Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work	Conclusion 0

A structural risk-neutral model for pricing and hedging electricity derivatives

Nicolas Langrené

PARIS DIDEROT

Univ. Paris Diderot - Sorbonne Paris Cité, LPMA, FiME

Joint work with René Aïd and Luciano Campi

Clamart, 6th Dec. 2011

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Motivatio	n				

Modelling power prices

• Joint modelling with fuel prices

Applications

- Pricing and hedging power derivatives
- \bullet Especially spread options \Longrightarrow valuation of power plants

A structural risk-neutral model for pricing and hedging electricity derivatives

Structural Model ●00000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Previous n fuels	Structural Mod	el			

Nariablesnfuels, $1 \le i \le n$ D_t demand (in MW) C_t^i capacities (in MW) S_t^i fuel prices h_i heat rates ($h_i S_t^i$ in \in /MWh, \nearrow in i)

Electricity price (in €/MWh)

$P_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

Structural Model ●00000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Previous	Structural Mod	el			

Variables		
n	ו	fuels, $1 \le i \le n$
		demand (in MW)
		capacities (in MW)
		fuel prices
h		heat rates $(h_i S_t^i$ in \in /MWh, \nearrow in i)

Structural Model ●00000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Previous n fuels	Structural Mod	el			

Variables	
n	fuels, $1 \le i \le n$
D_t	demand (in MW)
	capacities (in MW)
	fuel prices
	heat rates $(h_i S_t^i \text{ in } \in /MWh, \nearrow \text{ in } i)$

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics	Future work	Conclusion
●00000	00000		000	00	O
Previous	Structural Mod	el			

Variables	
п	fuels, $1 \le i \le n$
D_t	demand (in MW)
C_t^i	capacities (in MW)
	fuel prices
	heat rates $(h_i S_t^i$ in \in /MWh, \nearrow in i)

$P_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

Structural Model ●00000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Previous n fuels	Structural Mod	el			

Variables	
n	fuels, $1 \le i \le n$
D_t	demand (in MW)
C_t^i	capacities (in MW)
S_t^i	fuel prices
	heat rates $(h_i S_t^i \text{ in } \in /MWh, \nearrow \text{ in } i)$

$P_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Structural Model ●00000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Previous n fuels	Structural Mod	el			

Variables	
п	fuels, $1 \le i \le n$
D_t	demand (in MW)
C_t^i	capacities (in MW)
S_t^i	fuel prices
h _i	heat rates $(h_i S_t^i \text{ in } \in /MWh, \nearrow \text{ in } i)$

$$P_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k
ight\}}$$

Structural Model ●00000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Previous	Structural Mod	el			

Variables	
п	fuels, $1 \le i \le n$
D_t	demand (in MW)
C_t^i	capacities (in MW)
S_t^i	fuel prices
h _i	heat rates $(h_i S_t^i \text{ in } \in /MWh, \nearrow \text{ in } i)$

$$P_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k
ight\}}$$

Structural Model 0●0000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Pros and	cons				

+

- Price formation mechanism
- Simple, interpretable
- Observable processes

< 1 k

-

Structural Model 0●0000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Pros and	cons				

+

- Price formation mechanism
- Simple, interpretable
- Observable processes

• Marginal cost vs. Market price

< 1 k

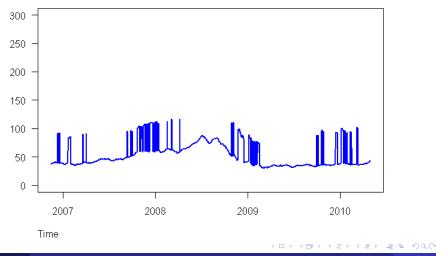
-

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Illustratio Dataset	n (1/4)				

- French power market
- \bullet Time period : 13 $^{\rm th}$ Nov. 2006 to 30 $^{\rm th}$ Apr. 2010 : \sim 3.5 years
- $\bullet\,$ Focus on $19^{\rm th}$ hour of each day
- 2 possible marginal fuels : coal or oil
- $\rm CO_2$ price included
- Average prices (in €/MWh) : Coal~47, Elec~74, Oil~102

