Ecological intuition versus Economic reason.

Roger Guesnerie, Paper with O. Guéant, J.M Lasry.

Climate change, and the discount rate debate.

- Economic « reason » without doubts...
 - Nordhaus (DICE), a growth model with carbon as a factor.
 - Standard discount rates (5%) lead to « lenient policies ».
 - Behind : reference to market rates, explained by
 - Pure rate of time preferences 1-2%
 - Elasticity of marginal utility 1,5, growth rate of 2%.
- An attempt of reconciliation with « ecological intuition » : the Stern review.
 - Puts emphasis on uncertainty and probabilistic assesments.
 - Comprehensive assessments of the costs of damage.
 - Low discount rates:1,1% justified by
 - Pure rate of time preferences of 0,1%.
 - Log utiliy (Cobb-Douglas).
 - Criticisms.
- Directions for reassesments.
 - Uncertainty (Weitzmann)
 - Stress the specificities of environmental goods.

A two goods model.

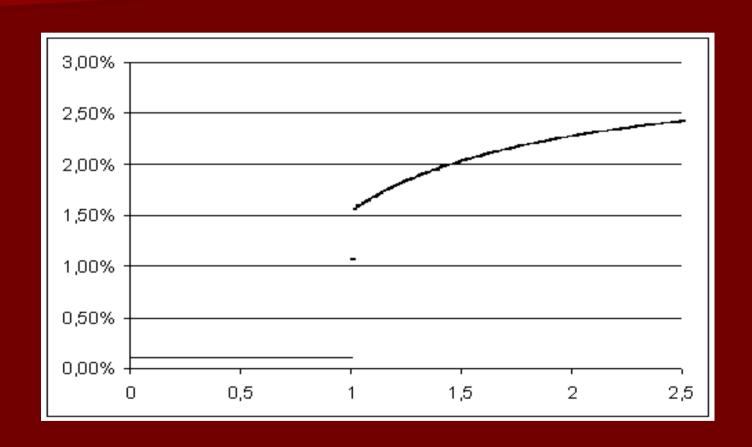
- The model:
 - 2 goods :
 - aggregate consumption good : quantity.
 - « environnemental quality »
- The preferences parameters of generation $t : \sigma'$, σ
 - Utility function :
 - $v(x_t, y_t) = \{ [x_t((\sigma 1)/\sigma) + y_t((\sigma 1)/\sigma)] (\sigma/(\sigma 1)) \}$
 - $-V(x_t, y_t) = [1/(1-\sigma')][v(x_t, y_t)]^{(1-\sigma')}$
 - Comment.
 - y/x decreases of 1/100, the willingness to pay increases of ($1/\sigma$) per 100
 - Iso-elastic cardinal utilty for generation t, constant relative risk aversion σ'

The four parameters world.

- **Elasticity of marginal utility or relative risk** aversion σ' , σ
 - $\sigma > 1$, (<1) moderate, (radical environmentalist.
 - $\underline{\sigma'}$ plays a role in the intensity of redistribution towards the poor..
 - - 1,5, 3?
- Intergenerational (social) welfare : $\underline{\delta}$
 - $U = [1/(1-\sigma']\Sigma_{t=0}^{infini}\{(exp(-\delta t))[v(x_t,y_t)]^{(1-\sigma')}\}$
 - − Pure rate of time preferences.. utilitarian. $\delta \rightarrow 0$, « ethical » viewpoint.
 - Positive (Koopmans).
 - > rate of survival of the planet
- **Economic possibilities :** <u>r</u>**.**
 - A simplistic view of the growth possibilities: AK model.
 - or first take growth rates as given ...

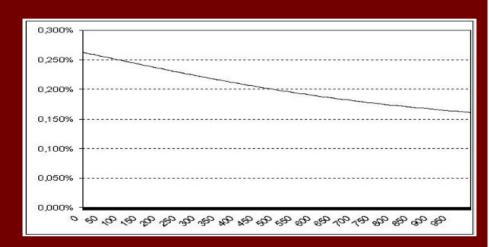
The concern for environment.

