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• (Xn)n≥0: a Markov chain taking values in (En, En)n≥0, with

initial distribution on E0: η0 = Law(X0);

Markov transition from En−1 to En: Mn(xn−1, dxn).

• fn: a sequence of non-negative measurable payoff functions on En.

• For any measurable function ϕk+1 defined on Ek+1, Mk+1(ϕk+1) stands for the
conditional expectation function on Ek :

Mk+1(ϕk+1)(xk ) =

∫
Ek+1

Mk+1(xk , dxk+1) ϕk+1(xk+1) , xk ∈ Ek

= E (ϕk+1(Xk+1) |Xk = xk ) .

Goal: to compute the Snell envelope un given by{
un = fn
uk = Hk+1(uk+1) := fk ∨Mk+1(uk+1) , for any 0 ≤ k < n ,

(1)
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• Backward operator Hk , for k ≤ l ≤ n:

uk = Hk+1(uk+1) = fk ∨Mk+1(uk+1)

uk = Hk,l (ul ) , for any k ≤ l ≤ n

Hk,l = Hk+1 ◦ Hk+1,l , with the convention Hk,k = Id .

• Lipschitz property: for any functions u, v on Ek ,∣∣Hk,l (u)−Hk,l (v)
∣∣ ≤ Mk,l (|u − v |) . (2)

• Backward approximation operator Ĥk+1:

ûk = Ĥk+1(ûk+1) = f̂k ∨ M̂k+1(ûk+1) .

Local error
∣∣∣Hk+1(u)− Ĥk+1(u)

∣∣∣ ≤ |fk − f̂k |+ |(Mk+1 − M̂k+1)(u)|.

Error propagation: uk − ûk =
∑n

l=k

[
Ĥk,l (Hl+1(ul+1))− Ĥk,l (Ĥl+1(ul+1))

]
,

Lemma 1: Robustness Lemma

For any 0 ≤ k < n, on the state space Êk .

|uk − ûk | ≤
n∑

l=k

M̂k,l |fl − f̂l |+
n−1∑
l=k

M̂k,l |(Ml+1 − M̂l+1)ul+1| ,
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• Path-space Markov chain

X ′n Markov chain with transitions M′k (xk−1, dx ′k ) from E ′k−1 into E ′k .

Xn = (X ′0, . . . ,X
′
n) ∈ En = (E ′0 × . . .× E ′n) Markov chain with transition kernels

Mk (xk−1, dyk ) = δxk−1 (dyk−1) M′k (y ′k−1, dy ′k ) , for any

{
xk−1 = (x ′0, . . . , x

′
k−1) ∈ Ek−1

yk = (y ′0, . . . , y
′
k ) ∈ Ek .

• Change of measure to replace the conditional expectation by a simple expectation

u′k (x ′k ) = f ′k (x ′k ) ∨ ηk+1

(
Rk+1(x ′k , ·) u′k+1

)
,

where the weighting factor Rk+1 is given by

Rk+1(x ′k , x
′
k+1) =

dM′k+1(x ′k , .)

dηk+1
(x ′k+1) .

• Approximation with the random Monte Carlo operator M̂′k from E ′k into Ê ′k+1

M̂′k+1(x ′k , dx ′k+1) = η̂k+1(dx ′k+1) Rk+1(x ′k , x
′
k+1) , where η̂k =

1

N

N∑
i=1

δξi
k
.
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Broadie-Glasserman models ([2] (2004)) (I)

• Monte carlo approximation η̂k = 1
N

∑N
i=1 δξi

k
, associated with

ξk := (ξi
k )1≤i≤N iid ∼ ηk on E ′k .

(ξk )0≤k≤n are independent.