Structural Model 000●00	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Illustratio Prices generate	n $(2/4)$ ed by the model				

Spot price (in €/MWh)



Structural Model 0000●0	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Illustratio Comparison to	n (3/4) realized prices				

300 Historical Data Model 250 -200 -150 _ 100 50 0 2007 2008 2009 2010 Time

Spot price (in €/MWh)

-= 1= 990

Structural Model 00000●	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Illustratio Comparison to	n (4/4) realized prices				

2000 -Historical Data Model 1500 -1000 -500 AMULA 0 2007 2008 2009 2010 Time

Spot price (in €/MWh)

Structural Model	Improved Structural Model ●0000	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Price spik	ies				

• Marginal cost $MC_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$

Structural Model	Improved Structural Model ●0000	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Price spik	kes				

• Marginal cost
$$MC_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k
ight\}}$$

• Idea : price spikes are more likely when the residual capacity $RC_t := \sum_{k=1}^n C_t^k - D_t$ is small

-

Structural Model	Improved Structural Model ●0000	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Price spik	kes				

• Marginal cost
$$MC_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k
ight\}}$$

• Idea : price spikes are more likely when the residual capacity $RC_t := \sum_{k=1}^n C_t^k - D_t$ is small

$$\hookrightarrow$$
 Write $\frac{P_t}{MC_t}$ as a function of RC_t

-

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
New spot	model				

Estimated relation :
$$\frac{P_t}{MC_t} = \frac{\gamma}{\left(RC_t\right)^{
u}}$$
 , $\gamma = 6.2 \pm 0.06$, $u = 1.0 \pm 0.01$

Model
$$P_t = g\left(\sum_{k=1}^n C_t^k - D_t\right) \times \left(\sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}\right)$$

Scarcity function

$$g(x) := \min\left(\frac{\gamma}{x^{\nu}}, M\right) \mathbf{1}_{\{x \ge 0\}} + M \mathbf{1}_{\{x \le 0\}}$$

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
New spot	model				

Estimated relation :
$$\frac{P_t}{MC_t} = \frac{\gamma}{\left(RC_t
ight)^{
u}}$$
 , $\gamma = 6.2\pm0.06$, $u = 1.0\pm0.01$

Model

$$P_t = g\left(\sum_{k=1}^n C_t^k - D_t\right) \times \left(\sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}\right)$$

Scarcity function

$$g(x) := \min\left(\frac{\gamma}{x^{\nu}}, M\right) \mathbf{1}_{\{x \ge 0\}} + M \mathbf{1}_{\{x \le 0\}}$$

・ロト・4回ト・4回ト・4回ト・4回ト

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
New spot	model				

Estimated relation :
$$\frac{P_t}{MC_t} = \frac{\gamma}{\left(RC_t
ight)^{
u}}$$
 , $\gamma = 6.2\pm0.06$, $u = 1.0\pm0.01$

Model

$$P_t = g\left(\sum_{k=1}^n C_t^k - D_t\right) \times \left(\sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}\right)$$

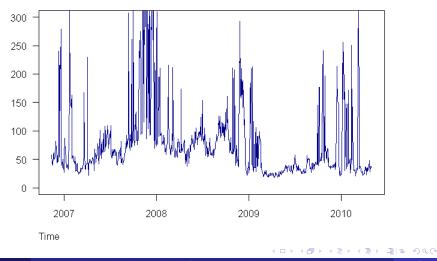
Scarcity function

$$g(x) := \min\left(\frac{\gamma}{x^{\nu}}, M\right) \mathbf{1}_{\{x > 0\}} + M \mathbf{1}_{\{x \le 0\}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

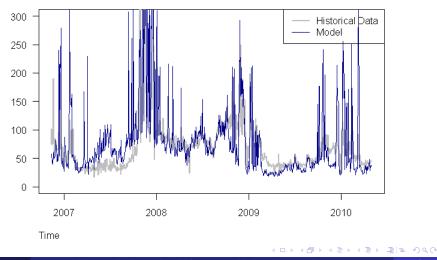
Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Illustratio Prices generate	N ed by the model				

Spot price (in €/MWh)

