

Adaptive variance reduction for risk computing

・ロト ・戸ト ・ヨト

Nadia Oudjane $^{(1)}$ joint work with François LeGland $^{(2)}$ $^{(1)}$ Electricité de France (EDF) R&D

⁽²⁾ INRIA Rennes

Computing Value at Risk

Importance Sampling

Particle approximation of the optimal importance distribution

Smooth approximation of the optimal importance density

Simulations results

Computing Value at Risk

Value at Risk and quantile

• We consider the variation of a portfolio value V_t between t = 0 and t = T

$$\Delta V(oldsymbol{X}) = V_{\mathcal{T}} - V_0 + \int_0^T CF \; ,$$

where $X \in \mathbb{R}^d$ modellizes the risk factors between 0 and *T*. • Value at Risk $VaR_{\alpha} = |\inf\{s \in \mathbb{R} \mid \mathbb{P}(\Delta V \leq s) \geq 1 - \alpha\}|$

Monte Carlo method for VaR estimation

• The distribution function F can be viewed as an expectation

$$F(s) = \mathbb{E}[\mathbf{I}_{\Delta V(X) \leq s}]$$
, for all $s \in \mathbb{R}$

- Traditional Monte Carlo Method for computing VaR
 - 1. Monte Carlo simulations give an approximation of F(s):

$$\hat{F}_N(s) = rac{1}{N} \sum_{i=1}^N \mathbf{I}(\Delta V(X_i) \leq s) \;, \quad ext{for all } s \in \mathbb{R}$$

⇒ Too many evaluations of ΔV for a given accuracy 2. Inversion of \hat{F}^N and interpolation for approximating VaR

・ロト ・ 同ト ・ ヨト ・ ヨト

Importance Sampling

(미) < 문 > < 흔 > < 흔 > < 흔 > · 이익 (아

Importance Sampling

Goal Computing
$$m = \mathbb{E}_p[\varphi(X)] = \int_{x \in \mathbb{R}^d} \varphi(x) p(x) dx$$
.

• Change of measure $p \longrightarrow q$ where q dominates φp

$$m = \mathbb{E}_p[\varphi(X)] = \mathbb{E}_q[\varphi(Y)\frac{p}{q}(Y)], \quad ext{where} \quad X \sim p \quad ext{and} \quad Y \sim q$$

• Monte Carlo approximation Generate (Y_1, \cdots, Y_M) i.i.d. $\sim q$

$$\hat{m}_M^q = \frac{1}{M} \sum_{i=1}^M \varphi(Y_i) \frac{p}{q}(Y_i) \xrightarrow[M \to \infty]{} \mathbb{E}_p[\varphi(X)] \ .$$

• Optimal change of measure $p \longrightarrow q^*$ (zero variance if $\varphi \ge 0$)

$$q^* = \frac{|\varphi|p}{\int |\varphi|(x)p(x)\,dx} = \frac{|\varphi|p}{\mathbb{E}_p[|\varphi|(X)]} = |\varphi| \cdot p$$

 \Rightarrow How to simulate and evaluate approximately q_{0}^{*} , q_{0}^{*

Variance of the Importance Sampling estimate

• Let q be a (possibly random) importance probability density dominating q^*

$$Var(\hat{m}_{M}^{q}) = \mathbb{E}\big[Var[\hat{m}_{M}^{q} | \mathcal{F}_{q}]\big] + \underbrace{Var\big[\mathbb{E}[\hat{m}_{M}^{q} | \mathcal{F}_{q}]\big]}_{=0},$$

where \mathcal{F}_q denotes the sigma-algebra generated by q• The variance of the IS estimate depends on the Chi-square distance between q and q^*

$$Var(\hat{m}_M^q) = rac{m^2}{M} \mathbb{E}\left[\int [(q^* - q)rac{q^*}{q}](x)dx
ight]$$

• Idea: use a first set of *N*-simulations to approximate q^* by q^N to achieve variance reduction for *N* and M = M(N) sufficiently large

$$Var(\hat{m}_{M}^{q^{N}}) \leq \frac{C}{MN^{\alpha}} \leq Var(\hat{m}_{M+N}^{q}) = \frac{C'}{M+N} \quad \text{with} \quad 0 < \alpha < 2/(d+1)$$

- Large deviation approximation for rare events simulation [Bucklew04]
- Approximation of φ to obtain a simple expression for q^* ex : [Glasserman&al00] for computing VaR, Δ - Γ approximation of the portfolio value φ
- Cross-entropy [Homem-de-Mello&Rubinstein02] q^{θ} is chosen in a parametric family such as to minimize the entropy $K(q^{\theta}, q^*)$
- Mixture of kernels to approximate posterior distributions [West93] and [Raftery93]
- Progressive correction [Oudjane00]
- Review of different approaches [Evans&Schawrz95] and [Raftery93]

