

A structural risk-neutral model of electricity prices Printemps de la Chaire Finance & Développement Durable

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

Campi, N. Nguven Huu

A structural risk-neutral model of electricity prices

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

1 Introduction

- 2 The Model
- 3 Electricity forward prices
- 4 Constant coefficients
- 5 Numerical results

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Vguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

æ

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

Electricity is not storable, thus buy-and-hold strategies on the spot are just impossible : $F_t(T) \neq P_t e^{r(T-t)}$

Electricity is created via transformation of storable commodities

 Delivery periods forward contracts: next day, week or month ; quarterly ; yearly

European options on forward (quarterly, yearly)

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

- Electricity is not storable, thus buy-and-hold strategies on the spot are just impossible : $F_t(T) \neq P_t e^{r(T-t)}$
- Electricity is created via transformation of storable commodities
- Delivery periods forward contracts: next day, week or month ; quarterly ; yearly
- European options on forward (quarterly, yearly)

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

4 E b

Sell a forward on electricity at F_e(t, T) and buy q_c coal forward at F_c(t, T)

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

Sell a forward on electricity at F_e(t, T) and buy q_c coal forward at F_c(t, T)

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

Image: A matrix

Sell a forward on electricity at F_e(t, T) and buy q_c coal forward at F_c(t, T)

and, at time T:

• Sell q_c coal at $S_c(T)$, buy electricity at $S_e(T) = q_c S_c(T)$.

Electricity forward prices

Constant coefficients

Numerical results

(日) (同) (日) (日)

A structural

model of

electricity prices R. Aïd, L. Campi, N.

Nguven Huu

Sell a forward on electricity at $F_e(t, T)$ and buy q_c coal forward at $F_c(t, T)$

and, at time T:

• Sell q_c coal at $S_c(T)$, buy electricity at $S_e(T) = q_c S_c(T)$.

Under NA assumption we have the following relation:

$$F_0^e(T) = c_c F_0^c(T)$$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

- Randomness : (W⁰, W) = (W⁰, W¹,..., Wⁿ) Wiener process defined on a given (Ω, F, P). F⁰_t and F^W_t are their natural filtrations.
- Riskless asset $S_t^0 = S_0 \exp rt$, $r, t \ge 0$.
- Commodities market: n ≥ 1 commodities (coal, gas, ...) whose prices Sⁱ to produce 1 MWh of electricity follows

$$dS^i_t=S^i_t(\mu^i_tdt+\sum_j\sigma^{ij}_tdW^j_t),\quad t\ge 0.$$

For simplicity, assume that convenience yields y' = 0 for all i = 1, ..., n.

■ Electricity demand: $D = (D_t)_{t\geq 0} \mathcal{F}_t^0$ -adapted, (positive) process; notice that D is independent of each S^i .

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu A structural risk-neutral model of electricity prices Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

A structural

risk-neutral model of

electricity prices

Campi, N.

The Model

- Randomness: (W⁰, W) = (W⁰, W¹,..., Wⁿ) Wiener process defined on a given (Ω, F, P). F⁰_t and F^W_t are their natural filtrations.
- Riskless asset $S_t^0 = S_0 \exp rt$, $r, t \ge 0$.
- **Commodities market:** *n* ≥ 1 commodities (coal, gas, ...) whose prices *Sⁱ* to produce 1 MWh of electricity follows

$$dS^i_t=S^i_t(\mu^i_tdt+\sum_j\sigma^{ij}_tdW^j_t),\quad t\geq 0.$$

For simplicity, assume that convenience yields y' = 0 for all i = 1, ..., n.

Electricity demand: $D = (D_t)_{t \ge 0} \mathcal{F}_t^0$ -adapted, (positive) process; notice that D is independent of each S^i .

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

- Randomness : (W⁰, W) = (W⁰, W¹,..., Wⁿ) Wiener process defined on a given (Ω, F, P). F⁰_t and F^W_t are their natural filtrations.
- Riskless asset $S_t^0 = S_0 \exp rt$, $r, t \ge 0$.
- Commodities market: n ≥ 1 commodities (coal, gas, ...) whose prices Sⁱ to produce 1 MWh of electricity follows

$$dS^i_t=S^i_t(\mu^i_tdt+\sum_j\sigma^{ij}_tdW^j_t),\quad t\ge 0.$$

For simplicity, assume that convenience yields $y^i = 0$ for all i = 1, ..., n.

