Optimal investment under relative performance concerns

GE.Espinosa Joint work with N.Touzi

May 6th, 2009

・ 同・ ・ ヨ・ ・ ヨ・

- Classical portfolio optimization: maximization of one's utility with respect to one's personal wealth or consumption
- Economical literature: relative wealth concerns

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

- Classical portfolio optimization: maximization of one's utility with respect to one's personal wealth or consumption
- Economical literature: relative wealth concerns

Aim: Try to derive a portfolio optimization theory with such relative wealth concerns.

- ・ 同 ト・ ・ ヨ ト

A simple case Influence of λ General framework

The market:

- a non-risky asset with 0 interest rate
- a d-dimensional risky asset S
- N agents

<ロ> (四) (四) (三) (三) (三)

-2

A simple case Influence of λ General framework

The market:

- a non-risky asset with 0 interest rate
- a d-dimensional risky asset S
- N agents

The dynamics of S is given by:

$$dS_t = \operatorname{diag}(S_t)\sigma_t(\theta_t dt + dW_t)$$

イロト イヨト イヨト イヨト

A simple case Influence of λ General framework

The market:

- a non-risky asset with 0 interest rate
- a d-dimensional risky asset S
- N agents

The dynamics of S is given by:

$$dS_t = \operatorname{diag}(S_t)\sigma_t(\theta_t dt + dW_t)$$

 σ is assumed to be symmetric definite.

A simple case Influence of λ General framework

The market:

- a non-risky asset with 0 interest rate
- a d-dimensional risky asset S
- N agents

The dynamics of S is given by:

$$dS_t = \operatorname{diag}(S_t)\sigma_t(\theta_t dt + dW_t)$$

 σ is assumed to be symmetric definite.

We will first assume that all agents are similar.

< ロト (周) (日) (日)

 $\begin{array}{c|c} \mbox{Framework} & \mbox{A simple case} \\ \mbox{General case} & \mbox{Influence of } \lambda \\ \mbox{Examples} & \mbox{General framework} \end{array}$

We write X^i the wealth process of agent *i* and π^i the portfolio of agent *i*. Investment horizon T. Initial wealth x^i .

We write X^i the wealth process of agent *i* and π^i the portfolio of agent *i*. Investment horizon T. Initial wealth x^i .

Optimization criterion for agent *i*:

- exponential utility function with risk sensitivity parameter $\eta > 0$
- relative performance sensitivity parameter $\lambda \in [0,1]$
- average wealth of other agents $ar{X}^i = rac{1}{N-1}\sum_{j
 eq i}X^j$

イロト イポト イヨト イヨト

A simple case Influence of λ General framework

Thus agent *i* wants to maximize upon admissible π^i :

$$-\mathbb{E}e^{-\eta[(1-\lambda)X_T^i+\lambda(X_T^i-\bar{X}_T^i)]}$$

given other π^j $(j \neq i)$

<ロ> (四) (四) (三) (三) (三)

A simple case Influence of λ General framework

By symmetry, at the equilibrium, it is the same as:

$$\sup_{\pi^i} - \mathbb{E} e^{-\eta(1-\lambda)X_T^i}$$

イロン イヨン イヨン イヨン

-2

By symmetry, at the equilibrium, it is the same as:

$$\sup_{\pi^i} - \mathbb{E} e^{-\eta(1-\lambda)X_T^i}$$

Same as in the classical case but $\eta
ightarrow \eta(1-\lambda)$

・ロト ・ 同ト ・ モト ・ モト

By symmetry, at the equilibrium, it is the same as:

$$\sup_{\pi^i} - \mathbb{E} e^{-\eta(1-\lambda)X_T^i}$$

Same as in the classical case but $\eta
ightarrow \eta(1-\lambda)$

So the optimal portfolio is (for deterministic θ , $\lambda < 1$):

$$\hat{\pi}_t^i = \frac{1}{\eta(1-\lambda)} \sigma_t^{-1} \theta_t$$

(日) (周) (王) (王)

A simple case Influence of λ General framework

- $|\hat{\pi}^i|$ is increasing in λ
- if $\lambda
 ightarrow 1$, $|\hat{\pi}^i|
 ightarrow \infty$ a.s.

イロン イヨン イヨン イヨン

A simple case Influence of λ General framework

-
$$|\hat{\pi}^i|$$
 is increasing in λ

- if $\lambda
ightarrow 1$, $|\hat{\pi}^i|
ightarrow \infty$ a.s.