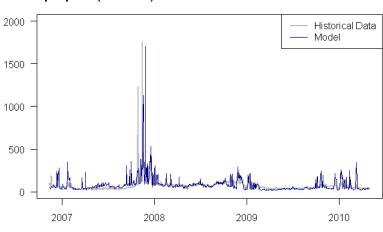


Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Illustratio Comparison to	N realized prices				

Spot price (in €/MWh)



Structural Model 000000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Illustratio Comparison to	N realized prices				



Spot price (in €/MWh)

Time

э

Structural Model	Improved Structural Model	Hedging and Pricing ●00000	Numerics 000	Future work 00	Conclusion O
Hedging	criterion				

Incomplete market

- Choice of a hedging criterion
- Ex : super-replication, utility indifference, mean-variance,...
- Our choice : Local Risk Minimization

Local Risk Minimization

- Explicit formulae
- Split contingent claims between the **hedgeable part** (fuels) and the **non-hedgeable part** (demand, capacities)
- \bullet Pricing : expectated discounted payoff under $\widehat{\mathbb{Q}}$

Structural Model	Improved Structural Model	Hedging and Pricing ●00000	Numerics 000	Future work 00	Conclusion O
Hedging	criterion				

Incomplete market

- Choice of a hedging criterion
- Ex : super-replication, utility indifference, mean-variance,...
- Our choice : Local Risk Minimization

Local Risk Minimization

- Explicit formulae
- Split contingent claims between the **hedgeable part** (fuels) and the **non-hedgeable part** (demand, capacities)
- \bullet Pricing : expectated discounted payoff under $\widehat{\mathbb{Q}}$

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics	Future work	Conclusion
000000		0●0000	000	00	O
Futures _{Example}					

Pricing

$$F_{t}^{e}(T) = \sum_{i=1}^{n} h_{i}G_{i}^{T}(t, C_{t}, D_{t}) F_{t}^{i}(T)$$

Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

15 / 25

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics	Future work	Conclusion
000000		0●0000	000	00	O
Futures _{Example}					

Pricing

$$F_{t}^{e}(T) = \sum_{i=1}^{n} h_{i}G_{i}^{T}(t, C_{t}, D_{t}) F_{t}^{i}(T)$$

$$G_i^{T}(t,C_t,D_t) = \mathbb{E}_t \left[g \left(\sum_{k=1}^n C_T^k - D_T \right) \mathbf{1}_{\left\{ \sum_{k=1}^{i-1} C_T^k \le D_T \le \sum_{k=1}^i C_T^k \right\}} \right]$$

Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

Structural Model	Improved Structural Model	Hedging and Pricing 00●000	Numerics 000	Future work 00	Conclusion O
Modelling	the inputs				

$D_t, C_t^i, i=1\ldots n$

deterministic function + Ornstein-Uhlenbeck

S_t^i , $i = 1 \dots n$

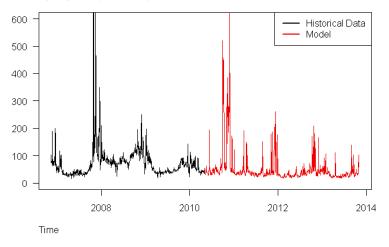
spread
$$Y_t^i := h_i S_t^i - h_{i-1} S_t^{i-1}$$

 Y_t^i : geometric Brownian motion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Spot Traj	ectories $(1/3)$				

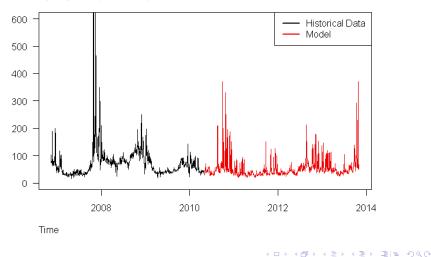
Spot price (in €/MWh)



< E

Structural Model	Improved Structural Model	Hedging and Pricing 0000●0	Numerics 000	Future work 00	Conclusion O
Spot Traj	ectories (2/3)				

Spot price (in €/MWh)