Electricity demand: $D = (D_t)_{t \ge 0} \mathcal{F}_t^0$ -adapted, (positive) process; notice that D is independent of each S^i .

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

- Randomness: (W⁰, W) = (W⁰, W¹,..., Wⁿ) Wiener process defined on a given (Ω, F, P). F⁰_t and F^W_t are their natural filtrations.
- Riskless asset $S_t^0 = S_0 \exp rt$, $r, t \ge 0$.
- Commodities market: n ≥ 1 commodities (coal, gas, ...) whose prices Sⁱ to produce 1 MWh of electricity follows

$$dS_t^i=S_t^i(\mu_t^i dt+\sum_j \sigma_t^{ij} dW_t^j), \quad t\geq 0.$$

For simplicity, assume that convenience yields $y^i = 0$ for all i = 1, ..., n.

Electricity demand: $D = (D_t)_{t \ge 0} \mathcal{F}_t^0$ -adapted, (positive) process; notice that D is independent of each S^i .

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

A structural risk-neutral model of electricity prices

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an \mathcal{F}_t^W -adapted random permutation $\pi_t(\omega)$ of $\{1,\ldots,n\}$
- Δⁱ > 0 denotes the maximal capacity of *i*-th commodity for electricity at every instant, a constant known to the producer
- Look at the demand D_t:

$$D_t \in I_k^{\pi_t} := \left[\sum_{i=1}^{k-1} \Delta^{\pi_t(i)}, \sum_{i=1}^k \Delta^{\pi_t(i)}\right) \Rightarrow P_t = S_t^{(k)}$$
... so that $P_t = \sum_k S_t^{(k)} \mathbf{1}_{l_k^{\pi_t}}(D_t)$ for $t \ge 0$.

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an \mathcal{F}_t^W -adapted random permutation $\pi_t(\omega)$ of $\{1, \ldots, n\}$
- Δⁱ > 0 denotes the maximal capacity of *i*-th commodity for electricity at every instant, a constant known to the producer
- Look at the demand D_t :

$$D_t \in I_k^{\pi_t} := \left[\sum_{i=1}^{k-1} \Delta^{\pi_t(i)}, \sum_{i=1}^k \Delta^{\pi_t(i)}\right) \Rightarrow P_t = S_t^{(k)}$$

.. so that $P_t = \sum_k S_t^{(k)} \mathbf{1}_{I_t^{\pi_t}}(D_t)$ for $t \ge 0$.

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Jguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an \mathcal{F}_t^W -adapted random permutation $\pi_t(\omega)$ of $\{1, \ldots, n\}$
- Δⁱ > 0 denotes the maximal capacity of *i*-th commodity for electricity at every instant, a constant known to the producer
- Look at the demand D_t:

$$D_t \in I_k^{\pi_t} := \left[\sum_{i=1}^{k-1} \Delta^{\pi_t(i)}, \sum_{i=1}^k \Delta^{\pi_t(i)}\right) \Rightarrow P_t = S_t^{(k)}$$

• ... so that $P_t = \sum_k S_t^{(k)} \mathbf{1}_{l_{\nu}^{\pi_t}}(D_t)$ for $t \ge 0$.

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

- Order commodities prices $S_t^{(1)}(\omega) \leq \ldots \leq S_t^{(n)}(\omega)$ from the cheapest to the most expensive, giving an \mathcal{F}_t^W -adapted random permutation $\pi_t(\omega)$ of $\{1, \ldots, n\}$
- Δⁱ > 0 denotes the maximal capacity of *i*-th commodity for electricity at every instant, a constant known to the producer
- Look at the demand D_t:

$$D_t \in I_k^{\pi_t} := \left[\sum_{i=1}^{k-1} \Delta^{\pi_t(i)}, \sum_{i=1}^k \Delta^{\pi_t(i)}\right) \Rightarrow P_t = S_t^{(k)}$$

Image: A matrix

→

• ... so that
$$P_t = \sum_k S_t^{(k)} \mathbf{1}_{I_k^{\pi_t}}(D_t)$$
 for $t \ge 0$.

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

A structural risk-neutral model of electricity prices

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Technologies failures I : The case of two commodities

• If n = 2 we have $S_t^1 \le S_t^2$ or $S_t^2 \le S_t^1$, let's consider the first case $\pi_t = \{1, 2\}$

Introduce two r.v.'s Δ_t^i , i = 1, 2 such that

- $\Delta_t^i, i = 1, 2$ are independent and have their own natural filtration \mathcal{F}_t^{Δ}
- $\Delta_t^i = M_i$ when technology *i* is fully available.
- $\Delta_t^i = m_i$ when technology is partially available.