Define the market index:

$$\bar{X}_T = \frac{1}{N} \sum_{i=1}^N X_T^i$$

<ロ> (四) (四) (三) (三) (三)

A simple case Influence of λ General framework

-
$$|\hat{\pi}^i|$$
 is increasing in λ

- if
$$\lambda
ightarrow 1$$
, $|\hat{\pi}^i|
ightarrow \infty$ a.s.

Define the market index:

$$\bar{X}_T = \frac{1}{N} \sum_{i=1}^N X_T^i$$

At the equilibrium, its dynamics is given by:

$$dar{X}_t = rac{1}{\eta(1-\lambda)} [| heta_t|^2 dt + heta_t.dW_t]$$

・ロト ・ 日本・ ・ 日本・ ・ 日本・

-2

A simple case Influence of λ General framework

Specific parameters:

- risk sensitivity parameter $\eta_i > 0$
- relative performance sensitivity parameter $\lambda_i \in [0, 1]$

Thus agent *i* wants to maximize upon admissible π^i :

$$-\mathbb{E}e^{-\eta_i[(1-\lambda_i)X_T^i+\lambda_i(X_T^i-\bar{X}_T^i)]}$$

given other π^j $(j \neq i)$

(D) (A) (A)

A simple case Influence of λ General framework

Specific parameters:

- risk sensitivity parameter $\eta_i > 0$
- relative performance sensitivity parameter $\lambda_i \in [0, 1]$

Thus agent *i* wants to maximize upon admissible π^i :

$$-\mathbb{E}e^{-\eta_i[X_T^i-\lambda_i\bar{X}_T^i]}$$

given other π^j $(j \neq i)$

(D) (A) (A)

A simple case Influence of λ General framework

Portfolio constraints:

Each agent has an area of investment. π^i must stay in a certain A_i that will be assumed to be a vector sub-space of \mathbb{R}^d .

・ロト ・ 同ト ・ ヨト ・ ヨト

A simple case Influence of λ General framework

Portfolio constraints:

Each agent has an area of investment. π^i must stay in a certain A_i that will be assumed to be a vector sub-space of \mathbb{R}^d .

So finally we are looking for:

$$\sup_{\pi^i \in \mathcal{A}_i} - \mathbb{E} e^{-\eta_i [X_T^{i,\pi^i} - \lambda_i \bar{X}_T^i]}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

A simple case Influence of λ General framework

Portfolio constraints:

Each agent has an area of investment. π^i must stay in a certain A_i that will be assumed to be a vector sub-space of \mathbb{R}^d .

So finally we are looking for:

$$\sup_{\pi^i \in \mathcal{A}_i} - \mathbb{E} e^{-\eta_i [X_T^{i,\pi^i} - \lambda_i \bar{X}_T^i]}$$

And then look for Nash equilibria between the N agents.

(4月) (4日) (4日)

Using a result by Hu-Imkeller-Muller for optimal investment in incomplete markets, we can relate the single agent optimization problem with the following (quadratic) BSDE:

$$dY_t^i = \left(\frac{|\theta_t|^2}{2\eta} - \frac{\eta}{2}|Z_t^i + \frac{\theta_t}{\eta} - P_{\sigma_t A_i}(Z_t^i + \frac{\theta_t}{\eta})|^2\right)dt + Z_t^i . dB_t$$
$$Y_T^i = \lambda(\bar{X}_T^i - \bar{x}_i) = \frac{\lambda}{N-1} \sum_{j \neq i} \int_0^T \pi_u^j . \sigma_u dB_u$$

· □ > · (同 > · (日 > · (日 >)

Using a result by Hu-Imkeller-Muller for optimal investment in incomplete markets, we can relate the single agent optimization problem with the following (quadratic) BSDE:

$$dY_t^i = \left(\frac{|\theta_t|^2}{2\eta} - \frac{\eta}{2}|Z_t^i + \frac{\theta_t}{\eta} - P_{\sigma_t A_i}(Z_t^i + \frac{\theta_t}{\eta})|^2\right)dt + Z_t^i . dB_t$$
$$Y_T^i = \lambda(\bar{X}_T^i - \bar{x}_i) = \frac{\lambda}{N-1} \sum_{j \neq i} \int_0^T \pi_u^j . \sigma_u dB_u$$

And an optimal portfolio is given by:

$$\sigma_t \hat{\pi}_t^i = P_{\sigma_t A_i} (Z_t^i + \frac{\theta_t}{\eta})$$

· □ > · (同 > · (日 > · (日 >)

