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Oil indexed gas supply contracts

Oil indexed gas supply contracts are also known as gas Swing options.
∙ These contracts give to their buyer the right to purchase an amount of gas with

spot price S to a strike price M which is indexed on moving average of various
commodities.

∙ The volume of gas purchased is submitted to local and global constraints.

The payoff at exercise of a normalized Swing contract has the form :

�(St ,Mt) = (St −Mt)+ with Mt = K +
d∑

i=1

�i X̄ i
t .

∙ K is a fixed cost, standing for the fixed part of delivery.
∙ S i , i = 1, . . . , d are correlated commodity prices : gas oil, fuel oil, coal, etc.
∙ �i is the weight attributed to commodity with price S i .
∙ X̄ i is the moving average of the price of commodity i over the � months

preceding the l last months before the last updating date : each X̄ i is updated
every q months.
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Oil indexed gas supply contracts

Three characteristic numbers of an indexed strike :
∙ � is the length of the averaging period,
∙ l is the time delay (time lag),
∙ q is the validity period.

We shall consider typical Swing contracts where :
∙ strike prices are indexed on gas oil and fuel oil prices,
∙ the characteristic triple (�lq) is equal to (601), (301), (311), etc.
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Oil indexed gas supply contracts

Fuel oil price from June 2006 to December 2008 observed on the ARA oil market for
West Europe (Amsterdam-Rotterdam-Anvers).

200

300

400

500

600

P
ric

e 
in

 €
/T

on

Fuel Oil DAH

MA Fuel Oil (301)

MA Fuel Oil (601)

0

100

200

300

400

500

600

P
ric

e 
in

 €
/T

on

Fuel Oil DAH

MA Fuel Oil (301)

MA Fuel Oil (601)

Marie Bernhart Clamart, December 6, 2011 6/29



Introduction and motivations An approximation for pricing moving average options Numerical results

Oil indexed gas supply contracts

Gas price from June 2006 to December 2008 observed on the Zeebrugge market.
Indexed strike with oil prices from June 2006 to December 2009 observed on the ARA
market and Mt = 2.525 + 0.0286X̄ fo

t + 0.0259X̄ go
t .
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Difficulties and existing valuation methods

Why is the valuation of such contrats difficult ?
∙ Valuation of Swing options, see e.g. Jaillet et al. (2004), Bardou et al. (2009)

∙ The difficulty comes from the indexed strike M :
▶ stochastic,
▶ average of prices, on a rolling period in time.

∙ Do not confuse with the simpler problem of Asian American-style options.
∙ Even (S , S fo , Sgo) is Markovian, the process (S , X̄ fo , X̄ go) is not.

=⇒ Infinite-dimensional stochastic control problem (in continuous time)
∙ In discrete time =⇒ Computational challenge due to high dimensionality

The dimension of the problem is related to the number of time steps within the
averaging window : Dimension = 1 + 2 (N� + Nl ) .

If the time step = 1 day :

Index type (�lq) Dimension
(601) 1 + 2 (6× 30) = 361
(311) 1 + 2 (3× 30 + 1× 30) = 241
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Difficulties and existing valuation methods

∙ Due to high dimensionality, the Markovian resolution of the problem seems
unfeasible in practice.

∙ The computational difficulty comes from the estimation of conditional
expectations involved in the optimal exercise rule.

Two main approximations are used in practice :

1 Deterministic index The oil indexed strike is assumed to be exogenous.

▶ Dimension = 1, see e.g. Bardou et al. (2009)
▶ Equivalent to assume a zero volatility coefficient of the oil prices
▶ Do not take into account the correlation between the prices of gas and oil

2 Non-Markovian approximation Practioners compute conditional expectations
estimators by using only explanatory variables (S ,M).

▶ Dimension = 2, see e.g. Broadie et Cao (2008)
▶ Forget the whole history of oil prices on the averaging window

(path-dependence)
▶ Introduce a bias : the resulting solution is suboptimal
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Difficulties and existing valuation methods

Our motivations were twofold :

1 Propose a new (Markovian) method for pricing moving average options

2 Quantify the error made by the non-Markovian approximation most often used
in practice

Basic idea of our approach :
∙ Find a finite-dimensional approximation of the moving average process M
∙ Reduce the problem dimension (< 8) so that the Markovian resolution becomes

feasible by using Monte Carlo techniques

A Finite-Dimensional Approximation for Pricing Moving Average Options,
Marie Bernhart, Peter Tankov and Xavier Warin, SIAM Journal on Financial
Mathematics, Vol. 2, pp. 989-1013, November 2011
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A finite-dimensional approximation based on Laguerre decomposition

We consider the simplified problem of moving average American option pricing :

sup
�≤T

E [� (S� ,M� )] with Mt =

∫ +∞

0
St−uh(u)du, t ≥ 0.

∙ � is the payoff function.
∙ S is a Markov process. We set St := S0,∀t ≤ 0.
∙ h is a density on [0,+∞) : M arithmetic ⇒ uniform density h = 1

�
I[l,l+�].