Four cases may happen at each time t

1
$$\Delta_t^1 = M_1, \Delta_t^2 = M_2$$

2 $\Delta_t^1 = M_1, \Delta_t^2 = m_2$
3 $\Delta_t^1 = m_1, \Delta_t^2 = M_2$
4 $\Delta_t^1 = m_1, \Delta_t^2 = m_2$

• To sum up: $P_t = S_t^1 \mathbf{1}_{[0, \Delta_t^1)}(D_t) + S_t^2 \mathbf{1}_{[\Delta_t^1, \Delta_t^1 + \Delta_t^2)}(D_t)$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

イロト イポト イヨト イヨト

Technologies failures I : The case of two commodities

If n = 2 we have $S_t^1 \leq S_t^2$ or $S_t^2 \leq S_t^1$, let's consider the first case $\pi_t = \{1, 2\}$

Introduce two r.v.'s Δ_t^i , i = 1, 2 such that

- Δ_{\star}^{i} , i = 1, 2 are independent and have their own natural filtration \mathcal{F}^{Δ}_{t}
- $\Delta_t^i = M_i$ when technology *i* is fully available.
- $\Delta_t^i = m_i$ when technology is partially available.

Four cases may happen at each time t

1
$$\Delta_t^1 = M_1, \Delta_t^2 = M_2$$

2 $\Delta_t^1 = M_1, \Delta_t^2 = m_2$
3 $\Delta_t^1 = m_1, \Delta_t^2 = M_2$
4 $\Delta_t^1 = m_1, \Delta_t^2 = m_2$

R. Aïd. L. Campi, N. Touzi, A. Nguven Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

Campi, N. Nguven Huu

The Model

Technologies failures I : The case of two commodities

If n = 2 we have $S_t^1 \le S_t^2$ or $S_t^2 \le S_t^1$, let's consider the first case $\pi_t = \{1, 2\}$

Introduce two r.v.'s Δ_t^i , i = 1, 2 such that

- $\Delta_t^i, i = 1, 2$ are independent and have their own natural filtration \mathcal{F}_t^{Δ}
- $\Delta_t^i = M_i$ when technology *i* is fully available.
- $\Delta_t^i = m_i$ when technology is partially available.
- Four cases may happen at each time t

1
$$\Delta_t^1 = M_1, \Delta_t^2 = M_2$$

2 $\Delta_t^1 = M_1, \Delta_t^2 = m_2$
3 $\Delta_t^1 = m_1, \Delta_t^2 = M_2$
4 $\Delta_t^1 = m_1, \Delta_t^2 = m_2$

• To sum up: $P_t = S_t^1 \mathbb{1}_{[0, \Delta_t^1)}(D_t) + S_t^2 \mathbb{1}_{[\Delta_t^1, \Delta_t^1 + \Delta_t^2)}(D_t)$

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Technologies failures I : The case of two commodities

If n = 2 we have $S_t^1 \le S_t^2$ or $S_t^2 \le S_t^1$, let's consider the first case $\pi_t = \{1, 2\}$

Introduce two r.v.'s Δ_t^i , i = 1, 2 such that

• $\Delta_t^i, i=1,2$ are independent and have their own natural filtration \mathcal{F}_t^Δ

- $\Delta_t^i = M_i$ when technology *i* is fully available.
- $\Delta_t^i = m_i$ when technology is partially available.
- Four cases may happen at each time t

1
$$\Delta_t^1 = M_1, \Delta_t^2 = M_2$$

2 $\Delta_t^1 = M_1, \Delta_t^2 = m_2$
3 $\Delta_t^1 = m_1, \Delta_t^2 = M_2$
4 $\Delta_t^1 = m_1, \Delta_t^2 = m_2$
To sum up: $P_t = S_t^1 \mathbf{1}_{[0,\Delta_t^1]}(D_t) + S_t^2 \mathbf{1}_{[\Delta_t^1,\Delta_t^1+\Delta_t^2]}(D_t)$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

No-arbitrage assumption on commodities market

- Let T > 0. There exists $\mathbb{Q} \sim \mathbb{P}$ on \mathcal{F}_T^W such that :
 - 1 each \tilde{S}^i/S^0 is a Q-martingale w.r.t. \mathcal{F}^W
 - **2** the laws of W^0 and Δ_t^i for all *i* do not change
 - 3 filtrations $(\mathcal{F}^0_t), (\mathcal{F}^W_t), (\mathcal{F}^\Delta_t)$ are \mathbb{Q} -independent

Remarks

Property 3 above is satisfied if W⁰, W and Δⁱ are constructed on the canonical product space and the change of measure affects only the factor where W is defined. Such a Q is usually called "minimal martingale measure".
 Since D is not tradable, this market is not complete. We choose Q as the pricing measure.

