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1 FIME June 29, 2010



Validation of hedging models for energy markets

Hedging with futures

Black-Scholes framework

The local volatility model

Stochastic volatility models (Etchepare and Tankov)

The Exponential NIG Lévy model
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Hedging with futures
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Hedging with futures

• Let us consider, Ft , the price quoted at time t for the delivery of
one MWh on the period [TF ,TF + θ], with TF ≥ t.

Quotation dates t Time to maturity T − t Delivery period [T ,T + θ]

• Let Vt denote the value of a self-financed portfolio with position
Φt at time t on the future Ft . Recall that entering in a futures
contract is free, hence

Vt+∆t = ϕt(Ft+∆t − Ft) + er∆tVt , where (1)

I r is the interest rate ;
I V0 is the initial value of the portfolio and should correspond

to the initial price of the corresponding option for a hedging
portfolio ;
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Hedging tests description

• 6 Hedging strategies: Implicit-Delta, SABR-Delta, SABR-LRM,
Heston and VO-NIG are implemented daily on EEX futures prices
with the same initial value V0 observed on the options market.

• Calibrating and fitting models
I BS, SABR, Heston and the Local Volatility model are calibrated daily on EEX

options prices.

I The Lévy model is fitted at the beginning of the hedging period on EEX futures
prices of the hedging period.

• The hedging error comparing the hedging portfolio value VT

with the option payoff at maturity is computed

εT = VT − (FT − K )+ .

• 12× 21 Call options are considered : on 12 months (Jan-08, . . . ,
Dec-08) with for each month 21 strikes.

=> The set of (quasi-independent) obversations εMonth,K
T is too

small to produce precise statistics.
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Black-Scholes framework
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Black model for futures prices

• Let us consider, Ft , the price quoted at time t for the delivery of
one MWh on the period [TF ,TF + θ], with TF ≥ t.

Quotation dates t Time to maturity T − t Delivery period [T ,T + θ]

• The Black-Scholes model assumes that the price process (Ft)t≥0

is such that

dFt = Ft (µdt + σdWt) , where (2)

I W is the Standard Brownian motion on R ;

I σ is the constant volatility ;

I µ the drift.
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BS formula for pricing

• Under the BS assumption, the value of the European call, with
underlying (Ft)t≥0, maturity T ≤ TF and strike K is

C (F , t; K ,T , r , σ) = e−r(T−t)Ẽ[(FT − K )+ |Ft = F ] , (3)

the expectation of the pay-off under the martingale measure P̃ for
which (Ft) is a martingale.
• The log-normal assumption yields the BS formula :

C = CBS(F , t; K ,T , r , σ) = e−r(T−t) (FN (d1)− KN (d2)) , (4)

where N denotes the distribution function of N (0, 1) and

d1 =
log(F/K )

σ
√

T − t
+
σ
√

T − t

2
and d2 = d1 − σ

√
T − t . (5)
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BS formula and ∆ hedging

• By Ito’s Formula

e−rT (FT − K)+ = C0 +

∫ T

0
e−rt

[
∂C

∂t
+

1

2
σ2F 2 ∂

2C

∂F 2
− rC

]
dt +

∫ T

0
e−rt ∂C

∂F
dFt .

(6)

• As (Ft) and e−rtC (F , t; K ,T , r , σ) are martingales under P̃ then
∂C

∂t
+

1

2
σ2F 2∂

2C

∂F 2
− rC = 0 Pricing ,

(FT − K )+ = C0 +

∫ T

0
er(T−t)∆BS

t dF̃t Hedging .

with

∆BS
t =

∂CBS

∂F

∣∣∣∣
F=Ft

= N (d1(Ft , t; K ,T , σ)) . (7)
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Implicit volatility

• As CBS is strictly increasing with σ > 0, one can define the
concept of implicit volatility associated with a call price C at time
t for an underlying F by inversion of the BS formula :

CBS(F , t; K ,T , r , σimp) = C . (8)

I A single number to compare option prices corresponding to
different strikes and maturities.

I A simple hedging strategy consisting in injecting the implicit
volatility in the Delta formula : Implicit Delta

I Unfortunately, the model is intrinsicly incoherent => difficult
to apply for exotic options.
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Example of volatility smile on electricity market

Implicit volatility on the futures Germany 2008 (ICAP data) :

=> Necessity to introduce a new model to price exotic options
involving multiple strikes and maturities.
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Example of volatility smile on electricity market

Implicit volatility on EEX market :

=> Necessity to introduce a new model to price exotic options
involving multiple strikes and maturities.
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The local volatility model
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Local volatility model

• Dupire (1994) proposed the local volatility model :

dFt = Ft (µ(t,Ft)dt + σ(Ft , t)dWt) . (9)

• Explains the ”smile” in a coherent model:
Dupire showed that for any pricing rule without arbitrage there
exists a unique local volatility function inducing the same call
prices.