Nota Bene Results directly generalizable to multi-asset models and valuation of
multiple-exercise options (Swing).

We would like to find a finite-dimensional approximation of the moving average M :
∙ find n processes Y := (X 0, . . . ,Xn−1)

∙ such that (S ,X 0, . . . ,Xn−1) are jointly Markov
∙ and Mt is approximated by some Mn

t which depends deterministically on
(St ,X 0

t , . . . ,X
n−1
t ).
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A finite-dimensional approximation based on Laguerre decomposition

∙ M linear in S ⇒ Assume that Y := (X 0, . . . ,Xn−1) satisfies a linear SDE and
Mn depends deterministically on Y :

dYt = −AYtdt + 1 (�Stdt + �dSt) and Mn
t = B⊥Yt ,

=⇒ Mn
t =

∫ t

−∞
B⊥e−A(t−u)1 (�Sudu + �dSu) = KnSt +

∫ +∞

0
St−uhn(u)du.

∙ This implies that hn is of the form (Hankel approximation) :

hn(u) =
K∑

k=1

e−pku
nk∑
i=0

ck
i ui , n1 + . . .+ nK + K = n.

∙ We focus on a subclass of solutions for which hn has the form :

hn(u) = e−pu
n−1∑
i=0

ciui : known as Laguerre approximation.
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A finite-dimensional approximation based on Laguerre decomposition

∙ Finding a finite-dimensional approximation Mn for M ⇐⇒ Finding an
approximation of the form Kn�0(du) + hn(u)du for the weighting measure of M,
h(u)du.

∙ Laguerre functions are used e.g. in signal processing for approximating
infinite-dimensional systems, see Mäkilä (1990).

Let p > 0 be a scale parameter. The scaled Laguerre functions (Lp
k)k≥0 defined by

Lp
k(x) :=

√
2p Pk(2px)e−px , ∀x ≥ 0, ∀k ≥ 0

form an orthonormal basis of
(
L2([0,∞)), ⟨⋅, ⋅⟩

)
with Pk , simple Laguerre polynomial.

∙ Let H(x) :=
∫ +∞
x h(u)du. Decomposition of H in a Laguerre series :

Hp
n (x) =

n−1∑
k=0

Ap
kLp

k(x), Ap
k := ⟨H, Lp

k⟩.

∙ Setting hp
n(x) = − d

dx Hp
n (x), we get hp

n(x) =
∑n−1

k=0 ap
kLp

k(x).
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A finite-dimensional approximation based on Laguerre decomposition

∙ Approximation of the moving average Mt by

Mn,p
t = (H(0)− Hp

n (0))St +

∫ +∞

0
St−uhp

n(u)du, ∀t ≥ 0

= (H(0)− Hp
n (0))St +

n−1∑
k=0

ap
kXp,k

t ,

where Xp,k
t :=

∫ +∞
0 St−uLp

k(u)du, ∀k ≤ n − 1 Laguerre processes.
∙ The Laguerre processes have Markovian dynamics :

⎧⎨⎩
dXp,0

t =
(√

2pSt − pXp,0
t

)
dt,

...

dXp,k
t =

(√
2pSt − 2p

∑k−1
i=0 Xp,i

t − pXp,k
t

)
dt,

with initial values Xp,k
0 = S0(−1)k

√
2p
p , ∀k ≥ 0.
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A finite-dimensional approximation based on Laguerre decomposition

Proposition : Finite-dimensional approximation of the problem

The process (S ,Xp,0,Xp,1, . . . ,Xp,n−1) is Markovian so that the approximate
problem

sup
�≤T

E [� (S� ,Mn,p
� )]

is (n + 1)-dimensional where :
∙ p is the scale parameter of the Laguerre functions,
∙ n is the number of Laguerre functions used in the decomposition.