• Local error

(M′k+1 − M̂′k+1)(x ′k , dx ′k+1) = [ηk+1 − η̂k+1](dx ′k+1) Rk+1(x ′k , x
′
k+1) ,

Theorem 1: BG1

For any integer p ≥ 1, we denote by p′ the smallest even integer greater than p. Then
for any time horizon 0 ≤ k ≤ n, and any x ′k ∈ E ′k , we have

√
NÊη0

(∣∣u′k (x ′k )− û′k (x ′k )
∣∣p) 1

p ≤ 2a(p)
∑

k≤l<n

{∫
M′k,l (x ′k , dx ′l )ηl+1

[
(Rl+1(x ′l , ·)u′l+1)p′

]} 1
p′
.
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• Alternative BG model Suppose Rl+1 is not known (i.e. cannot be evaluated at any
point of El+1). This may occur if we chose ηl+1 = law(X ′l+1) as the sampling
distribution.

• Assumption: M′n(x ′n−1, ·)� λn with

(H)0 Hn(x ′n−1, x
′
n) =

dM′n(x ′n−1, .)

dλn
(x ′n) > 0 , ∀(x ′n−1, x

′
n) ∈

(
E ′n−1 × E ′n

)
,

where Hn is supposed to be known up to a normalizing constant.

• L(X ′k+1) =: ηk+1 � λk+1, with the Radon-Nikodym derivative

ηk+1(dx ′k+1) = ηk M′k+1(dx ′k+1) = ηk

(
Hk+1(·, x ′k+1)

)
λk+1(dx ′k+1) .

=> The backward recursion of the Snell envelope u′k becomes

u′k (x ′k ) = f ′k (x ′k ) ∨
(∫

E ′
k+1

ηk+1(dx ′k+1)
dM′k+1(x ′k , .)

dηk+1
(x ′k+1) u′k+1(x ′k+1)

)

= f ′k (x ′k ) ∨
(∫

E ′
k+1

ηk+1(dx ′k+1)
Hk+1(x ′k , x

′
k+1)

ηk (Hk+1(·, x ′k+1))
u′k+1(x ′k+1)

)
.
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• Approximation model û′k (x ′k ) = f ′k (x ′k ) ∨ M̂′k+1(x ′k , û
′
k+1) , where

M̂′k+1(x ′k , dx ′k+1) = η̂k+1(dx ′k+1) R̂k+1(x ′k , x
′
k+1) with R̂k+1(x ′k , x

′
k+1) :=

Hk+1(x ′k , x
′
k+1)

η̂k (Hk+1(·, x ′k+1))
.

• Local error For any even integer p ≥ 1, and measurable function f on El

√
N Êη0

(∣∣∣[M′l+1 − M̂′l+1

]
(f )(x ′l )

∣∣∣p |Fl

) 1
p ≤ 2 a(p) η̂l M

′
l+1

[
(R̂l+1(x ′l , ·)f )p

] 1
p
.

• Assumption (H)1

(H)1

 ‖M′l+1(u2p
l+1)‖ <∞

supx′
l
,y′

l
∈E ′

l

Hl+1(x′l ,x
′
l+1)

Hl+1(y′
l
,x′

l+1
)
≤ hl+1(x ′l+1) with ‖M′l+1(h2p

l+1)‖ <∞ ,

Theorem 2: BG2

Under the conditions (H)0 and (H)1, for any even integer p > 1, any 0 ≤ k ≤ n, and
x ′k ∈ E ′k , we have

√
N E

(∣∣u′k (x ′k )− û′k (x ′k )
∣∣p) 1

p ≤ 2a(p)
∑

k≤l<n

(
‖M′l+1(h2p

l+1)‖ ‖M′l+1((u′l+1)2p)‖
) 1

2p
.
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Neutral genetic models (ξk ) :=
(
ξi

k

)
1≤i≤N

∈ E N
k

ξk ∈ E N
k

Selection
−−−−−−−−→ ξ̂k :=

(
ξ̂i

k

)
1≤i≤N

∈ E N̂
k

Mutation
−−−−−−−→ ξk+1 ∈ E N

k+1 . (3)

1 Initialization: ξ0 =
(
ξi

0

)
0≤i≤N0

, i.i.d. random copies of X0.