Particle approximation of the optimal importance distribution

Progressive correction [Musso&al01]

• We introduce a sequence of non negative functions $(G_k)_{0 \le k \le n}$

$$\left\{ \begin{array}{ll} G_0 = 1 \\ G_0 \cdots G_n = \varphi \\ G_k(x) = 0 \quad \mathrm{implies} \quad G_{k+1}(x) = 0 \quad \mathrm{for \ any} \quad x \in \mathbb{R}^d \ . \end{array} \right.$$

• For VaR computation $\varphi(x) = I_{\Delta V(x) \le s}$ then we choose

$$G_k(x) = \mathbf{I}_{\Delta V(x) \leq s_k}$$
, with $s = s_n \leq \cdots \leq s_0 = +\infty$.

• Sequence of probability measures $(\nu_k)_{0 \le k \le n}$

$$\begin{cases} \nu_0 = p \, dx \\ \nu_k = \frac{G_k \nu_{k-1}}{\int_{\mathbb{R}^d} G_k(x) \nu_{k-1}(x) \, dx} = G_k \cdot \nu_{k-1} , \text{ for all } 1 \le k \le n \end{cases}$$

 $\Rightarrow \nu_n = q^* dx$

Space exploration

• We introduce a sequence of Markov kernels $(Q_k)_{0 \le k \le n}$ s. t.

$$u_k \approx \nu_k Q_k \quad \text{i.e.} \quad \nu_k(dx) \approx \int_{\mathbb{R}^d} \nu_k(du) Q_k(u, dx) \,, \quad \text{for all} \quad x \in \mathbb{R}^d$$

• In our case where $G_k(x) = I_{\Delta V(x) \le s_k}$, if p is Gaussian then Q_k is easily obtained from a Gaussian kernel Q reversible for p,

$$Q_k(x, dx') = Q(x, dx') \mathbf{I}_{\Delta V(x) \le s_k}(x') + \left[1 - Q(x, \Delta V^-((-\infty, s_k]))\right] \delta_x(dx')$$

• Sequence of probability measures (ν_{i})

$$(\nu_k)_{0\leq k\leq n}$$

$$\begin{cases} \nu_0 = p \, dx \\ \nu_k = G_k \cdot (\nu_{k-1} Q_{k-1}), & \text{for all} \quad 1 \le k \le n \end{cases}$$

 $\Rightarrow \nu_n = q^* dx$

Approximation of the dynamical system

Notation: empirical measure associated with μ

$$S^{N}(\mu) = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{i}}$$
 with (X^{1}, \cdots, X^{N}) i.i.d. $\sim \mu$.

• The idea is to replace at each iteration k, $\nu_{k-1}Q_{k-1}$ by its *N*-empirical measure $S^N(\nu_{k-1}Q_{k-1})$ such that

$$S^{N}(\nu_{k-1}Q_{k-1}) = \frac{1}{N}\sum_{i=1}^{N}\delta_{X_{k}^{i}} \quad \text{with} \quad (X_{k}^{1},\cdots,X_{k}^{N}) \text{ i.i.d. } \sim \nu_{k-1}Q_{k-1}$$

• Sequence of dicrete probability measures $(\nu_k^N)_{0 \le k \le n}$

$$\left\{ \begin{array}{ll} \nu_0^N = S^N(\nu_0) \\ \nu_k^N = G_k \cdot S^N(\nu_{k-1}^N Q_{k-1}) \ , \quad \text{for all} \quad 1 \le k \le n \end{array} \right.$$

⇒ One can show [DelMoral04] that ν_n^N aproximates $q^* dx$ in the weak sense (when applied to tests functions).

Algorithm

• Initialization : Generate independently

$$(X_0^1,\cdots,X_0^N)$$
 i.i.d. $\sim p$ then set $\nu_0^N = \frac{1}{N}\sum_{i=1}^N \delta_{X_0^i}$

• Selection : Generate independently

$$(\tilde{X}_k^1, \cdots, \tilde{X}_k^N)$$
 i.i.d. $\sim \nu_k^N = \sum_{i=1}^N \omega_k^i \, \delta_{X_k^i}$

• Mutation : Generate independently for each $i \in \{1, \cdots, N\}$,

$$X_{k+1}^i \sim Q_k(\tilde{X}_k^i, \cdot)$$

• Weighting : For each particle $i \in \{1, \cdots, N\}$, compute

$$\omega_{k+1}^{i} = \frac{G_{k+1}(X_{k+1}^{i})}{\sum_{j=1}^{N} G_{k+1}(X_{k+1}^{j})} \quad \text{then set} \quad \nu_{k+1}^{N} = \sum_{i=1}^{N} \omega_{k+1}^{i} \,\delta_{X_{k+1}^{i}}$$