3. Notation: $\mathcal{F}_t = \mathcal{F}_t^0 \vee \mathcal{F}_t^W \vee \mathcal{F}_t^\Delta$ is the market filtration.

イロト イポト イヨト イヨ

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Electricity forward prices : The main formula

Proposition

Under previous assumptions and if $S^i_T \in L^1(\mathbb{Q}_T)$, $1 \le i \le n$: for all $t \in [0, T]$

$$F_t(T) = \sum_{i=1}^n \sum_{\pi \in \Pi_n} c_{\pi(i)} F_t^{\pi(i)}(T) \mathbb{Q}[D_T \in I_i^{\pi}(T) | \mathcal{F}_t^0] \\ \times \mathbb{Q}^{\pi(i)}[\pi_T = \pi | \mathcal{F}_t^W]$$

where :

• Π_n is the set of all permutations of $\{1, \ldots, n\}$

• $F_t^i(T)$ is forw. price of 1 unit of commodity *i*, maturity T • $d\mathbb{Q}^{\pi(i)}/d\mathbb{Q} = S_T^{\pi(i)}/\mathbb{E}^{\mathbb{Q}}[S_T^{\pi(i)}]$ on \mathcal{F}_T^W

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

CHAIRE Finance & Divieloppement Darabl

Electricity forward prices : The main formula

Proposition

Under previous assumptions and if $S^i_T \in L^1(\mathbb{Q}_T)$, $1 \le i \le n$: for all $t \in [0, T]$

$$F_t(T) = \sum_{i=1}^n \sum_{\pi \in \Pi_n} c_{\pi(i)} F_t^{\pi(i)}(T) \mathbb{Q}[D_T \in I_i^{\pi}(T) | \mathcal{F}_t^0] \\ \times \mathbb{Q}^{\pi(i)}[\pi_T = \pi | \mathcal{F}_t^W]$$

where :

- Π_n is the set of all permutations of $\{1, \ldots, n\}$
- $F_t^i(T)$ is forw. price of 1 unit of commodity i, maturity T
- $d\mathbb{Q}^{\pi(i)}/d\mathbb{Q} = S_T^{\pi(i)}/\mathbb{E}^{\mathbb{Q}}[S_T^{\pi(i)}]$ on \mathcal{F}_T^W

risk-neutral model of electricity prices

A structural

R. Aïd, L. Campi, N. Touzi, A. Iguyen Huu

ntro du ction

The Model

Electricity forward prices

Constant coefficients

Electricity forward prices : The main formula

Proposition

Under previous assumptions and if $S^i_T \in L^1(\mathbb{Q}_T)$, $1 \le i \le n$: for all $t \in [0, T]$

$$F_t(T) = \sum_{i=1}^n \sum_{\pi \in \Pi_n} c_{\pi(i)} F_t^{\pi(i)}(T) \mathbb{Q}[D_T \in I_i^{\pi}(T) | \mathcal{F}_t^0] \\ \times \mathbb{Q}^{\pi(i)}[\pi_T = \pi | \mathcal{F}_t^W]$$

where :

• Π_n is the set of all permutations of $\{1, \ldots, n\}$ • $F_t^i(T)$ is forw. price of 1 unit of commodity i, maturity T • $d\mathbb{Q}^{\pi(i)}/d\mathbb{Q} = S_T^{\pi(i)}/\mathbb{E}^{\mathbb{Q}}[S_T^{\pi(i)}]$ on \mathcal{F}_T^W

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntro du ction

The Model

Electricity forward prices

Constant coefficients

- Commodities prices Sⁱ follow n-dim Black-Scholes model : volatilities σ^{ij} > 0 and interest rate r > 0 constant.
- Production capacity \(\Delta_t^i\) are independent componed Poisson processes with two values (\(M_i > m_i\))

Demand of electricity : *D* follows a OU process

 $dD_t = a(b(t) - D_t)dt + \delta dW_t^0, \quad D_0 > 0$

with $a, b(t), \delta > 0$. b(t) stands for seasonnality in Demand.