• Complete market model which provides in theory a perfect
hedging strategy that does not involve options which are not liquid
in energy markets.
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Calibration of Local volatility

• Dupire’s model yields call prices C (F , t; K ,T , r , σ) solutions of
Dupire’s PDE for a given initial value F of the underlying future
price:

∂C

∂T
=

1

2
σ2(K ,T )K 2 ∂

2C

∂K 2
− rC , for all K > 0 , 0 < T ≤ Tl

C (K ,T = 0) = (F − K )+ , for all K > 0 .

=> Solving this PDE gives straightforwardly C (Kj ,Tj) for a grid
(Kj ,Tj)j∈G .

• Calibration consists in solving an inverse problem : Looking for
the local volatility function (F , t) 7→ σ(F , t) inducing option prices
(or implicit volatility points) as close as possible to observations(
C ∗i
)
i∈I (or

(
σi

imp

)
i∈I) for a given set of strike and maturities

(Ki ,Ti )i∈I .
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Calibration algorithm (Cont and BenHamida 2005)

• Calibration problem:

inf
θ∈E

G (θ) where G (θ) =
I∑

i=1

|C θ(t,Ft ,Ti ,Ki )− C ∗i |2ωi . (10)

• Parametrization of the local volatility by Splins (φi )i=1,··· ,n:

σθ(x) =
n∑

i=1

θiφi (x) , for all x ∈ R . (11)

• Particle system (θ1, · · · , θN) converging to glocal minima of G :
I Initialisation: simulate N iid random variables (θ1,0, · · · , θN,0) representing N

possible values of parameter θ.

I Mutation: each particle θk,i evolves independently according to a transition
kernel Qk which yields a new particle system (θ̃k+1,1, · · · , θ̃k+1,N).

I Selection: each particle is selected according to the value of the cost function
G . Particles with high value of G are killed whereas particles with small value of
G are multiplied.
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Example of calibration on electricity market

Local volatility calibration on the futures Germany 2008 (ICAP
data) :

Option prices for different strikes Local volatility function
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Local volatility and hedging

• If (Ft)t≥0 follows the local volatility model (14). By definition of
implicit volatility (8), we have :

CBS(F , t; K ,T , r , σBS
imp) = C (F , t; K ,T , r , σ) . (12)

For fixed K , T and r , σBS
imp is a function of the initial price F .

• The sensitivity of C w.r.t. the underlying F is :

∂C

∂F
=
∂CBS

∂F
+
∂CBS

∂σBS
imp

∂σBS
imp

∂F
. (13)

=> Implicit ∆ hedging induces a risk proportionnal to the Vega.
=> To implement an efficient hedging strategy one has to either

I make assumptions on the ”skew”
∂σBS

imp

∂F
, which is in general difficult to handle;

I use Hagan & Woodward formula (1999): ∃ a deterministic function GHW s.t.

σBS
imp ≈ GHW(F ,K ,T , σ, σ′, σ′′) .
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Local volatility model: Pros and Cons

• Dupire (1994) proposed the local volatility model :

dFt = Ft (µ(t,Ft)dt + σ(Ft , t)dWt) . (14)

Pros

I Explains the ”smile” in a coherent model

I Complete market model with hedging strategies that do not
involve options which are not liquid in energy markets

Cons (...to check on electricity market)

I The dynamics of the volatility surface predicted by the model
is often wrong

I The model proposes a Delta hedging strategy which in theory
is perfect but in practice there is a vega risk which is not
taken into account in the pricing
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Stochastic volatility models
(Etchepare and Tankov)
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Heston Model

• The futures price process is supposed to follow under the risk
neutral probability, the SDE

dFt

Ft
=
√

vtdWt , with

dvt = k(θ − vt)dt + ξρ
√

vtdWt + ξ
√

1− ρ2√vtdW ′
t ,

(15)
where W and W ′ are two independant Brownian Motions.

I vt > 0 when 2κ∗θ∗ ≥ ξ2.
I v0, ρ and ξ determine resp. the level, the slope and the

convexity of the smile for a fixed maturity.
I κ∗ and θ∗ determine the implicit volatility term structure

(fixed in ou case).

