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Computing Value at Risk
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e We consider the variation of a portfolio value V; between t =0
and t =T

.
AV(X):VT—V0+/ CF ,
0

where X € R modellizes the risk factors between 0 and T.
e Value at Risk ~ VaR, = |inf{s e R | P(AV <5) >1—a}|

P&L : Variations VT-Vo

P&L

- VAR

s 4 2 % 5 4 3 2 -
VaR 95% = 6 M€ eRB)F
VaR, = |F~(a)| , where F(s) =P(AV <s) sfor all s<€ R
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e The distribution function F can be viewed as an expectation

F(s) =Ellav(x)<s] » forall seR

e Traditional Monte Carlo Method for computing VaR

1. Monte Carlo simulations give an approximation of F(s) :
LN
Fu(s) = 3 Z; I(AV(X;) <s), forallseR

= Too many evaluations of AV for a given accuracy
2. Inversion of FN and interpolation for approximating VaR e
€DF
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Importance Sampling
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Goal Computing m =E,[p(X)] = /

x€eR

) o(x) p(x) dx .

e Change of measure p — g where g dominates pp

m = Eplip(X)] = Eqlie(Y) ()], where X ~p and Y ~ g

e Monte Carlo approximation Generate (Y1,---, Yuy) i.id. ~ g
M
iy = 3 (YY) ——— Eplp(X)]
M M . q M — oo P

e Optimal change of measure p — g* (zero variance if ¢ > 0)

. lolp el
= TToltet)dx ~ B lelo] 19177 o

ROD

q

= How to simulate and evaluate approximately g*.?
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e Let g be a (possibly random) importance probability density
dominating g¢*

Var(ml,) = E[ Var[m?, | Fo]| + Var[E[mY, | o]

=0

where F, denotes the sigma-algebra generated by g
e The variance of the IS estimate depends on the Chi-square
distance between g and g*

vartin) = | [1(a" - @)L lx1ax

e |dea: use a first set of N-simulations to approximate g* by g/ to
achieve variance reduction for N and M = M(N) sufficiently large

!/

y C . G‘q
VIN® < Var(mlc\,/l+N) = VTN with 0<a< 2/(d+€%

Var(r“nzﬂm) <
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e Large deviation approximation for rare events simulation
[Bucklew04]

e Approximation of ¢ to obtain a simple expression for g*  ex:
[Glasserman&:al00] for computing VaR, A-I" approximation of the
portfolio value ¢

e Cross-entropy [Homem-de-Mello&Rubinstein02] ¢’ is chosen in
a parametric family such as to minimize the entropy K(q’, ")

e Mixture of kernels to approximate posterior distributions
[West93] and [Raftery93]

e Progressive correction [Oudjane00]

e Review of different approaches [Evans&Schawrz95] and
[Raftery93]
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Particle approximation of the
optimal importance distribution
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e We introduce a sequence of non negative functions (Gy)o<k<n
Gy=1
Go-+-Gp=¢
Gk(x) =0 implies Giy1(x) =0 forany xecRY.

e For VaR computation  ¢(x) = lay()<s then we choose

Gk(X) = IAV(X)SSk , with s=35,<---<s5 =400 .

e Sequence of probability measures (4 )o<k<n

Vg = pdx
Grvk—1
Vi = =Gg-vg_1, forall 1<k<n
k Jrad Gr(x)vi—1(x) dx -
A
= vy, = q"dx €oF
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e We introduce a sequence of Markov kernels (Qx)o<k<n s. t.

ve Qi i vg(dx) = / vi(du)Qi(u, dx), forall x € R?
Rd

e In our case where  Gy(x) = lay(x)<s, , if pis Gaussian then
Qy is easily obtained from a Gaussian kernel Q@ reversible for p,

Qk(X7 dX’) = Q(X7 dX/)IAV(X)Ss;< (XI)+ [1_Q(X7 AV?((_Oov Sk]))] 5><(dxl)

e Sequence of probability measures (Yk)o<k<n
vy = pdx
Vi = Gk . (Vk—IQk—l) s forall 1 S k S n
. oS
= v, = q*dx eDF
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Notation: empirical measure associated with
SN(,u Z(SX, with Xl,---,XN) iid. ~p .