Under these assumptions probabilities $\mathbb{Q}[D_T \in I_k^{\pi}(T)|\mathcal{F}_t^0]$ and $\mathbb{Q}^{\pi(i)}[\pi_T = \pi | \mathcal{F}_t^W]$ can be computed explicitly as functions of the parameters.

• $F_t^i(T) = e^{r(T-t)}S_t^i$ for all commodities $1 \le i \le n$

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu A structural risk-neutral model of electricity prices

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

イロト イポト イヨト イヨト

CHAIR

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

- Commodities prices Sⁱ follow n-dim Black-Scholes model : volatilities σ^{ij} > 0 and interest rate r > 0 constant.
- Production capacity Δ_t^i are independent componed Poisson processes with two values $(M_i > m_i)$

Demand of electricity : *D* follows a OU process

$$dD_t = a(b(t) - D_t)dt + \delta dW_t^0, \quad D_0 > 0$$

with $a, b(t), \delta > 0$. b(t) stands for seasonnality in Demand.

• Under these assumptions probabilities $\mathbb{Q}[D_T \in I_k^{\pi}(T)|\mathcal{F}_t^0]$ and $\mathbb{Q}^{\pi(i)}[\pi_T = \pi |\mathcal{F}_t^W]$ can be computed explicitly as functions of the parameters.

• $F_t^i(T) = e^{r(T-t)}S_t^i$ for all commodities $1 \le i \le n$

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

イロト イポト イヨト イヨト

CHAIR

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

- Commodities prices Sⁱ follow n-dim Black-Scholes model : volatilities σ^{ij} > 0 and interest rate r > 0 constant.
- Production capacity Δ_t^i are independent componed Poisson processes with two values $(M_i > m_i)$
- Demand of electricity : *D* follows a OU process

$$dD_t = a(b(t) - D_t)dt + \delta dW_t^0, \quad D_0 > 0$$

with $a, b(t), \delta > 0$. b(t) stands for seasonnality in Demand.

- Under these assumptions probabilities $\mathbb{Q}[D_T \in I_k^{\pi}(T)|\mathcal{F}_t^0]$ and $\mathbb{Q}^{\pi(i)}[\pi_T = \pi |\mathcal{F}_t^W]$ can be computed explicitly as functions of the parameters.
- $F_t^i(T) = e^{r(T-t)}S_t^i$ for all commodities $1 \le i \le n$

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

イロト イポト イヨト イヨト

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

- Commodities prices Sⁱ follow n-dim Black-Scholes model : volatilities σ^{ij} > 0 and interest rate r > 0 constant.
- Production capacity Δ_t^i are independent componed Poisson processes with two values $(M_i > m_i)$
- Demand of electricity : *D* follows a OU process

$$dD_t = a(b(t) - D_t)dt + \delta dW_t^0, \quad D_0 > 0$$

with $a, b(t), \delta > 0$. b(t) stands for seasonnality in Demand.

- Under these assumptions probabilities $\mathbb{Q}[D_T \in I_k^{\pi}(T)|\mathcal{F}_t^0]$ and $\mathbb{Q}^{\pi(i)}[\pi_T = \pi |\mathcal{F}_t^W]$ can be computed explicitly as functions of the parameters.
- $F_t^i(T) = e^{r(T-t)}S_t^i$ for all commodities $1 \le i \le n$

イロト イポト イヨト イヨト

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

We focus on French market, and two technologies :

- Gas plants (gas and CO2 prices)
- Fuel combustion turbines (fuel and CO2 prices)

Several approximations :

- We select midday hourly prices on peakload to ensure the only use of these technologies (this implies knowledge on demand)
- Heat rates c_i are known for each technology i.
- Correlations and price level of technologies allows to focus on the only order $\pi_t = \{1, 2\}$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

イロト イポト イヨト イヨト

We focus on French market, and two technologies :

- Gas plants (gas and CO2 prices)
- Fuel combustion turbines (fuel and CO2 prices)

Several approximations :

- We select midday hourly prices on peakload to ensure the only use of these technologies (this implies knowledge on demand)
- Heat rates c_i are known for each technology i.
- Correlations and price level of technologies allows to focus on the only order $\pi_t = \{1, 2\}$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

イロト イポト イヨト イヨト

We focus on French market, and two technologies :

- Gas plants (gas and CO2 prices)
- Fuel combustion turbines (fuel and CO2 prices)

Several approximations :

- We select midday hourly prices on peakload to ensure the only use of these technologies (this implies knowledge on demand)
- Heat rates c_i are known for each technology i.
- Correlations and price level of technologies allows to focus on the only order $\pi_t = \{1, 2\}$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

Back to reality II : how do we proceed?