• If the price is supposed to be without arbitrage then

dCt =

(
∂C

∂F
Ft
√

vt +
∂C

∂v
ξ
√

vt

)
dWt +

∂C

∂v
ξ
√

1− ρ2
√

vtdW ′t . (16)
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Impact of the correlation ρ on the BS implicit volatility
produced by Heston Model
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Local quadratic hedging strategy with Heston Model

• Minimizing the global quadratic risk (=local quadratic risk)
under the risk neutral measure i.e. in discrete time solving

min
φk

E[(er∆tCk + φk∆Fk − Ck+1)2 | Fk ] , for k = 0, · · · , n − 1,

yields the following hedging strategy:

δLRM
t =

d〈C ,F 〉t
d〈F ,F 〉t

=
∂C

∂F
+
ρξ

Ft

∂C

∂v
. (17)

I The risk generated by W is hedged but not W ′

I δLRM
t coincides with the variance optimal strategy when we

are under the martingale probability
I Estimating δLRM

t requires to estimate precisely the
instantaneous volatility vt .

I ∂C/∂F and ∂C/∂v are computed via closed formula for the
call price.
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SABR Model (Hagan, Kumar, Lesniewski & Woodward (2002))

• The price process is supposed to follow the SDE

dFt = αtF
β
t dWt ,

dαt

αt
= ερdWt + ε

√
1− ρ2dW ′

t , (18)

I α0, ρ and ε determine resp. the level, the slope and the
convexity of the smile for a fixed maturity.

I There is no mean-reverting in the volatility process.

I The model is able to represent precisely the volatility smile for
a fixed maturity.

24 FIME June 29, 2010



Hedging with SABR model

I There exists a deterministic function HHagan s.t.

σ̂BS ≈ HHagan(F ,K ,T , α, ν, β, ρ).

I The hedging ratio is given by

δLRM
t := ∆opt =

∂ĈBS

∂F
+
∂ĈBS

∂σ̂BS

(
∂σ̂BS

∂F
+
∂σ̂BS

∂α

ρν

F β

)
.

I An alternative approach proposed by Hagan et al. is to
consider the volatility α as a parameter and not as a state
variable:

δHagan
t :=

∂ĈBS(F , σ̂BS(F , α))

∂F
=
∂ĈBS

∂F
+
∂ĈBS

∂σ̂BS

∂σ̂BS

∂F
.
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The Exponential NIG Lévy model
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Properties of the Normal Inverse Gaussian distribution

• Mean variance mixture: α > 0 , 0 ≤ |β| < α , δ > 0 , µ ∈ R

X = µ+βY +
√

Y N , where N ∼ N (0, 1) , ⊥ Y ∼ IG(δ, γ) ,

with γ =
√
α2 − β2.

• Density fNIG (x) = α
π exp

(
δγ + β(x − µ)

)K1

(
αδ
√

1+(x−µ)2/δ2
)

√
1+(x−µ)2/δ2

where K1 the Bessel function of the third type.

• Mean and variance EX = µ+
δβ

γ
, VarX =

δα2

γ3
.

I Comparison of the Gaussian (blue) and NIG (black) densities

Densities Log–densities NIG residuals
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VO strategy for the Lévy model (Hubalek et al. 2006)

If the payoff function can be written as a Laplace transform i.e.

Φ(s) =

∫
C

SzΠ(dz) , where Π is a finite complex measure , then

the variance-optimal capital and hedging strategy (V0, ϕ) are s.t.

V0 = H0 and ϕn = ξn +
λ

Sn−1
(Hn−1 − V0 −

n−1∑
k=0

ϕk∆Sk) ,

where (Hn, ξn) defines the FS decomposition of the payoff:

Hn :=

∫
C

Sz
nh(z)N−nΠ(dz) , and ξn :=

∫
C

Sz−1
n−1g(z)h(z)N−nΠ(dz) ,

with g(z) :=
m(z + 1)−m(1)m(z)

m(2)−m(1)2
, and h(z) := m(z)− (m(1)− 1)g(z) ,

where m is the moment generating function of X1 = log(S1
S0

), and

λ :=
m(1)− 1

m(2)− 2m(1) + 1
.
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Hedging tests on real data
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Hedging tests description

• 6 Hedging strategies: Implicit-Delta, SABR-Delta, SABR-LRM,
Heston and VO-NIG are implemented daily on EEX futures prices
with the same initial value V0 observed on the options market.

• Calibrating and fitting models
I BS, SABR, Heston and the Local Volatility model are calibrated daily on EEX

options prices.

I The Lévy model is fitted at the beginning of the hedging period on EEX futures
prices of the hedging period.

• The hedging error compares the hedging portfolio value VT with
the option payoff at maturity is computed

εT = VT − (FT − K )+ .