Assumption (A) : The price process S is a continuous Itô process :

St = S0 +

∫ t

0
bsds +

∫ t

0
�sdWs , with E

[
sup

0≤t≤T
∣bs ∣
]

+ E

[
sup

0≤t≤T
∣�s ∣1+


]
<∞

for some 
 > 0. Then, it can be shown, see Fischer and Nappo (2010), that :

E

[
sup

t,u∈[0,T ]:∣t−u∣≤h
∣St − Su ∣

]
≤ C"(h), "(h) :=

√
h ln

(
2T
h

)
.
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A finite-dimensional approximation based on Laguerre decomposition

Theorem : Convergence of the finite-dimensional approximation

∙ Let (A) be satisfied and assume that h has compact support, finite variation and
is constant in the neighborhood of zero. Then

ℰn,p := E

[
sup

0≤t≤T
∣Mt −Mn,p

t ∣
]
≤ C"(n−

3
4 ).

∙ If in addition � is Lipschitz in its second variable, then the pricing error is such
that : ∣∣∣∣ sup

�
E [� (S� ,M� )]− sup

�
E [� (S� ,Mn,p

� )]

∣∣∣∣ ≤ C"(n−
3
4 ).

Idea of the proof : We show that ℰn,p ≤ C"
(∥∥H − Hp

n
∥∥
2

)
. Then the properties of the

Laguerre coefficients imply
∥∥H − Hp

n
∥∥
2 =

(∑
k≥n

∣∣Ap
k

∣∣2) 1
2

= O(n−
3
4 ).
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Illustration for approximating uniformly-weighted moving averages

In the case of a (delayed) arithmetic moving average

Mt =
1
�

∫ t−l

t−l−�
Sudu, ∀t ≥ � + l ,

the weighting measure admits an uniform density :

h(t)dt =
1
�
I[l,l+�](t)dt =⇒ H(x) =

1
�

{
(� + l − x)+ − (l − x)+

}
.

We optimize the approximation by scaling the Laguerre functions
{

Lp
0 , . . . , L

p
n−1

}
.

∙ The optimal scale parameter popt(n, �, l) is such that :

popt(n, �, l) = arg min
p>0

∥H − Hp
n ∥

2
2 = arg min

p>0

{(
�

3
+ l
)
−

n−1∑
k=0

∣∣Ap
k

∣∣2} .
where the coefficients Ap

k = ⟨H, Lp
k⟩ can be computed explicitly.

∙ popt satisfies a scaling relation : ∀� > 0, popt(n, �, l) =
popt(n,�/�,l/�)

�
.
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Illustration for approximating uniformly-weighted moving averages

Example when � = 1 and l = 0 : density h(u) = I[0,1](u)⇒ H(x) = (1− x)+.

n 1 2 3 4 5 6 7 8 9 10
popt(n) 2.15 4.07 6.00 4.23 5.83 7.47 9.15 10.86 9.15 10.73
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Illustration for approximating uniformly-weighted moving averages

Black-Scholes model with S0 = 100, r = 5% and � = 30%.
Parameters : T = 50 days, � = 10 days and l = 0.

90

95

100

105

110

115

P
ric

e

Spot price S

Moving average M

80

85

90

95

100

105

110

115

0 5 10 15 20 25 30 35 40 45 50

P
ric

e

Time step

Spot price S

Moving average M

MA approx. n = 1

MA approx. n = 3

MA approx. n = 7

Simulated trajectory of S , M and its Laguerre approximations Mn,popt(n)

Marie Bernhart Clamart, December 6, 2011 20/29



Introduction and motivations An approximation for pricing moving average options Numerical results

Illustration for approximating uniformly-weighted moving averages

n = 3 Laguerre functions (when l = 0) and n = 5 functions (l > 0) are sufficient to
provide very accurate dynamics approximation.