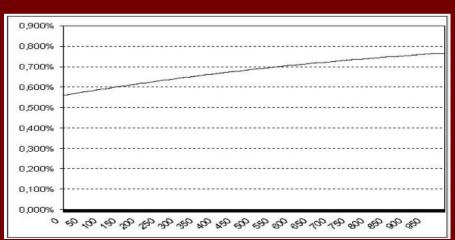
- The concern for environment $\underline{\sigma}$
 - The world is radically different depending on whether σ is greater or smaller than one.
 - Opposes the « radical » environmentalist σ <1 and the « moderate » environmentalist σ >1.
 - Later, uncertainty bears on σ .
- A world with two goods...
 - Standard discount rate :relative price of the private good period t, vis-à-vis period 0
 - $(\exp(-\Sigma^T r^*(t)))$
 - Ecological discount rate : relative price of the environmental good exp($-\Sigma^T \beta^*(t)$).
 - « Canonical » Ecological Cost benefit Analysis
 - Generation 0 evaluates an invest (at 0), generating an improv of the environl quality for generation t, value measured with the marginal willingness to pay of generation 0: multiplied by the « ecological discount rate

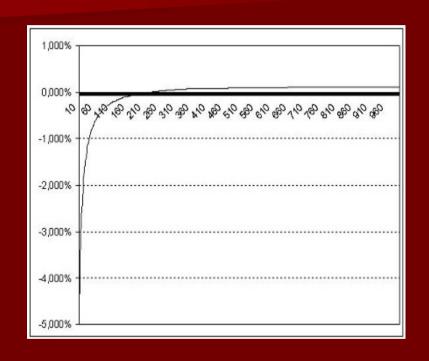

Ecological discount rate from the reform viewpoint.

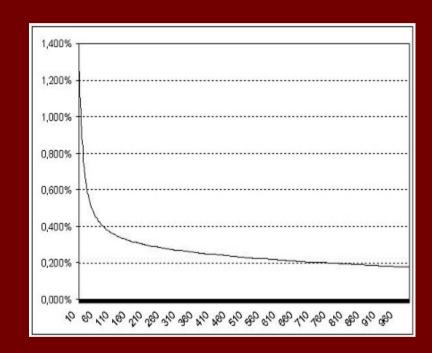
- The reform viewpoint :
 - Fixed environmental quality
 - Given trajectory of growth rates g
 - The long run .
- A basic insight : the relative price effect.
 - $-B = r (g/\sigma)$
- Proposition A: the « moderate » environmentalist.
 - Standard discount rate : Min $(g\sigma')$ + δ
 - Ecological long run discount rate : $\lim \rho(T) = g[\sigma'-(1/\sigma)] + \delta$
 - Min{g}[Min{ $\underline{\sigma}'$ }-1/{Min $\underline{\sigma}$ }: (1) (1,4 0.9) = 0,5 pour cent!
- Proposition B: the « radical » environmentalist.
 - Standard discount rate : (g/σ) + δ
 - ecological long run discount rate : lim ρ (T)= δ

The optimum in the 4-parameters world.


- Constraints.
 - Fixed environmetal quality.
 - Fixed interest rate (standard discount rate).
- Results : optimal asymptotic growth with moderate environmental concerns.
 - Asymptotic growth rate : $g^*=(r-\delta)/\sigma'$
 - Ecological discount rate : $B^*=[1-1/(\sigma'\sigma)]r+1/(\sigma'\sigma)]\delta$.
- Optimal growth with radical environmental concerns :
 - Asymptotic growth rate : $g^* = \sigma(\mathbf{r} \delta)$
 - Ecological discount rate : $B^*=\delta$.
- Discontinuity and continuity :
 - At each t, the optimal trajectory, as well as the ecological discount rate, is a continuous function of $\boldsymbol{\sigma}$


Long run ecological discount rate as a function of sigma.


The dynamics of « ecological discount rates ».