2 (Neutral) selection: select randomly N path valued particles ξ̂k :=
(
ξ̂i

k

)
1≤i≤N

among the N path valued particles ξk = (ξi
k )1≤i≤N .

3 Mutation: ξ̂k  ξk , every selected path valued individual ξ̂i
k evolves randomly to

a new path valued individual ξi
k+1 = x randomly chosen with the distribution

Mk+1(ξ̂i
k , x), with 1 ≤ i ≤ N̂.

ξi
k :=

(
ξi

0,k , ξ
i
1,k , . . . , ξ

i
k,k

)
ξ̂i

k :=
(
ξ̂i

0,k , ξ̂
i
1,k , . . . , ξ̂

i
k,k

)
∈ Ek := (E ′0 × . . .× E ′k )

ξi
k+1 :=

( (
ξi

0,k+1, ξ
i
1,k+1, . . . , ξ

i
k,k+1

)︸ ︷︷ ︸
||

, ξi
k+1,k+1

)

:=
( ︷ ︸︸ ︷(

ξ̂i
0,k , ξ̂i

1,k , . . . , ξ̂i
k,k

)
, ξi

k+1,k+1

)
=
(
ξ̂i

k , ξ
i
k+1,k+1

)
.
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Neutral genetic models
• Let ηN

k and η̂N
k be the occupation measures of the genealogical tree model after the

mutation and the selection steps;

ηN
k :=

1

N

∑
1≤i≤N

δξi
k

and η̂N
k :=

1

N

∑
1≤i≤N

δ
ξ̂i

k
.

Forward algorithm

Initialization At time step k = 0, generate N i.i.d. random copies of X0 and set
ξ0 =

(
ξi

0

)
0≤i≤N

.

At each time step k = 1, · · · , n
1 Selection: For each i = 1, · · · ,N, generate independently an

indice Ii ∈ {1, · · · ,N} with probability P(Ii = j) = 1/N.

Then set ξ̂i
k−1 = ξ

Ii
k−1.

2 Mutation: For each i = 1, · · · ,N, generate independently N
i.i.d. random variables (ξi

k,k )0≤i≤N according to the transition

kernel M′k (ξ̂i
k−1,k−1, ·).

Then set ξi
k = (ξ̂i

k−1, ξ
i
k,k ).
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Convergence of the occupation measures to the underlying measure

Lemma 2: Convergence of the particle approximation of the measures

For any p ≥ 1, we denote by p′ the smallest even integer greater than p. In this
notation, for any k ≥ 0 and any f ∈ Lp′ (ηn), we have the non asymptotic estimates

√
N E

(∣∣∣[ηN
n − ηn](f )

∣∣∣p)1/p
≤ 2 a(p) ‖f ‖p′,ηn

(n + 1) . (4)
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• Particle approximation of the Markov transitions M′k

M̂′k+1(f )(x) :=
ηN

n ((1x ◦ πk ) (f ◦ πk+1))

ηN
n ((1x ◦ πk ))

:=

∑
1≤i≤N 1x (ξi

k,n) f (ξi
k+1,n)∑

1≤i≤N 1x (ξi
k,n)

,

for every state x in the support Êk,n of the measure ηN
n ◦ π

−1
k .

• Approximation model of the Snell envelope

ûk (x) =

{
fk (x) ∨ M̂′k+1(uk+1)(x) ∀x ∈ Êk,n

0 otherwise .

In terms of the ancestors at level k, this recursion takes the following form

ûk

(
ξi

k,n

)
= fk

(
ξi

k,n

)
∨ M̂′k+1(ûk+1)

(
ξi

k,n

)
, ∀ 1 ≤ i ≤ N.

Backward algorithm

Initialization At time step k = n, for all i = 1, · · · ,N, set ûn(ξi
n,n) = f (ξi

n,n).