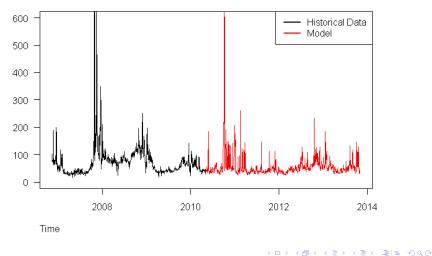


3

< 一型

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics	Future work	Conclusion
	00000	00000●	000	00	O
Spot Traj	ectories (3/3)				

Spot price (in €/MWh)



3

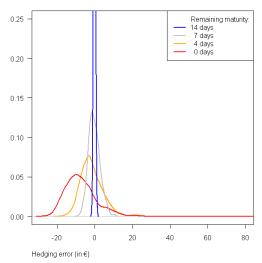
< 一型

Structural Model 000000	Improved Structural Model	Hedging and Pricing	Numerics ●00	Future work 00	Conclusion 0
	merical test of Power Futures (1/2	?)			

- Hedging a (fictitious) power futures with a delivery period of 1 hour
- Using a (daily rebalanced) portfolio of futures on fuels

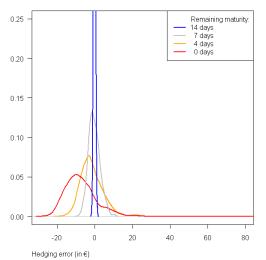
Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 0●0	Future work 00	Conclusion O
Result Partial hedging	g of Power Futures (2/2	2)			

Distribution of hedging error: Time evolution



Structural Model 000000	Improved Structural Model	Hedging and Pricing	Numerics ○●○	Future work 00	Conclusion O
Result Partial hedging	g of Power Futures (2/2	2)			

Distribution of hedging error: Time evolution



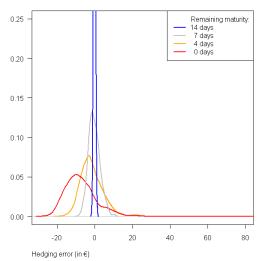
• Far from maturity : perfect hedging, basket of fuels

< □ > < 同 >

A B M A B M

Structural Model 000000	Improved Structural Model	Hedging and Pricing	Numerics ○●○	Future work 00	Conclusion O
Result Partial hedgin	g of Power Futures (2/2	2)			

Distribution of hedging error: Time evolution



• Far from maturity : perfect hedging, basket of fuels

• Close to maturity : inefficient partial hedging

< 一型

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics	Future work 00	k Conclusion O
Other exa	amples				

- Spread options, options on futures,...
- Semi-explicit pricing : numerical integration
- Partial hedging by means of fuel futures and power futures

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O	
Other exa	mples					

- Spread options, options on futures,...
- Semi-explicit pricing : numerical integration
- Partial hedging by means of fuel futures and power futures

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion O
Other exa	amples				

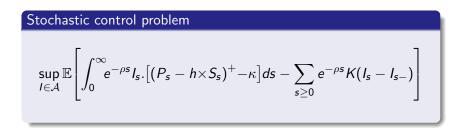
• Spread options, options on futures,...

• Semi-explicit pricing : numerical integration

• Partial hedging by means of fuel futures and power futures

Structural Model	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work ●0	Conclusion O
Investmer	nts in power pla	nts			

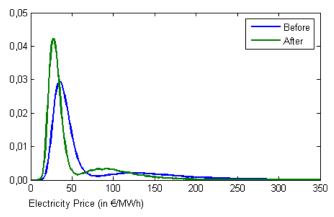
Spot model \Longrightarrow Spread options \Longrightarrow Power plants \Longrightarrow Investments



◆母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ● ● ● ●

Structural Model 000000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work ○●	Conclusion O
Feedback	effect				

Before : price density at time T = 1 year After : add 2GW of new peak-load assets



Price densities

-

Structural Model 000000	Improved Structural Model	Hedging and Pricing	Numerics 000	Future work 00	Conclusion •
Conclusio	n				

• New spot model : marginal cost + scarcity effect

- Derivatives pricing : futures, spread options, options on futures,...
- Partial hedging using fuel futures and power futures
- Still extensions and improvements
- But interesting preliminary results