Using a result by Hu-Imkeller-Muller for optimal investment in incomplete markets, we can relate the single agent optimization problem with the following (quadratic) BSDE:

$$dY_t^i = \left(\frac{|\theta_t|^2}{2\eta} - \frac{\eta}{2}|Z_t^i + \frac{\theta_t}{\eta} - P_{\sigma_t A_i}(Z_t^i + \frac{\theta_t}{\eta})|^2\right)dt + Z_t^i . dB_t$$
$$Y_T^i = \lambda(\bar{X}_T^i - \bar{x}_i) = \frac{\lambda}{N-1} \sum_{j \neq i} \int_0^T \pi_u^j . \sigma_u dB_u$$

And an optimal portfolio is given by:

$$\sigma_t \hat{\pi}_t^i = P_{\sigma_t A_i} (Z_t^i + \frac{\theta_t}{\eta})$$

Remark: there is no need for S to be a Markov process.

(D) (A) (A)

Putting them together it brings:

$$Y_{0}^{i} = -\frac{1}{\eta} \ln \frac{d\mathbb{Q}}{d\mathbb{P}} + \frac{\eta}{2} \int_{0}^{T} |Q_{t}^{i}(Z_{t}^{i})|^{2} dt - \int_{0}^{T} (Z_{t}^{i} - \frac{\lambda}{N-1} \sum_{j \neq i} P_{t}^{j}(Z_{t}^{j})) . dB_{t}$$

where P_i is the orthogonal projection on σA_i and $Q_i = I - P_i$, \mathbb{Q} is the martingale probability and B a Brownian motion under \mathbb{Q} .

After showing the regularity of the operator (under some assumptions), it can be rewritten as:

$$Y_0^i = -\frac{1}{\eta} \ln \frac{d\mathbb{Q}}{d\mathbb{P}} + \frac{\eta}{2} \int_0^T |Q_t^i([\psi_t(\zeta_t)]^i)|^2 dt - \int_0^T \zeta_t^i . dB_t$$

where $Y \in \mathbb{R}^N$, $\zeta \in M_{N,d}(\mathbb{R})$ and $\psi \in GL(M_{N,d}(\mathbb{R}))$.

イロト イヨト イヨト イヨト

After showing the regularity of the operator (under some assumptions), it can be rewritten as:

$$Y_0^i = -\frac{1}{\eta} \ln \frac{d\mathbb{Q}}{d\mathbb{P}} + \frac{\eta}{2} \int_0^T |Q_t^i([\psi_t(\zeta_t)]^i)|^2 dt - \int_0^T \zeta_t^i . dB_t$$

where $Y \in \mathbb{R}^N$, $\zeta \in M_{N,d}(\mathbb{R})$ and $\psi \in GL(M_{N,d}(\mathbb{R}))$.

 \rightarrow *N*-dimensional system of coupled quadratic BSDEs.

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\begin{array}{c} \mbox{Framework} & \mbox{Idea} \\ \mbox{General case} & \mbox{Case } \sigma \mbox{ and } \theta \mbox{ deterministic} \\ \mbox{Limit as } N \rightarrow \infty \\ \mbox{Influence of } \lambda \end{array}$

Assume the following:

$$\prod_{i=1}^N \lambda_i < 1 ext{ or } igcap_{i=1}^N A_i = \{0\}$$

・ロト ・御 ト ・ モト ・ モト

-1

 Framework
 Idea

 General case
 Case σ and θ deterministic

 Limit as $N \to \infty$ Influence of λ

Assume the following:

$$\prod_{i=1}^N \lambda_i < 1 \text{ or } \bigcap_{i=1}^N A_i = \{0\}$$

Theorem: There exists a unique equilibrium and an optimal portfolio for agent *i* is given by:

$$\pi^{i} = \frac{1}{\eta} \sigma^{-1} P_{i} ([I - \frac{\frac{\lambda}{N-1}}{1 + \frac{\lambda}{N-1}} (\sum_{j \neq i} P_{j}) (I + \frac{\lambda}{N-1} P_{i})]^{-1} \theta)$$

 $(P_i \text{ is the orthogonal projection on } \sigma A_i)$

In the simple case where d is fixed we have:

Theorem: Let *d* be fixed, and assume moreover that $\frac{1}{N}\sum_{i=1}^{N} P_i \to U \text{ in } \mathcal{L}(\mathbb{R}^d) \text{ with } ||\lambda U|| < 1. \text{ Then } \pi_N^i \to \pi_\infty^i$ uniformly where:

$$\pi_{\infty}^{i} = \frac{1}{\eta} \sigma^{-1} P_{i} [(I - \lambda U)^{-1} \theta]$$