- The dynamic of optimal growth rates $(\sigma'\sigma>1)$
 - σ <1, g*(t) is increasing.
 - $\sigma > 1$, $g^*(t)$ is decreasing.
- The dynamics of ecological discount rates
 - $-\sigma < 1$
 - B*(t) is decreasing
 - and converges to δ .
 - $-\sigma > 1$
 - B*(t) is increasing
 - and conv to : \mathbf{r} -(\mathbf{r} - δ)/ $\sigma'\sigma$
- $\sigma' = 1,5,$
 - $-\sigma =$
 - **0,8,**
 - **1,2,**
- $\delta = 0,1, r=2\%$

Ecological return: the wealth effect.

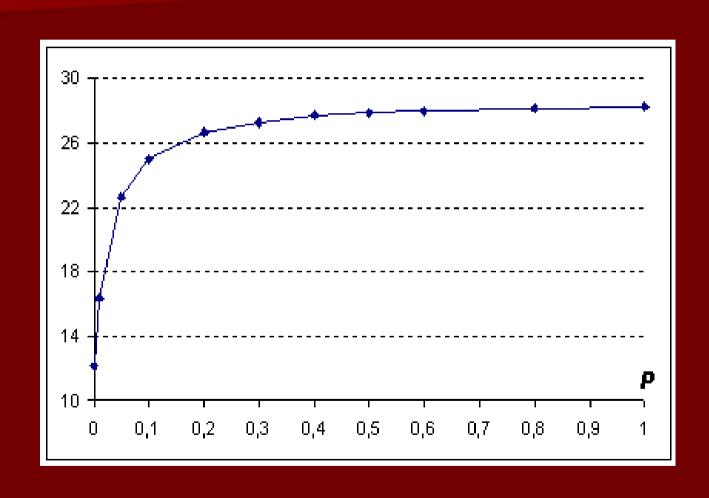
Valuing an irreversible damage to the environment.

The question :

- Consider an irreversible damage to the environment
- Generation 0 is willing to pay x to avoid the damage for itself.
- How much should it be willing to pay, considering other generations?
- The answer is mx, m>1.
- An Answer : A Bound on m, with a broad validity range ?
 - Consider $a=[1-1/(\sigma'\sigma)]r+1/(\sigma'\sigma)]\delta$
 - m>1/a, irrespective of σ .

Examples:

- $-\sigma'=1,5,\delta=0,1\%, r=2\%, \sigma=0,8,$
- $-\sigma'=1,5, \delta=1\%, r=3\%$
 - σ=1,2, bound 52,94, actual m : 61, 49.
 - σ =0,8, bound 75, actual m : 86, 68.
- σ'=1,5, δ=0,1%, r=3%,
 - $\sigma = 0.8$, m=200,
 - $\sigma = 1, 2, m = 75$.


Introducing uncertainty on σ

- Modelling:
 - The elasticity of substitution σ is uncertain.
 - the uncertainty on σ remains steady untill period τ
 - It will be fully revealed at time τ.
- Question 1 : what about the long run « ecological discount rate » ?
 - The long run ecological discount rate is δ . (WPP)
- Question 2 :
 - Revelation of the uncertainty comes together with an « ecological » accident,
 - the present generation would be willing to pay x for avoiding this accident to itself under the assumption that the moderate environmentalist hypothesis has probability (1-p)
 - How much should it be prepared to pay to avoid the $\,$ « accident » that will concern all generations following τ

Strong precautionary principle.

- Question 2 :
 - Revelation of the uncertainty comes together with an « ecological » accident,
 - the present generation would be willing to pay
 - How much should it be prepared to pay to avoid the
 « accident » that will concern all generations following τ
- WPP: ecological discount rate tends to delta
- Answer 2 : SPP
 - a=[1-1/(σ'σ)]r+ 1/(σ'σ)] δ
 - $m > \exp(-a(h)\tau)f(p, \tau)$
 - f>((1-p)/a(h)+p/a(l)) and concave.
 - Lim(τ) [f(p, τ .)=a(l)
- Back of the enveloppe computation.

m as a function of the probability of accident

