

$$\sup_{\tau} \mathbb{E}\left[\phi\left(S_{\tau}, M_{\tau}\right)\right] - \sup_{\tau} \mathbb{E}\left[\phi\left(S_{\tau}, M_{\tau}^{n, p}\right)\right] \leq C\varepsilon(n^{-\frac{3}{4}}).$$

 $\underline{\text{Idea of the proof}}: \text{We show that } \mathcal{E}^{n,p} \leq C\varepsilon \left(\left\| H - H_n^p \right\|_2 \right). \text{ Then the properties of the Laguerre coefficients imply } \left\| H - H_n^p \right\|_2 = \left(\sum_{k \geq n} |A_k^p|^2 \right)^{\frac{1}{2}} = \mathcal{O}(n^{-\frac{3}{4}}).$

Numerical results

Illustration for approximating uniformly-weighted moving averages

In the case of a (delayed) arithmetic moving average

$$M_t = rac{1}{\delta} \int_{t-l-\delta}^{t-l} S_u du, \quad \forall t \ge \delta + l,$$

the weighting measure admits an uniform density :

$$h(t)dt = \frac{1}{\delta}\mathbb{I}_{[l,l+\delta]}(t)dt \implies H(x) = \frac{1}{\delta}\left\{(\delta + l - x)^{+} - (l - x)^{+}\right\}.$$

We optimize the approximation by scaling the Laguerre functions $\{L_0^p, \ldots, L_{n-1}^p\}$.

The optimal scale parameter p_{opt}(n, δ, l) is such that :

$$p_{\text{opt}}(n,\delta,l) = \underset{p>0}{\arg\min} \|H - H_n^p\|_2^2 = \underset{p>0}{\arg\min} \left\{ \left(\frac{\delta}{3} + l \right) - \sum_{k=0}^{n-1} |A_k^p|^2 \right\}.$$

where the coefficients $A_k^p = \langle H, L_k^p \rangle$ can be computed explicitly.

• p_{opt} satisfies a scaling relation : $\forall \lambda > 0, p_{\text{opt}}(n, \delta, l) = \frac{p_{\text{opt}}(n, \delta/\lambda, l/\lambda)}{\lambda}$.

edf

Introduction and motivations	An approximation for pricing moving average options	
	00000000000	
10 x x x x x x x x x x		

Ilustration for approximating uniformly-weighted moving averages

Example when
$$\delta = 1$$
 and $l = 0$: density $h(u) = \mathbb{I}_{[0,1]}(u) \Rightarrow H(x) = (1-x)^+$.

n	1	2	3	4	5	6	7	8	9	10
$p_{\rm opt}(n)$	2.15	4.07	6.00	4.23	5.83	7.47	9.15	10.86	9.15	10.73

Numerical results

Illustration for approximating uniformly-weighted moving averages

Black-Scholes model with $S_0 = 100$, r = 5% and $\sigma = 30\%$. Parameters : T = 50 days, $\delta = 10$ days and l = 0.

Simulated trajectory of S, M and its Laguerre approximations $M^{n,p_{opt}(n)}$

n = 3 Laguerre functions (when l = 0) and n = 5 functions (l > 0) are sufficient to provide very accurate dynamics approximation.

Same parameters but $\delta = 5$ days and a volatility $\sigma = 60\%$.

Simulated trajectory of S, M and its Laguerre approximations $M^{n,p_{opt}(n)}$

Numerical results

Illustration for approximating uniformly-weighted moving averages

Oil indexed strike price of type (111) such that $M_t = 0.025 \bar{X}_{g^o}^{to} + 0.030 \bar{X}_{f^o}^{to}$. MRG1 models for gas and oil prices : calibration on the Zeebrugge and ARA markets Oct. 2007-Oct. 2008 ($a_g = 50$, $a_{go} = 37$, $a_{fo} = 37$, $\sigma_{go} = 1$, $\sigma_{go} = 0.30$, $\sigma_{fo} = 0.40$, $\rho_{g,go} = \rho_{g,fo} = 0$, $\rho_{go,fo} = 0.80$).