Same parameters but � = 5 days and a volatility � = 60%.
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Illustration for approximating uniformly-weighted moving averages

Oil indexed strike price of type (111) such that Mt = 0.025X̄ go
t + 0.030X̄ fo

t .
MRG1 models for gas and oil prices : calibration on the Zeebrugge and ARA markets
Oct. 2007-Oct. 2008 (ag = 50, ago = 37, afo = 37, �go = 1, �go = 0.30, �fo = 0.40,
�g,go = �g,fo = 0, �go,fo = 0.80).
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Illustration for approximating uniformly-weighted moving averages

Oil indexed strike Laguerre approximation
Updating time of type (111) n = 1 n = 3 n = 5 n = 7

01/12/07 20.852 21.096 20.815 20.915 20.848
01/01/08 20.954 20.412 20.864 21.052 20.994
01/02/08 19.977 20.390 20.278 20.106 20.020
01/03/08 20.372 20.817 20.370 20.286 20.369
01/04/08 21.132 21.107 20.768 21.096 21.059
01/05/08 20.548 20.257 20.519 20.595 20.646
01/06/08 19.450 19.826 19.605 19.656 19.561
01/07/08 19.427 19.545 19.555 19.362 19.424
01/08/08 19.524 19.279 19.521 19.519 19.514
01/09/08 19.259 19.613 19.423 19.195 19.254
01/10/08 19.789 19.286 19.701 19.705 19.754

Maximal relative error 2.59% 1.72% 1.06% 0.57%

Simulated trajectory of M and its Laguerre approximations Mn,popt(n)
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Valuation of two kinds of moving average American options

1 Options in a Black-Scholes framework : impact when varying � and l

2 Oil indexed gas contracts with realistic oil indexed strike

Some details on the Monte Carlo numerical methods used :

∙ The Laguerre approximation allows to exactly compute the Laguerre processes
(Xp,k)k≥0 and Mn,p on the time grid.

∙ Approach of Longstaff and Schwartz (2001), maximal state dimension = 8.
∙ Non-Markovian method (NM-LS) The conditional expectations are

approximated by
E [⋅∣ (St ,Mt)] .

∙ Laguerre based method Laguerre approximation and

E
[
⋅ ∣ℱt

]
= E

[
⋅∣
(
St ,X

popt,0
t , . . . ,Xpopt,n−1

t

)]
.

(Lag-LS) The moving average M is approximated by Mn,popt .
(Lag-LS*) Improvement by using M in the optimal exercise rule.
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Black and Scholes framework

∙ (Lag-LS*) provides better valuation results than (Lag-LS).
∙ (Lag-LS*) : converged option prices with n = 3 functions (l = 0).
∙ For standard moving average options (l = 0), the relative error between

(Lag-LS*) and (NM-LS) is small : less than 1% in our experiments.

Moving average Call option with T = 50 days, � = 10 days and l = 0.
Number of Monte Carlo paths used : 10 million (Lag-LS*) and 5 million (NM-LS).
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Black and Scholes framework

∙ (Lag-LS*) : converged option prices with n = 5 functions (l > 0).
∙ For delayed moving average options, (Lag-LS*) gives option prices up to 10%

above the suboptimal prices given by (NM-LS).
=⇒ The Non-Markovian approximation is irrelevant when l ≫ �.

Moving average Call option with T = 50 days and � = 5 days.
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Oil indexed gas contracts

Oil indexed gas contracts with MRG1 models for gas and oil prices : (same parameters
as before : calibration on the Zeebrugge and ARA markets).
Parameters for (Lag-LS*) : 20 million of Monte Carlo paths and n = 5 functions.

Contract strike type Deterministic strike (NM-LS) (Lag-LS*)
(601) 3.490 3.512 3.513
(131) 6.195 6.215 6.226
(311) 6.254 6.270 6.277
(111) 7.243 7.313 7.321

Oil indexed gas contract prices

∙ Accurate pricing results obtained by the Laguerre approximation based method.

∙ The non-Markovian approximate method constitutes a relevant approximation :
▶ Large averaging periods � and relatively small time delays l
▶ Monthly-updated strike prices : smoothing effect
▶ Mean-reverting behavior of oil prices
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Conclusion

The Laguerre approximation based method introduced :
∙ Very accurate approximation of moving average dynamics
∙ Only few Laguerre functions needed (n = 3 to 5) : reduction of dimension
∙ Can be used for relatively general weighting measures

Non-Markovian (NM-LS) vs. Laguerre approximation based method (Lag-LS*) :

Kind of moving average option Pricing method
Large time delay l (NM-LS) is significantly suboptimal

=⇒ Better use (Lag-LS*)
No time delay (l = 0) (NM-LS) is a relevant approximation
Indexed gas contracts (NM-LS) is a relevant approximation

(Lag-LS*) is less competitive (running time ×10)

Perspectives for further research :
∙ Theoretical justification of the non-Markovian approximation
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