Structural Model Improved Structural Model		Hedging and Pricing	Numerics 000	Future work 00	Conclusion •	
Conclusio	n					

- New spot model : marginal cost + scarcity effect
- Derivatives pricing : futures, spread options, options on futures,...
- Partial hedging using fuel futures and power futures
- Still extensions and improvements
- But interesting preliminary results

Structural Model Improved Structural Model		Hedging and Pricing	Numerics 000	Future work 00	Conclusion •
Conclusio	n				

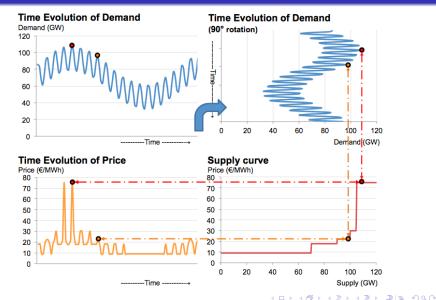
- New spot model : marginal cost + scarcity effect
- Derivatives pricing : futures, spread options, options on futures,...
- Partial hedging using fuel futures and power futures
- Still extensions and improvements
- But interesting preliminary results

Structural Model Improved Structural Model		Hedging and Pricing	Numerics 000	Future work 00	Conclusion •
Conclusio	n				

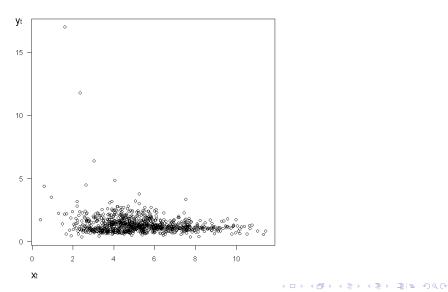
- New spot model : marginal cost + scarcity effect
- Derivatives pricing : futures, spread options, options on futures,...
- Partial hedging using fuel futures and power futures
- Still extensions and improvements
- But interesting preliminary results

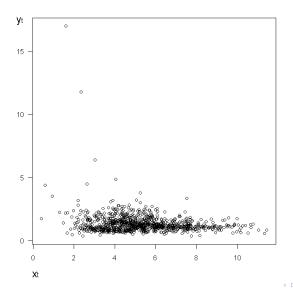
	MC o	Scarcity 00000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Qu	estio	ns						

Time evolution of marginal costs



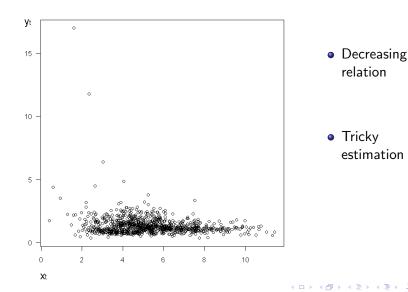
	MC o	Scarcity ●0000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Est	timati	ion $(1/8)$)					





A structural risk-neutral model for pricing and hedging electricity derivatives

-



ା≕ ୬୯୯ 28 / 25

	MC o	Scarcity 0●000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Est	timati	ion (2/8))					

Quantiles

$$\mathbb{P}\left(X\leqslant q_X(p)
ight)=p$$

 $\mathbb{P}\left(Y\leqslant q_Y(p)
ight)=p$

	MC o	Scarcity 0●000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Est	timati	ion (2/8))					

Quantiles

$$\mathbb{P}\left(X\leqslant q_X(p)
ight)=p$$

 $\mathbb{P}\left(Y\leqslant q_Y(p)
ight)=p$

Idea

If
$$Y = h(X)$$
, $h \searrow$
Then $q_Y(1-p) = h(q_X(p))$, $0 \le p \le 1$

Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

	MC o	Scarcity 0●000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Est	timati	ion (2/8))					