e The idea is to replace at each iteration k, v, 1Qk_1 by its
N-empirical measure  SM(v,_1Qx_1) such that

SN(I/k 1Qk 1 25)(, with Xl}, s ,X,iv) iid. ~ l/k,le,;[

e Sequence of dicrete probability measures (v))o<k<n

vy = S"(1o)
V,/(V = G - SN(V/(V_le_l) , forall 1<k<n

&
= One can show [DelMoral04] that v/ aproximates g*dx in ok

the weak sense (when applied to tests functions). e
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e Initialization : Generate independently
T
1 Ny N
(Xg, -+, X)) 1iid. ~ p thenset 1y :NZ(&(;
i=1
e Selection : Generate independently

N
vl v N ;s N § i
(Xk,‘ o ?Xk ) i.i.d. ~ Vi = Wi 5XI:
i=1

e Mutation : Generate independently for each i € {1,--- , N},
Xiyn  ~ QX )
e Weighting : For each particle i € {1,--- , N}, compute
; Grr1(X( 1) Ly
i k+1 N i
wk+1 = N - then set Vk-i—l = Zwk+1 5Xi
> =1 Grr1(Xigs) i=1 g
N N i -
= Vp = Zi:l wan
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Smooth approximation of the
optimal importance density
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e Kernel K radially symetric density, with infinite support.

e Kernel of ordre 2 /HXH2 K(x)dx < oo.

e Rescaled kernel Kj, Kn(x) = % K()—l;)

e Weighted Kernel (Xi,--+,Xy) iid, w; >0and > w; =1

~ : Weihted Density estimation ~ . .
uzgw’éx,- Ky q:Ew’Kh(-—X’)
-

L

e For "non weighted” density estimation one proves that

. C
Elg—qli < —- o
N d+4 %
€DF

ROD

e No theoritical result on relative errors available
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e Let us consider q,’y’h the weighted density estimate obtained by
convolution of vV = Z,N:1 wiX}) by Kp

N
an P (x) = Knx vl = wike(x = X}) .
i=1

e Assume that the target density g* satisfies the following
assumptions:

Assumption Q1: g* o< Hp has a bounded support C in RY.
Assumption Q2: g* o< Hp has second derivatives in L?(R9).
Assumption K2: The kernel K has "sufficiently heavy” tails.

e If the smoothing factor h is chosen s. t. hoc 1/NY(9+4) then

N,h C
Var(min ) < ————— . s
(7 ) < MN1/(d+4) A

ROD
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Simulations results
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[Musso&al01], [Hommem-de-Mello& Rubinstein02], [Cérou&:al06]
e The performance of Interacting particle systems is known to
N max G

—————— degenerate to infinity
N
Zi:l Gk(Xik)

deteriorate when the ratio

N
. : 1 i\
The idea is to chose Gy such that N Z Gk(X) is not too small
i=1
e In our case where  Gk(x) = lay(x)<s, . the threshold sy is
chosen as a r.v. depending on the current particle system and on a

parameter p € (0,1) :

N
Sk — inf {S such that Z IAV(X")SS > pN}
i=1

e This choice of s is not prooved to guarantee that the algorithms o
ends in a finite number of iterations but this point does not seem g%

to be a problem in our simulations Feo
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e Several test cases depending on the form of function

x — AV/(x) have been studied: results are all comparable

e X is a d dimensional Gaussian variable and m = E;[Iav(x)<s]
e Particles N = 500; lterations n ~ 10 to 60; Simulations

M = 10000

e The performance of our approach has been compared to
Interacting Particle Systems whithout | S [DelMoral& Garnier05]

\ | d=1 [d=2]d=3] d=4 | d=5 |

m=10"2 || 130, 50 50 30 25
m=10"3 ;000 300 300 200 140
o6 || 210° 00 10° 5.10° 2.10°7
m= 200 400 300 460 480
| [d=6] d=7 | d=8 [ d=9 | - [d—30]
m=1072 22 14 11 8 . | 510 3
m=1073 100 70 55 40 o 103 :‘;
o 1os | 2.10° 2.10° 410° | 1 eDF
250 480 300 300 360

20 FIME : May 6, 2009



	Computing Value at Risk
	Importance Sampling
	Particle approximation of the optimal importance distribution
	Smooth approximation of the optimal importance density
	Simulations results