ROD

Illustration for approximating uniformly-weighted moving averages

	Oil indexed strike	Laguerre approximation				
Updating time	of type (111)	n = 1	<i>n</i> = 3	<i>n</i> = 5	<i>n</i> = 7	
01/12/07	20.852	21.096	20.815	20.915	20.848	
01/01/08	20.954	20.412	20.864	21.052	20.994	
01/02/08	19.977	20.390	20.278	20.106	20.020	
01/03/08	20.372	20.817	20.370	20.286	20.369	
01/04/08	21.132	21.107	20.768	21.096	21.059	
01/05/08	20.548	20.257	20.519	20.595	20.646	
01/06/08	19.450	19.826	19.605	19.656	19.561	
01/07/08	19.427	19.545	19.555	19.362	19.424	
01/08/08	19.524	19.279	19.521	19.519	19.514	
01/09/08	19.259	19.613	19.423	19.195	19.254	
01/10/08	19.789	19.286	19.701	19.705	19.754	
Maximal relative error		2.59%	1.72%	1.06%	0.57%	

Simulated trajectory of M and its Laguerre approximations $M^{n,p_{opt}(n)}$

Outline

Introduction and motivations

Oil indexed gas supply contracts Difficulties and existing valuation methods

2 An approximation for pricing moving average options

A finite-dimensional approximation based on Laguerre decomposition Illustration for approximating uniformly-weighted moving averages

3 Numerical results

Black and Scholes framework Oil indexed gas contracts

Valuation of two kinds of moving average American options

- 1 Options in a Black-Scholes framework : impact when varying δ and I
- 2 Oil indexed gas contracts with realistic oil indexed strike

Some details on the Monte Carlo numerical methods used :

- The Laguerre approximation allows to exactly compute the Laguerre processes $(X^{p,k})_{k>0}$ and $M^{n,p}$ on the time grid.
- Approach of Longstaff and Schwartz (2001), maximal state dimension = 8.
- Non-Markovian method (NM-LS) The conditional expectations are approximated by

 $\mathbb{E}\left[\cdot | (S_t, M_t)\right].$

• Laguerre based method Laguerre approximation and

$$\mathbb{E}\left[\cdot |\mathcal{F}_t\right] = \mathbb{E}\left[\cdot |\left(S_t, X_t^{p_{\text{opt}}, 0}, \dots, X_t^{p_{\text{opt}}, n-1}\right)\right].$$

(Lag-LS) The moving average M is approximated by $M^{n,p_{\text{opt}}}$. (Lag-LS*) Improvement by using M in the optimal exercise rule.

edf

Introduction and motivations	An approximation for pricing moving average options	Numerical results ●○○○
Black and Scholes framework		

- (Lag-LS*) provides better valuation results than (Lag-LS). ٠
- (Lag-LS*) : converged option prices with n = 3 functions (l = 0).
- For standard moving average options (I = 0), the relative error between (Lag-LS*) and (NM-LS) is small : less than 1% in our experiments.

Moving average Call option with T = 50 days, $\delta = 10$ days and l = 0. Number of Monte Carlo paths used : 10 million (Lag-LS*) and 5 million (NM-LS).

edf

ROD

Introduction and motivations	An approximation for pricing moving average options	Numerical results ○●○○
Black and Scholes framework		

- (Lag-LS*) : converged option prices with n = 5 functions (l > 0).
- For delayed moving average options, (Lag-LS*) gives option prices up to 10% above the suboptimal prices given by (NM-LS).

 \implies The Non-Markovian approximation is irrelevant when $l \gg \delta$.

Moving average Call option with T = 50 days and $\delta = 5$ days.

Moving average option prices when varying the time lag /

Introduction and motivations	An approximation for pricing moving average options	Numerical results
Oil indexed gas contracts		

Oil indexed gas contracts with MRG1 models for gas and oil prices : (same parameters as before : calibration on the Zeebrugge and ARA markets).

Parameters for $(Lag-LS^*)$: 20 million of Monte Carlo paths and n = 5 functions.

Contract strike type	Deterministic strike	(NM-LS)	(Lag-LS*)
(601)	3.490	3.512	3.513
(131)	6.195	6.215	6.226
(311)	6.254	6.270	6.277
(111)	7.243	7.313	7.321

Oil indexed gas contract prices

- Accurate pricing results obtained by the Laguerre approximation based method.
- The non-Markovian approximate method constitutes a relevant approximation :
 - Large averaging periods δ and relatively small time delays I
 - Monthly-updated strike prices : smoothing effect
 - Mean-reverting behavior of oil prices

Introduction and motivations	An approximation for pricing moving average options	Numerical results
Conclusion		

The Laguerre approximation based method introduced :

- Very accurate approximation of moving average dynamics
- Only few Laguerre functions needed (n = 3 to 5) : reduction of dimension
- Can be used for relatively general weighting measures

Non-Markovian (NM-LS) vs. Laguerre approximation based method (Lag-LS*) :

Kind of moving average option	Pricing method
Large time delay <i>l</i>	(NM-LS) is significantly suboptimal
	\implies Better use (Lag-LS*)
No time delay $(I = 0)$	(NM-LS) is a relevant approximation
Indexed gas contracts	(NM-LS) is a relevant approximation
	(Lag-LS*) is less competitive (running time $\times 10$)

Perspectives for further research :

• Theoretical justification of the non-Markovian approximation