Quantiles

$$\mathbb{P}\left(X\leqslant q_X(p)
ight)=p$$

 $\mathbb{P}\left(Y\leqslant q_Y(p)
ight)=p$

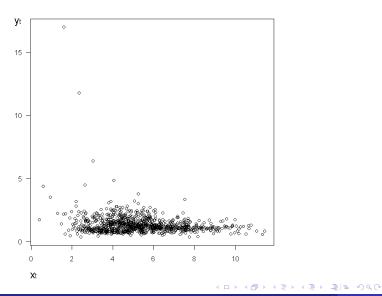
Idea

If
$$Y = h(X)$$
, $h \searrow$
Then $q_Y(1-p) = h(q_X(p))$, $0 \le p \le 1$

\Rightarrow Estimation on the quantiles

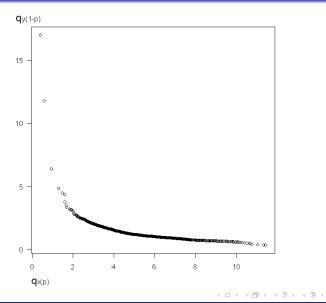
イロト イボト イヨト イヨ

	MC o	Scarcity 0000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Es	timati	on (3/8)					



Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

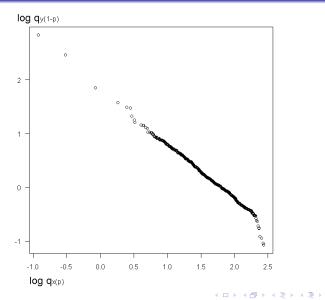


Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

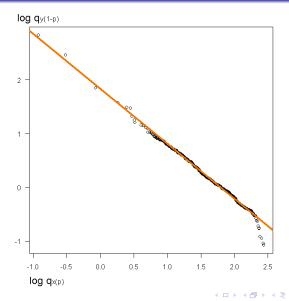
l = ∽ < ભ 31 / 25

	MC o	Scarcity 0000●000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Es	timati	ion (5/8)					



A structural risk-neutral model for pricing and hedging electricity derivatives

∃ = ∽ < <> 32 / 25

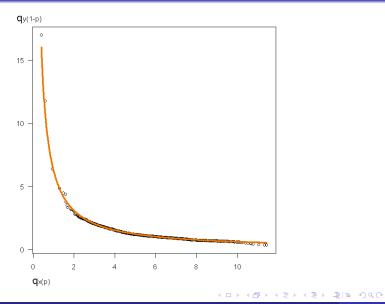


A structural risk-neutral model for pricing and hedging electricity derivatives

·≡|= ∽৭ে 33 / 25

-

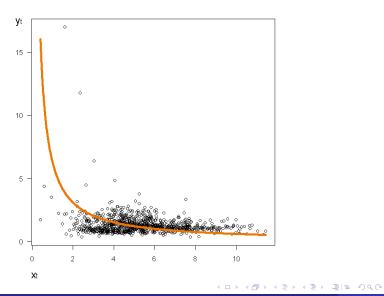
	MC	Scarcity	Comparison	Inputs	Hedging	Spread	Premium	Extension
	o	000000●0	00	000	000	00	00	0
Es	timati	ion (7/8))					



Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

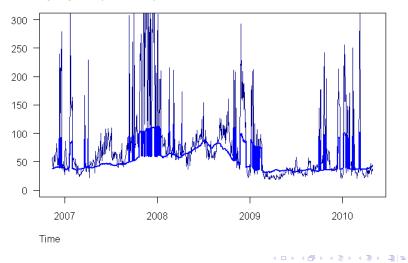
	MC o	Scarcity 0000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium 00	
Es	timati	ion (8/8))					

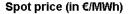


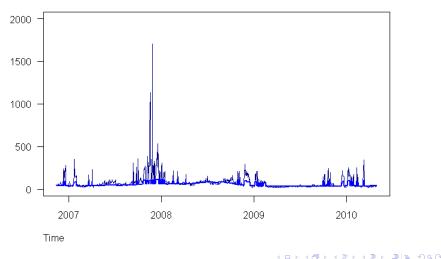
Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

Spot price (in €/MWh)







	MC o	Scarcity 00000000	Comparison 00	Inputs ●00	Hedging 000	Spread 00	Premium 00	
C_t	and	D_t						