We can calibrate the model:

- On spot prices to price forward assets
- On forward prices to adjust meaningful parameters

The data we calibrate on are

- S^i or $F^i(T)$ for technologies costs (spot and forward)
- P_t or $F_t(T)$ for electricity spot and forward prices
- *Rⁱ_t* residual demand for *i*-th technology given by :

$$R_t^i = \min\left\{\Delta_t^i, \left(D_t - \sum_{k=1}^{i-1} \Delta_t^k\right)^+\right\}$$

where D_t stands for total demand (sum of residuals). Consequence : R^1 and R^2 allows for straight spot price figing ∞

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

Back to reality II : how do we proceed?

We can calibrate the model:

- On spot prices to price forward assets
- On forward prices to adjust meaningful parameters

The data we calibrate on are

• S^i or $F^i(T)$ for technologies costs (spot and forward)

- P_t or $F_t(T)$ for electricity spot and forward prices
- **R_t^i** residual demand for *i*-th technology given by :

$$R_t^i = \min\left\{\Delta_t^i, \left(D_t - \sum_{k=1}^{i-1} \Delta_t^k\right)^+\right\}$$

where D_t stands for total demand (sum of residuals). Consequence : R^1 and R^2 allows for straight spot price fitting ∞

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

The Model

Electricity forward prices

Constant coefficients

Numerical results

A structural risk-neutral model of

electricity prices

We can calibrate the model:

- On spot prices to price forward assets
- On forward prices to adjust meaningful parameters

The data we calibrate on are

- S^i or $F^i(T)$ for technologies costs (spot and forward)
- P_t or $F_t(T)$ for electricity spot and forward prices
- R_t^i residual demand for *i*-th technology given by :

$$R_t^i = \min\left\{\Delta_t^i, \left(D_t - \sum_{k=1}^{i-1} \Delta_t^k\right)^+\right\}$$

where D_t stands for total demand (sum of residuals).

Consequence : R^1 and R^2 allows for straight spot price fitting ∞

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

We can calibrate the model:

- On spot prices to price forward assets
- On forward prices to adjust meaningful parameters

The data we calibrate on are

- S^i or $F^i(T)$ for technologies costs (spot and forward)
- P_t or $F_t(T)$ for electricity spot and forward prices
- R_t^i residual demand for *i*-th technology given by :

$$R_t^i = \min\left\{\Delta_t^i, \left(D_t - \sum_{k=1}^{i-1} \Delta_t^k\right)^+\right\}$$

where D_t stands for total demand (sum of residuals). Consequence : R^1 and R^2 allows for straight spot price fitting.

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

A structural risk-neutral model of electricity prices

A structural risk-neutral model of electricity

prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Spot price historical fitting

Figure: Spot price fitting with technologies spot prices and residual demand. Daily data from January 2007 to December 2008.

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu A structural risk-neutral model of electricity prices Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

< 17 >

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Demand process is estimated via MLE.

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Vguven Huu

ntro du ction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

- Demand process is estimated via MLE.
- Capacity process :

$$d\Delta_t^1 = (m_1 - M_1) \mathbf{1}_{(\Delta_t^1 = M_1)} dN_t^{1,d} + (M_1 - m_1) \mathbf{1}_{(\Delta_t^1 = m_1)} dN_t^{1,u}$$

$$\Delta_0^1=\mathit{M}_1.$$
 We estimate intensities $\lambda^{1,d}$ and $\lambda^{1,u}$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

3

- Demand process is estimated via MLE.
- Capacity process :

$$d\Delta_t^1 = (m_1 - M_1) \mathbf{1}_{(\Delta_t^1 = M_1)} dN_t^{1,d} + (M_1 - m_1) \mathbf{1}_{(\Delta_t^1 = m_1)} dN_t^{1,u}$$

 $\Delta_0^1 = M_1$. We estimate intensities $\lambda^{1,d}$ and $\lambda^{1,u}$. Two estimation problems :