(日) (周) (王) (王)

Once again the market index is: $\bar{X}_t^N = \frac{1}{N} \sum_{i=1}^N X_t^i$ And we find:

$$d\bar{X}_t^{\infty} = \frac{1}{\eta} U(I - \lambda U)^{-1} \theta_t . [\theta_t dt + dW_t]$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへの

Once again the market index is: $\bar{X}_t^N = \frac{1}{N} \sum_{i=1}^N X_t^i$ And we find:

$$d\bar{X}_t^{\infty} = \frac{1}{\eta} U(I - \lambda U)^{-1} \theta_t . [\theta_t dt + dW_t]$$

Moreover, $U(I - \lambda U)^{-1}$ is diagonalizable with eigenvalues

$$0 < \frac{\mu_1}{1 - \lambda \mu_1} < \ldots < \frac{\mu_d}{1 - \lambda \mu_d} < 1$$

and with the same orthonormal eigenvectors as U (independent of λ).

\rightarrow The risk (volatility) of the market increases with λ .

(日) (部) (注) (注)

з

Investment on the whole market Investment on a specific asset Investment on hyperplanes

Each agent can invest in the whole market:

$$\forall i, A_i = \mathbb{R}^d$$

・ロト ・ 日本・ ・ 日本・ ・ 日本・

-2

Investment on the whole market Investment on a specific asset Investment on hyperplanes

Each agent can invest in the whole market:

$$\forall i, A_i = \mathbb{R}^d$$

Under the assumption $\prod_{j=1}^N \lambda_j < 1$, there is a unique equilibrium.

イロト イヨト イヨト イヨト

Framework	Investment on the whole market
General case	Investment on a specific asset
Examples	Investment on hyperplanes

First case: $\forall i, \lambda_i = \lambda$, then:

$$\hat{\pi}_t^i = [\frac{N-1}{N+\lambda-1} + \frac{\lambda N}{(1-\lambda)(N+\lambda-1)} \frac{\eta_i}{\eta^N}]\pi_t^{0,i}$$

 η^N is the harmonic average of the η^j .

(日) (部) (注) (注)

As $N \to \infty$, if $\eta^N \to \eta > 0$ then the equilibrium portfolio of agent *i* converges uniformly to:

$$\hat{\pi}_t^{\infty,i} = (1 + rac{\lambda}{1-\lambda} rac{\eta_i}{\eta}) \pi_t^{0,i}$$

(日) (周) (王) (王)

As $N \to \infty$, if $\eta^N \to \eta > 0$ then the equilibrium portfolio of agent *i* converges uniformly to:

$$\hat{\pi}_t^{\infty,i} = (1 + rac{\lambda}{1-\lambda} rac{\eta_i}{\eta}) \pi_t^{0,i}$$

Same conclusions as in the beginning.

(日) (周) (王) (王)

Framework	Investment on the whole market
General case	Investment on a specific asset
Examples	Investment on hyperplanes

Second case:
$$\forall j \neq i_0, \ \lambda_j = 1, \ \lambda_{i_0} < 1 \ (\forall i, \ \eta_i = \eta)$$
, then:

$$\hat{\pi}_t^{i_0} = \left[rac{1}{1-\lambda_{i_0}}+rac{\lambda_{i_0}(N-1)}{1-\lambda_{i_0}}
ight]\pi_t^0$$

★□> ★□> ★目> ★目> 目 のQQ

Framework	Investment on the whole market
General case	Investment on a specific asset
Examples	Investment on hyperplanes

Second case:
$$\forall j \neq i_0, \ \lambda_j = 1, \ \lambda_{i_0} < 1 \ (\forall i, \ \eta_i = \eta)$$
, then:

$$\hat{\pi}_t^{i_0} = \left[rac{1}{1-\lambda_{i_0}} + rac{\lambda_{i_0}(N-1)}{1-\lambda_{i_0}}
ight]\pi_t^0$$

As $N \to \infty$, even if $\lambda_{i_0} < 1$, $|\pi_t^{i_0}| \to \infty$ a.s (except for $\lambda_{i_0} = 0$).