Building blocks

$$D_{t} = f_{D}(t) + Z_{D}(t)$$
$$C_{t}^{i} = f_{i}(t) + Z_{i}(t)$$

Stochastic part

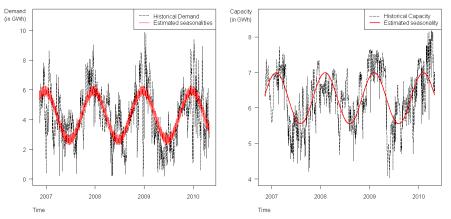
$$dZ_{D}(t) = -\alpha_{D}Z_{D}(t) dt + bdW_{t}^{D}$$
$$dZ_{i}(t) = -\alpha_{i}Z_{i}(t) dt + \beta_{i}dW_{t}^{i}$$

Deterministic part

$$f_{D}(t) = d_{1} + d_{2} \cos\left(2\pi \frac{t - d_{3}}{l_{1}}\right) + d_{4} \cos\left(2\pi \frac{t - d_{5}}{l_{2}}\right)$$
$$f_{i}(t) = c_{1}^{i} + c_{2}^{i} \cos\left(2\pi \frac{t - c_{3}^{i}}{l_{1}}\right) + f_{i}^{evo}(t)$$

		Scarcity 00000000	Comparison 00	Inputs 0●0	Hedging 000	Spread 00	Premium 00	
•	and l							

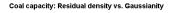
Demand seasonalities



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	Scarcity 00000000	Comparison 00	Inputs 00●	Hedging 000	Spread 00	Premium 00	
 and a	D _t						•

Demand: Residual density vs. Gaussianity



イロト イヨト イヨト イヨト



	MC o	Scarcity 00000000	Comparison 00	Inputs 000	Hedging ●00	Spread 00	Premium 00	
He	dging	strateg	y					

Payoff H, price
$$V_t^H := \widehat{\mathbb{E}}[H|\mathcal{F}_t] = \phi(t, \mathcal{F}_t(T^*), \mathcal{C}_t, D_t)$$

Hedging strategy

$$\begin{aligned} \xi_t^e &= \frac{1}{||\theta_t^C, \theta_t^D||^2} \left\{ \sum_{i=1}^n \theta_t^{C,i} \frac{\partial \phi}{\partial c_i} \beta_i + \theta_t^D \frac{\partial \phi}{\partial z} b \right\} \\ \xi_t^i &= \frac{\partial \phi}{\partial y_i} + \frac{h_i G_i^{T^*}(t, C_t, D_t)}{||\theta_t^C, \theta_t^D||^2} \left\{ \sum_{i=1}^n \theta_t^{C,i} \frac{\partial \phi}{\partial c_i} \beta_i + \theta_t^D \frac{\partial \phi}{\partial z} \right\} \end{aligned}$$

where
$$dF_t^e := \theta_t^S . d\widehat{W}_t + \theta_t^C . dW_t^C + \theta_t^D dW_t^D$$

	MC	Scarcity	Comparison	Inputs	Hedging	Spread	Premium	Extension
	o	00000000	00	000	0●0	00	00	0
Dy	nami	cs of pow	wer futu	res				• •

$$dF_t^e = \theta_t^S \cdot d\widehat{W}_t + \theta_t^C \cdot dW_t^C + \theta_t^D dW_t^D$$

= $e^{r(T^*-t)} \sum_{i=1}^n \left(\sum_{k=i}^n G_k^{T^*}(t, C_t, D_t) \right) \sigma_i Y_t^i d\widehat{W}_t^i$
+ $\sum_{i=1}^n h_i F_t^i(T^*) \frac{\partial G_i^{T^*}}{\partial d}(t, C_t, D_t) b(t, D_t) dW_t^D$
+ $\sum_{i=1}^n h_i F_t^i(T^*) \sum_{k=1}^n \frac{\partial G_i^{T^*}}{\partial c_k}(t, C_t, D_t) \beta_k(t, C_t^k) dW_t^{C,k}$

Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

42 / 25

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回日 のQで

• Explicit, as a function of the *extended incomplete Goodwin-Staton integral* :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{\left(y+z\right)^{\nu}} e^{-z^{2}} dz$$

< 一型

• Explicit, as a function of the *extended incomplete Goodwin-Staton integral* :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{(y+z)^{\nu}} e^{-z^{2}} dz$$