1 The observed process is not pure jump $(\Delta_t^1 \neq m_1 \text{ or } M_1)$ 2 Data is truncated (we observe Δ_t^1 knowing $D_t > \Delta_t^1$)

Image: A matrix

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

< ∃ > < ∃ >

- Demand process is estimated via MLE.
- Capacity process :

$$d\Delta_t^1 = (m_1 - M_1) \mathbf{1}_{(\Delta_t^1 = M_1)} dN_t^{1,d} + (M_1 - m_1) \mathbf{1}_{(\Delta_t^1 = m_1)} dN_t^{1,u}$$

 $\Delta_0^1 = M_1$. We estimate intensities $\lambda^{1,d}$ and $\lambda^{1,u}$. Two estimation problems :

1 The observed process is not pure jump $(\Delta_t^1 \neq m_1 \text{ or } M_1)$ 2 Data is truncated (we observe Δ_t^1 knowing $D_t > \Delta_t^1$)

We clean data,

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

イロト イ団ト イヨト イヨト

- Demand process is estimated via MLE.
- Capacity process :

$$d\Delta_t^1 = (m_1 - M_1) \mathbf{1}_{(\Delta_t^1 = M_1)} dN_t^{1,d} + (M_1 - m_1) \mathbf{1}_{(\Delta_t^1 = m_1)} dN_t^{1,u}$$

 $\Delta_0^1 = M_1$. We estimate intensities $\lambda^{1,d}$ and $\lambda^{1,u}$. Two estimation problems :

1 The observed process is not pure jump $(\Delta_t^1 \neq m_1 \text{ or } M_1)$ 2 Data is truncated (we observe Δ_t^1 knowing $D_t > \Delta_t^1$)

We clean data, apply Bayes rule

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

- Demand process is estimated via MLE.
- Capacity process :

$$d\Delta_t^1 = (m_1 - M_1) \mathbf{1}_{(\Delta_t^1 = M_1)} dN_t^{1,d} + (M_1 - m_1) \mathbf{1}_{(\Delta_t^1 = m_1)} dN_t^{1,u}$$

 $\Delta_0^1 = M_1$. We estimate intensities $\lambda^{1,d}$ and $\lambda^{1,u}$. Two estimation problems :

- 1 The observed process is not pure jump $(\Delta_t^1 \neq m_1 \text{ or } M_1)$ 2 Data is truncated (we observe Δ_t^1 knowing $D_t > \Delta_t^1$)
- We clean data, apply Bayes rule to estimate via MLE.

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

- Demand process is estimated via MLE.
- Capacity process :

$$d\Delta_t^1 = (m_1 - M_1) \mathbf{1}_{(\Delta_t^1 = M_1)} dN_t^{1,d} + (M_1 - m_1) \mathbf{1}_{(\Delta_t^1 = m_1)} dN_t^{1,u}$$

 $\Delta_0^1 = M_1$. We estimate intensities $\lambda^{1,d}$ and $\lambda^{1,u}$. Two estimation problems :

1 The observed process is not pure jump $(\Delta_t^1 \neq m_1 \text{ or } M_1)$ 2 Data is truncated (we observe Δ_t^1 knowing $D_t > \Delta_t^1$)

We clean data, apply Bayes rule to estimate via MLE.

$$\textbf{Goal}: \text{ we compute } \mathbb{Q}[D_{\mathcal{T}} > \Delta^1_{\mathcal{T}} | \mathcal{F}^0_t] \text{ and } \mathbb{Q}[\Delta^1_{\mathcal{T}} = M_i | \mathcal{F}^\Delta_t]$$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

ntroduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

(日) (同) (日) (日)

A structural risk-neutral model of

electricity prices

Campi, N. Touzi, A. Nguyen Huu

Numerical results

Forwards have a delivery period (1 month, 1 quarter,..) \Rightarrow the expression must be modified

$$F_{t}(T_{1}, T_{2}) = \frac{1}{T_{2} - T_{1}} \sum_{i=1}^{n} \sum_{\pi \in \Pi_{n}} \int_{T_{1}}^{T_{2}} F_{t}^{\pi(i)}(T) \\ \times \mathbb{Q}_{T}^{\pi(i)}[\pi_{T} = \pi | \mathcal{F}_{t}^{W}] \mathbb{Q}[D_{T} \in I_{i}^{\pi}(T) | \mathcal{F}_{t}^{0,\Delta}] dT$$

Approximations again :

• $F_t^i(T)$ are replaced by prices on delivery period $F_t^i(T_1, T_2)$

Image: A matrix

Integral is numerically computed

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

- * E + * E +

Forwards prices results

A structural

results

Figure: Historical forward prices (2QAH and 3QAH) and modelized forward prices.