14 FIME : May 6, 2009

Smooth approximation of the optimal importance density

15 FIME : May 6, 2009

Weighted Density estimation

- Kernel K radially symetric density, with infinite support.
- Kernel of ordre 2 $\int ||x||^2 K(x) dx < \infty$.
- Rescaled kernel K_h $K_h(x) = \frac{1}{h^d} K(\frac{x}{h})$
- Weighted Kernel (X_1, \dots, X_N) iid, $\omega_i \ge 0$ and $\sum \omega_i = 1$
- $\hat{\nu} = \sum \omega^{i} \, \delta_{X^{i}} \quad \xrightarrow{\text{Weihted Density estimation}} \quad \hat{q} = \sum \omega^{i} \, K_{h}(\cdot X^{i})$

• For "non weighted" density estimation one proves that

$$\mathbb{E}\|\hat{q}-q\|_1 \leq \frac{C}{N^{\frac{2}{d+4}}} \ .$$

- No theoritical result on relative errors available and the second seco
- 16

Theoritical result: variance bounds

• Let us consider $q_n^{N,h}$ the weighted density estimate obtained by convolution of $\nu_n^N = \sum_{i=1}^N \omega_i X_n^i$ by K_h

$$q_n^{N,h}(x) = K_h * \nu_n^N = \sum_{i=1}^N \omega_i K_h(x - X_n^i)$$

• Assume that the target density *q*^{*} satisfies the following assumptions:

Assumption Q1: $q^* \propto Hp$ has a bounded support C in \mathbb{R}^d . Assumption Q2: $q^* \propto Hp$ has second derivatives in $L^2(\mathbb{R}^d)$. Assumption K2: The kernel K has "sufficiently heavy" tails.

• If the smoothing factor h is chosen s. t. $h \propto 1/N^{1/(d+4)}$, then

$$Var(\hat{m}_M^{q_n^{N,h}}) \leq rac{C}{MN^{1/(d+4)}} \; .$$

Simulations results

18 FIME : May 6, 2009

Adaptive choice of the sequence $(G_k)_{0 \le k \le n}$

[Musso&al01], [Hommem-de-Mello&Rubinstein02], [Cérou&al06] • The performance of Interacting particle systems is known to deteriorate when the ratio $\frac{N \max G_k}{\sum_{i=1}^N G_k(X_i^k)}$ degenerate to infinity The idea is to chose G_k such that $\frac{1}{N} \sum_{i=1}^N G_k(X_k^i)$ is not too small • In our case where $G_k(x) = I_{\Delta V(x) \le s_k}$, the threshold s_k is chosen as a r.v. depending on the current particle system and on a parameter $\rho \in (0, 1)$:

$$s_k = \inf \left\{ s \quad \text{such that} \quad \sum_{i=1}^N I_{\Delta V(X^i) \leq s} \geq \rho N
ight\}$$

• This choice of s_k is not prooved to guarantee that the algorithms ends in a finite number of iterations but this point does not seem to be a problem in our simulations

Some simulation results : Variance ratio

- Several test cases depending on the form of function $x \mapsto \Delta V(x)$ have been studied: results are all comparable
- X is a d dimensional Gaussian variable and $m = \mathbb{E}_p[I_{\Delta V(X) \le s}]$
- Particles N = 500; Iterations $n \approx 10$ to 60; Simulations $M = 10\,000$
- The performance of our approach has been compared to Interacting Particle Systems whithout I S [DelMoral&Garnier05]

	d =		= 1	<i>d</i> = 2		<i>d</i> = 3		<i>d</i> = 4	d	<i>d</i> = 5	
$m = 10^{-2}$ 15		150 10 ⁻) -1	50		50		30		25	
$m = 10^{-3}$		1000 2		300		300		200		140	
$m = 10^{-6}$		2.10 ⁵ 200		10 ⁵ 400		10 ⁵ 300		5.10 ⁴ 460	2 4	2.10 ⁴ 480	
	<i>d</i> = 6		d = 7		<i>d</i> = 8			d = 9	•••	d = 3	30
$= 10^{-2}$	22		14		11			8		5.10^{-3}	
$= 10^{-3}$ 100		70		55			40	• • • •	10-3		
$m = 10^{-6}$		10 ⁴ 250	2.10 ³ 480			2.10 ³ 300		4.10 ³ 300		1 360	
	$m = 10^{-1}$ $m = 10^{-1}$ $m = 10^{-2}$ $= 10^{-2}$ $= 10^{-3}$ $= 10^{-6}$	$m = 10^{-2}$ $m = 10^{-3}$ $m = 10^{-6}$ d $= 10^{-2}$ $= 10^{-3}$ $= 10^{-6}$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