Framework	Investment on the whole market
General case	Investment on a specific asset
Examples	Investment on hyperplanes

Second case:
$$\forall j \neq i_0, \ \lambda_j = 1$$
, $\lambda_{i_0} < 1 \ (\forall i, \ \eta_i = \eta)$, then:

$$\hat{\pi}_t^{i_0} = \left[rac{1}{1-\lambda_{i_0}} + rac{\lambda_{i_0}(N-1)}{1-\lambda_{i_0}}
ight]\pi_t^0$$

As $N \to \infty$, even if $\lambda_{i_0} < 1$, $|\pi_t^{i_0}| \to \infty$ a.s (except for $\lambda_{i_0} = 0$).

 \rightarrow Impact of surrounding "stupidity".

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへの

Investment on the whole market Investment on a specific asset Investment on hyperplanes

-
$$d = N$$
, $A_i = \mathbb{R}e_i$

(日) (圖) (문) (문) (문)

Investment on the whole market Investment on a specific asset Investment on hyperplanes

-
$$d = N$$
, $A_i = \mathbb{R}e_i$
- $\sigma^2 = \sigma^2 \begin{pmatrix} 1 & \rho^2 \\ & \ddots & \\ \rho^2 & & 1 \end{pmatrix}$ with $\rho \in (-1, 1)$ and $\sigma > 0$

★□> ★□> ★目> ★目> 目 のQQ

Framework	Investment on the whole market
General case	Investment on a specific asset
Examples	Investment on hyperplanes

-
$$d = N$$
, $A_i = \mathbb{R}e_i$
- $\sigma^2 = \sigma^2 \begin{pmatrix} 1 & \rho^2 \\ & \ddots & \\ \rho^2 & & 1 \end{pmatrix}$ with $\rho \in (-1, 1)$ and $\sigma > 0$

- we also assume $\forall i, \ \theta_i = \theta$.

(□) (□) (Ξ) (Ξ) (Ξ) Ξ

As $N \to \infty$ we find:

$$\hat{\pi}^i = rac{ heta}{\eta\sigma} rac{1}{1-\lambda
ho^2} e_i$$

(日) (四) (E) (E) (E)

As $N \to \infty$ we find:

$$\hat{\pi}^i = rac{ heta}{\eta\sigma} rac{1}{1-\lambda
ho^2} \mathbf{e}_i$$

So:

- the more you look at other agents (λ close to 1)
- the more correlated the assets are (ρ^2 close to 1) the more risk you take.

・ロト ・ 同ト ・ ヨト ・ ヨト

As $N \to \infty$ we find:

$$\hat{\pi}^i = rac{ heta}{\eta\sigma} rac{1}{1-\lambda
ho^2} \mathbf{e}_i$$

So:

- the more you look at other agents (λ close to 1)
- the more correlated the assets are (ho^2 close to 1) the more risk you take.

For independent investments ($\rho = 0$), we find the classical optimal portfolio: no impact of λ .

(D) (A) (A)

Framework	Investment on the whole market
General case	Investment on a specific asset
Examples	Investment on hyperplanes

- Here again d = N. But $A_i = (\mathbb{R}e_i)^{\perp}$

イロト イヨト イヨト イヨト

æ

Framework	Investment on the whole marke
General case	Investment on a specific asset
Examples	Investment on hyperplanes

- Here again
$$d = N$$
. But $A_i = (\mathbb{R}e_i)^{\perp}$

-
$$\sigma = \sigma I$$
 and $\forall i, \ \theta_i = \theta$.

★□> ★□> ★目> ★目> 目 のQQ

We find:

$$\hat{\pi}_t^i = \frac{\theta}{\eta \sigma} \frac{1}{1 - \lambda + \frac{\lambda}{N-1}} \sum_{j \neq i} e_j$$

◆□→ ◆□→ ◆三→ ◆三→

-2

We find:

$$\hat{\pi}_t^i = \frac{\theta}{\eta \sigma} \frac{1}{1 - \lambda + \frac{\lambda}{N-1}} \sum_{j \neq i} e_j$$

Same kind of conclusions as for investment on the whole market, but smaller impact of λ , especially for small N.

Short Bibliography

- Utility maximization in incomplete markets, Y.Hu, P.Imkeller and M.Muller, Annals of Applied Probability (2005)
- *Relative wealth concerns and financial bubbles*, P.DeMarzo, R.Kaniel and I.Kremer, Review of Financial Studies (2008)
- Quadratic BSDEs with convex generators and unbounded terminal conditions, P.Briand and Y.Hu, Probability Theory and Related Fields (2007)

(D) (A) (A)

Investment on the whole market Investment on a specific asset Investment on hyperplanes

Special thanks to J.Lebuchoux - Reech Aim

・ロト ・ 日本・ ・ 日本・ ・ 日本・