• 12× 21 Call options are considered : on 12 months (Jan-08, . . . ,
Dec-08) with for each month 21 strikes.

=> The set of (quasi-independent) obversations εMonth,K
T is too

small to produce precise statistics.
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Global results for options of Month-Ahead-Futures 2008

Average initial and terminal option values : C0 ≈ 5.50 Euros and
CT ≈ 9.50 Euros

Indicators BS Vol SABR SABR Heston NIG
Hedging Loc ∆ LRM

Mean µ 0,92 1,06 0,67 1,18 1,12 0,43

Std σ 0,83 0,82 0,89 0,87 0,81 0,65

Skewness 0,54 0,53 0,61 0,50 0,47 1,89

Kurtosis 0,08 -0,08 0,37 -0,30 -0,26 3,25

Q-0,95 2,43 2,57 2,14 2,64 2,58 1,91

Q-0,99 3,19 3,24 3,22 3,56 3,17 2,81

Q-0,05 -0,40 -0,19 -0,69 -0,02 -0,02 -0,06

Q-0,01 -0,50 -0,23 -1,08 -0,28 -0,29 -0,13

Skewness :=
E(εT − µ)3

σ3
and Kurtosis :=

E(εT − µ)4

σ4
− 3.
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Global results for options of Month-Futures 2008

Empirical densities of hedging errors associated with each model.
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Global results for Months-Quarter and Years 2008.

• Over-hedging in average for a call seller (the std of the mean
estimator computed on 12 contracts is 0,3).

• The NIG model shows significantly different results from other
models: smaller mean and standard deviation.
=> This can be explained either by the hedging model or by the
data used to fit the parameters (historical vs. implicit).

• Other hedging models show quasi-similar performances in terms
of bias and variance
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Strike Impact

• Over-hedging is maximal for strikes which are ATM at maturity.

εF ,Φ,δT = VT − Φ(FT ) = V0 +

∫ T

0
δudFu − (FT − K)+ .

I For K < FT , V0(K) decreases at a smaller rate (N (d2) ≤ 1) than (FT − K).
For K > FT , (FT − K)+ = 0 and V0(K) still decreases.

I The impact of the strategy δ seems to be of second order.
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Static calibration vs dynamic calibration

• Parameters evolution during the hedging period
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Static calibration for options on Monthly Futures 2008

Indicators BS Vol SABR SABR Heston
Loc ∆ LRM

Mean µ 0.69 0.77 0.50 0.81 0.80

STD σ 0.81 0.82 0.88 0.81 0.81

Skewness (Sk) 0.91 0.73 0.90 0.62 0.71

Kurtosis (Ku) 1.25 0.87 1.56 1.04 0.97

Quantile-0,95 2.33 2.36 2.28 2.32 2.33

Quantile-0,99 3.27 3.26 3.36 3.29 3.27

Quantile-0,05 -0.37 -0.34 -0.63 -0.25 -0.27

Quantile-0,01 -0.92 -0.92 -1.46 -1.11 -0.92

Hedging portfolio with static calibration daily rebalanced:

I Small decrease of the mean P&L ≈ −20% for the three first
hedging models ≈ −10% for others.

I Same standard deviation.

I Noticeable increase of extreme P&L.
36 FIME June 29, 2010



Weekly rebalanced hedging

Indicators BS Vol SABR SABR Heston
Loc ∆ LRM

Mean µ 0.40 0.54 0.12 0.60 0.55

STD σ 1.09 1.06 1.22 1.19 1.15

Skewness (Sk) 0.61 0.46 0.32 0.12 0.14

Kurtosis (Ku) 0.35 0.10 0.63 −0.35 −0.07

Quantile-0,95 2.54 2.52 2.53 2.70 2.60

Quantile-0,99 3.45 3.40 3.25 3.44 3.44

Quantile-0,05 -1.35 -1.12 -2.18 -1.26 -1.30

Quantile-0,01 -1.72 -1.63 -2.7 -1.86 -1.97

Hedging portfolio with dynamic calibration weekly rebalanced:

I Decrease of the mean P&L ≈ −50%.

I Increase of the standard deviation ≈ +30%.

I Significant increase of extreme P&L.
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Transaction costs impact

• Adding the transaction costs of 5 cents/MWh induces an
average cost of:

I Dynamic calibration daily rebalanced
cost ≈ 0.12 Euros.

I Static calibration daily rebalanced
cost ≈ 0.12 Euros.

I Dynamic calibration weekly rebalanced
cost ≈ 0.08 Euros.