At each time step k = n − 1, · · · , 0, for all i = 1, · · · ,N set

ûk (ξi
k,n) = fk

(
ξi

k,n

)
∨

∑N
j=1 ûk+1(ξj

k+1,n) 1
ξ

j
k,n

=ξi
k,n∑N

j=1 1
ξ

j
k,n

.
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Assumption: finite state spaces

Lemma 3:

For any p ≥ 1, and 0 ≤ i ≤ N we have the following uniform estimate

sup
0≤l≤n

∣∣∣∣∣∣M̂′l+1(f )(ξi
l,n)−M′l+1(f )(ξi

l,n)
∣∣∣∣∣∣

p
≤ cp(n)/

√
N , (5)

with some finite constants cp(n) <∞ depending on the parameters p and n.

supN≥1 sup0≤l≤k≤n

∣∣∣∣∣∣∣∣ηN
k (1ξi

l,k
◦ πl )

−1

∣∣∣∣∣∣∣∣
p

<∞ . (6)

Theorem 4:

For any p ≥ 1, and 0 ≤ i ≤ N we have the following uniform estimate

sup
0≤k≤n

∥∥∥(uk − ûk )(ξi
k,n)
∥∥∥

p
≤ cp(n)/

√
N , (7)

Moreover, the bias of the genealogical tree based estimator is always positive.
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Price dynamics and options (Examples from Bouchard and Warin [4])

Asset prices (X̃t ) follows a geometric Brownian motion under the risk-neutral
measure,

dX̃t (i)

X̃t (i)
= rdt + σi dz i

t , for assets i = 1, · · · , d , (8)

where z i , for i = 1, · · · , d are independent standard Brownian motions.

Interest rate r is set to 5% annually, X̃t0 (i) = 1, for all i = 1, · · · , d , volatilities
σi = 20% annually, maturity T = 1 year, 11 equally distributed exercise
opportunities.

Two different payoffs:

1 a geometric average put option with strike K = 1 and payoff
(K −

∏d
i=1 X̃T (i))+,

2 an arithmetic average put option with strike K = 1 and payoff
(K − 1

d

∑d
i=1 X̃T (i))+.

Benchmark values for the geometric and arithmetic put options (taken from [4])

Number of assets 1 2 3 4 5 6

Geometric Payoff 0.06033 0.07815 0.08975 0.09837 0.10511 0.11073
Arithmetic Payoff 0.06033 0.03882 0.02947 0.02403 0.02046 0.01830
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Finite state space approximation

• State space partitioning: quantization-like approach
At each time tk , k = 1, · · · , n, we build a finite state space

E0 = {Xt0} , and Ek = {S1
k , · · · , S

N′
k } ,

composed of discrete points S1
k , · · · , S

N′
k that will be referred to as sites.

• Finite state space Markov chain
We define a finite state space Markov chain (X ′k )k=0,··· ,n on (Ek ) such that{

X ′0 = X̃t0 , and for k = 1, · · · , n ,
P
(

X ′k = S j
k |X

′
k−1 = S i

k−1

)
= P

(
X̃tk ∈ V j

k | X̃tk−1 = S i
k−1

)
,

where V j
k denotes the Voronoi cell associated to the site S j

k in the the discrete set Ek

and (X̃tk ) is the Markov process verifying (8) observed at the discrete times t0, · · · , tn.
To simulate a transition of (X ′k )k=0,··· ,n from S i

k−1 ∈ Ek−1 to the time step k:

1 Simulate X̃tk according to M̃k (S i
k−1, ·), where M̃k denotes the transition kernel

of the continuous state space Markov chain verifying (8)

2 Set X ′k = S i∗
k , where S i∗

k is the nearest neighbor of X̃tk among elements of Ek .
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Complexity

• The major part of the computing time is spent in the forward step for simulating the
discrete space Markov chain (X ′k ).
One has to compute a nearest neighbour among N′ sites which finally leads to a
complexity of order O(NN′) by time step, for the whole set of N particles.