• Numerically :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \frac{1}{2}e^{-y^2}\sum_{n=0}^{\infty}\Gamma\left(\frac{1-\nu}{2} + \frac{n}{2},(x+y)^2\right)\frac{(2y)^n}{n!}$$

• Explicit, as a function of the *extended incomplete Goodwin-Staton integral* :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{\left(y+z\right)^{\nu}} e^{-z^{2}} dz$$

• Numerically :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \frac{1}{2}e^{-y^2}\sum_{n=0}^{\infty}\Gamma\left(\frac{1-\nu}{2} + \frac{n}{2},(x+y)^2\right)\frac{(2y)^n}{n!}$$

 $\Gamma(\alpha, x) = \text{incomplete Gamma function} = \int_x^\infty t^{\alpha-1} e^{-t} dt$

	MC o	Scarcity 00000000	Comparison 00	Inputs 000	Hedging 000	Spread ●0	Premium 00	
Spi	read o	option						

Payoff
$$H = (P_T - h_1 S_T^1 - K)^+$$

Pricing

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z > 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \le 0\}} \right\} dcdz,$$

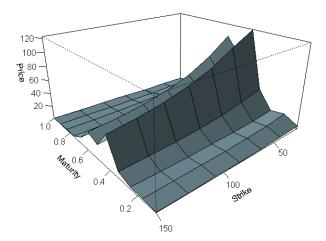
$$\begin{split} \phi_1 &= (g-1)BS_0\left(\sigma_1, \frac{K}{g-1}\right) \mathbf{1}_{\{g>1\}} \qquad g = g\left(c+z\right) \\ \phi_2 &= g\int_0^\infty \hat{f}_{Y_T^1}(y)BS_0\left(\sigma_2, \frac{K+(1-g)y}{g}\right) \left(\mathbf{1}_{\{g\leq1\}} + \mathbf{1}_{\{g>1\}}\mathbf{1}_{\{y<\frac{K}{g-1}\}}\right) dy \\ &+ \left(gY_0^2 \mathcal{N}\left(\frac{\left(r - \frac{\sigma_1^2}{2}\right)T - \ln\left(\frac{K}{(g-1)Y_0^1}\right)}{\sigma_1\sqrt{T}}\right) + (g-1)BS_0\left(\sigma_1, \frac{K}{g-1}\right)\right) \mathbf{1}_{\{g>1\}} \end{split}$$

A structural risk-neutral model for pricing and hedging electricity derivatives

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Nicolas Langrené

	MC	Scarcity	Comparison	Inputs	Hedging	Spread	Premium	Extension
	o	00000000	00	000	000	○●	00	0
Spread option Numerical example								



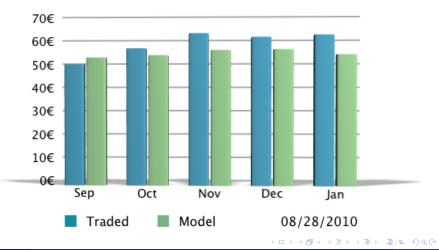
Nicolas Langrené

A structural risk-neutral model for pricing and hedging electricity derivatives

45 / 25

		Scarcity 00000000	Comparison 00	Inputs 000	Hedging 000	Spread 00	Premium ●0	
Market vs. model $(1/2)$ Risk premium vs. model error								

Power Futures



A structural risk-neutral model for pricing and hedging electricity derivatives

Implied Load Spread 1.0 GW 0.5 GW 0.0 GW -0.5 GW

Oct

08/28/2010

Sep

Nov

Dec

Jan

	MC o	Scarcity 00000000	Comparison	Inputs 000	Hedging 000	Spread 00	Premium 00	Extension ●
Extensions								

Done

- Extend the numerical application to every single hour of the day (3 marginal fuels)
- Extension to payoffs with delivery periods $[T_1, T_2]$
- Compute the residual market price of risk

To do

- Better models for fuels (spot and futures) : convenience yield, interest rates, cointegration...
- Better volatility models
- Compare different hedging criteria
- Application to investment opportunities