=> Transaction costs explain only 10% of the over-hedging.
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Option and hedging portfolio values path

Prices evolution for the call on Jan-08 and hedging portfolio values
using SABR δLRM

t , SABR δHagan
t and ∆BS strategies.

-1,00

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

P
ri

ce
 in

 €

Trading day 

Option sur un Month-Ahead de maturité 106 jours - Strike 71
Cotation : 17/09/2007 - Livraison : 01/01/2008

Option
Price

Portfolio
Delta SABR

Portfolio
Delta BS

Portfolio
LRM SABR

39 FIME June 29, 2010



Hedging ratio path

Hedging ratios for the call on Jan-08: SABR δLRM
t , SABR δHagan

t

and ∆BS
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Hedging error computed on real data

Hedging error of Implicit ∆BS, Historic ∆BS and VO-NIG
strategies implemented on real data:

I for Implicit ∆BS, calibration is done once at the beginning of the hedging
period, on option prices of the day;

I for Historic ∆BS and VO-NIG, parameters are fitted on historical log-returns of
the underlying futures price during the hedging period;

I Options are sold at the first day of quotation.

Mean Standard Deviation
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Hedging error computed on real data

Hedging error of Implicit ∆BS, Historic ∆BS and VO-NIG strategies implemented on
real data:

I for Implicit ∆BS, calibration is done once at the beginning of the hedging
period, on option prices of the day;

I for Historic ∆BS and VO-NIG, parameters are fitted on historical log-returns of
the underlying futures price during the hedging period;

I Options are sold 20 trading days before delivery, to insure independence of
hedging portfolio with different underlying (month) that are implementd on
different periods of time.

Mean Standard DeviationI The mean P&L is significantly positive for all models;
I Using historical volatility to hedge and implicit volatility to price keeps the same

mean P&L and decreases the P&L STD.
=> the gap between implicit and historical volatility explains the small P&L
STD of VO-NIG observed on real data.
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Hedging error computed on simulated Gaussian data

Hedging error of Implicit ∆BS, Historic ∆BS and VO-NIG strategies implemented on
data simulated according to a BS model (with paraters estimated on real data):

I for Implicit ∆BS, calibration is done once at the beginning of the hedging
period, on option prices of the day;

I for Historic ∆BS and VO-NIG, parameters are fitted on historical log-returns of
the underlying futures price during the hedging period;

I The hedging period corresponds to the 20 trading days before delivery.

Mean Standard Deviation
I The mean P&L is close to zero;

=> most part of the mean P&L observed on real data is explained by the fact
that futures log-returns don’t follow the BS model.

I The P&L STD is close to the P&L STD observed on real data;
I With simulated data, VO startegy is noticeably more performant than BS

approach.
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Hedging error computed on simulated NIG data

Hedging error of Implicit ∆BS, Historic ∆BS and VO-NIG strategies implemented on
data simulated according to a Lévy NIG model (with paraters estimated on real data):

I for Implicit ∆BS, calibration is done once at the beginning of the hedging
period, on option prices of the day;

I for Historic ∆BS and VO-NIG, parameters are fitted on historical log-returns of
the underlying futures price during the hedging period;

I The hedging period correspond to the 20 trading days before delivery.

Mean Standard Deviation
I The mean P&L is close to zero;

=> most part of the mean observed on real data would be explained by the fact
that futures log-returns are probably not independent and stationnary.

I The P&L STD is close to the P&L STD observed on real data;
I With simulated data, VO NIG is noticeably more performant than BS approach.
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Conclusion
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Conclusion

• The number of quasi-independent observation is too small to formulate definitive
conclusions.

• All models show similar hedging performances: the choice of the parameters seems
to have a more crucial impact that the choice pf the model.
=> One should probably use different volatilities for pricing (implicit volatility) and
hedging (historical volatility).

• Call options are in average over-hedged by all models for a seller.

I ≈ 10% of over-pricing can be explained by an over-evaluation of the volatility on
the option market; this over-evaluation of volatility can be viewed as a risk
premium to hedge the P&L fluctations or simply to hedge transaction costs
which are of the same order;

I The major part of the average P&L is not explained and can be due to the
non-stationnarity or non-independence of futures log-returns.

• Static calibration, transaction costs seem to have a relatively small impact on
hedging performances contrarily to the rebalancing frequency.

• When considering options on Monthly futures, non Gaussianity does not invalidate
the performances of BS approach when compared to other approaches.

• The presence of a drift has a noticeable impact on the hedging error.

• Non stationarity or dependence of observed log-returns seems to have a significant

impact on the hedging errors.
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