• The approximation error can be decomposed into two terms:

1 The state space discretization error bounded, according to [8], by c
N′1/d ;

2 The error induced by the genealogical tree algorithm, could be bounded, by

c N′β

N1/2 , for a given positive real β > 0.

• Trade-off between the size of the space N′ and the number of particles N

minimizing the global error, N′ = O(N
d

2βd+2 ).

=>

 Complexity O(N
(1+2β)d+2

2βd+2 ) ,
Error bound c

N
1

2βd+2

.

In our numerical simulations, β = 1/2 so that the complexity grows with the
dimension from N4/3,N3/2,N8/5, · · · ,N2 for dimensions d = 1, 2, 3, · · · ,∞.
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Comparison with the quantization algorithm

Error (in % of the option value) for the geometric and arithmetic
put options of

Genealogical algorithm with N = 25000 particles and

N ′ = N
d

d+2 sites
=> complexity N

2d+2
d+2

Quantization algorithm with N = 25600 quantization points,
(taken from [4]) within parenthesis.
=> complexity N2.

Number of assets d = 3 d = 4 d = 5 d = 6

Geometric Put error
(in % of the option value)

2 (2) 7 (8) 14 (15) 17 (22)

Arithmetic Put error
(in % of the option value)

3.5 (3.5) 10 (8) 15 (16) 14 (17)
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Geometric put

(a) d = 1 (b) d = 2

Boxplots for estimated option values (divided by the benchmark values) as a function

of the number of particles for the geometric put-payoff. The box stretches from the

25th percentile to the 75th percentile, the median is shown as a line across the box,

the whiskers extend from the box out to the most extreme data value within 1.5 IQR

(Interquartile Range) and red crosses indicates outliers.
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Geometric put

(c) d = 3 (d) d = 4

Boxplots for estimated option values (divided by the benchmark values) as a function
of the number of particles for the geometric put-payoff. The box stretches from the
25th percentile to the 75th percentile, the median is shown as a line across the box,
the whiskers extend from the box out to the most extreme data value within 1.5 IQR
(Interquartile Range) and red crosses indicates outliers.
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Geometric put

(e) d = 5 (f) d = 6

Boxplots for estimated option values (divided by the benchmark values) as a function
of the number of particles for the geometric put-payoff. The box stretches from the
25th percentile to the 75th percentile, the median is shown as a line across the box,
the whiskers extend from the box out to the most extreme data value within 1.5 IQR
(Interquartile Range) and red crosses indicates outliers.
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(g) d = 1 (h) d = 2

Boxplots for estimated option values (divided by the benchmark values) as a function

of the number of particles for the arithmetic put-payoff. The box stretches from the

25th percentile to the 75th percentile, the median is shown as a line across the box,

the whiskers extend from the box out to the most extreme data value within 1.5 IQR

(Interquartile Range) and red crosses indicates outliers.

P. Del Moral, P. Hu, N. Oudjane and B. Remillard On the Robustness of the Snell envelope



Description of the problem
Broadie-Glasserman models

A genealogical tree based model

Neutral genetic models
Particle approximations of the Snell envelope
Convergence analysis
Numerical simulations

Geometric put

(i) d = 3 (j) d = 4

Boxplots for estimated option values (divided by the benchmark values) as a function
of the number of particles for the arithmetic put-payoff. The box stretches from the
25th percentile to the 75th percentile, the median is shown as a line across the box,
the whiskers extend from the box out to the most extreme data value within 1.5 IQR
(Interquartile Range) and red crosses indicates outliers.
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(k) d = 5 (l) d = 6

Boxplots for estimated option values (divided by the benchmark values) as a function
of the number of particles for the arithmetic put-payoff. The box stretches from the
25th percentile to the 75th percentile, the median is shown as a line across the box,
the whiskers extend from the box out to the most extreme data value within 1.5 IQR
(Interquartile Range) and red crosses indicates outliers.
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