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu A structural risk-neutral model of electricity prices

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

э

< 17 ×

→

Forwards prices results

A structural risk-neutral model of electricity

prices

Campi, N.

Numerical results

Figure: Historical forward yields (2QAH and 3QAH) and modelizedforward yields. Correlation with historical yield : 0.4178213 (2QAH) and0.4103652 (3QAH)

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

The other side : calibration on forwards

Calibration issues :

- Which parameters to calibrate?
 - Demand process is supposed to be known
 - Capacity thresholds are the same
 - \Rightarrow Intensity of jump or probability of failure $(rac{\lambda^{i,d}}{\lambda^{i,d}+\lambda^{i,u}})$
- Approximations in the price equation must be kept
- Numerical difficulties to find a unique solution
- Calibration equivalent to linear regression under constrainst

model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

< 17 >

The other side : calibration on forwards

Calibration issues :

- Which parameters to calibrate?
 - Demand process is supposed to be known
 - Capacity thresholds are the same
 - \Rightarrow Intensity of jump or probability of failure $(rac{\lambda^{i,d}}{\lambda^{i,d}+\lambda^{i,u}})$
- Approximations in the price equation must be kept
- Numerical difficulties to find a unique solution
- Calibration equivalent to linear regression under constrainst

isk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

The other side : calibration on forwards

Calibration issues :

- Which parameters to calibrate?
 - Demand process is supposed to be known
 - Capacity thresholds are the same
 - \Rightarrow Intensity of jump or probability of failure $(\frac{\lambda^{i,d}}{\lambda^{i,d}+\lambda^{i,u}})$
- Approximations in the price equation must be kept
- Numerical difficulties to find a unique solution
- Calibration equivalent to linear regression under constrainst

Example : we find $P(\Delta_T = M_1, T \in [T_1, T_2) | \mathcal{F}_t) = 0.865$ for Summer 2009 forward.

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

(日) (同) (日) (日)

- The simple model allows for basic cross hedging
- The coherence even with several approximations
- The demand adds significative information to the link between prices
- The residual demand is a fundamental data for fitting 'hat next?
- Refine capacity evolution
- Look for other potentially useful data
- Add commodities (and improve their models)
- Extend to option pricing
- Analyse the risk premium $F_t(T)$ –

・ 同 ト ・ ヨ ト ・ ヨ

A structural risk-neutral model of

electricity prices

Nguven Huu

Numerical

- The simple model allows for basic cross hedging
- The coherence even with several approximations
- The demand adds significative information to the link between prices
- The residual demand is a fundamental data for fitting What next?
 - Refine capacity evolution
 - Look for other potentially useful data
 - Add commodities (and improve their models)
 - Extend to option pricing
 - Analyse the risk premium $F_t(T)$ –

< 17 ×

A B > A B

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients Numerical

results

- The simple model allows for basic cross hedging
- The coherence even with several approximations
- The demand adds significative information to the link between prices
- The residual demand is a fundamental data for fitting What next?
 - Refine capacity evolution
 - Look for other potentially useful data
 - Add commodities (and improve their models)
 - Extend to option pricing
 - Analyse the risk premium $F_t(T) P_t$

A structural risk-neutral model of electricity prices

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Introduction

The Model

Electricity forward prices

Constant coefficients

Numerical results

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

Laboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

- The simple model allows for basic cross hedging
- The coherence even with several approximations
- The demand adds significative information to the link between prices
- The residual demand is a fundamental data for fitting What next?
 - Refine capacity evolution
 - Look for other potentially useful data
 - Add commodities (and improve their models)
 - Extend to option pricing
 - Analyse the risk premium $F_t(T) P_t$

< 17 ×

A 35 A 4

A structural risk-neutral model of

electricity prices

Campi N

Nguven Huu

Numerical

A structural risk-neutral model of electricity prices

Campi, N.

Numerical results

Thank you for your attention!

R. Aïd, L. Campi, N. Touzi, A. Nguyen Huu

_aboratoire FiME (Paris-Dauphine, CREST, EDF R&D)

æ