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Computing Value at Risk
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Value at Risk and quantile

• We consider the variation of a portfolio value Vt between t = 0
and t = T

∆V (X ) = VT − V0 +

∫ T

0
CF ,

where X ∈ Rd modellizes the risk factors between 0 and T .
• Value at Risk VaRα = | inf{s ∈ R | P(∆V ≤ s) ≥ 1− α} |

VaRα = |F−(α)| , where F (s) = P(∆V ≤ s) , for all s ∈ R
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Monte Carlo method for VaR estimation

• The distribution function F can be viewed as an expectation

F (s) = E[I∆V (X )≤s ] , for all s ∈ R

• Traditional Monte Carlo Method for computing VaR

1. Monte Carlo simulations give an approximation of F (s) :

F̂N(s) =
1

N

N∑
i=1

I(∆V (Xi ) ≤ s) , for all s ∈ R

⇒ Too many evaluations of ∆V for a given accuracy

2. Inversion of F̂N and interpolation for approximating VaR
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Importance Sampling
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Importance Sampling

Goal Computing m = Ep[ϕ(X )] =

∫
x∈Rd

ϕ(x) p(x) dx .

• Change of measure p −→ q where q dominates ϕp

m = Ep[ϕ(X )] = Eq[ϕ(Y )
p

q
(Y )] , where X ∼ p and Y ∼ q

• Monte Carlo approximation Generate (Y1, · · · ,YM) i.i.d. ∼ q

m̂q
M =

1

M

M∑
i=1

ϕ(Yi )
p

q
(Yi ) −−−−→

M→∞
Ep[ϕ(X )] .

• Optimal change of measure p −→ q∗ (zero variance if ϕ ≥ 0)

q∗ =
|ϕ|p∫

|ϕ|(x)p(x) dx
=

|ϕ|p
Ep[|ϕ|(X )]

= |ϕ| · p

⇒ How to simulate and evaluate approximately q∗ ?
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Variance of the Importance Sampling estimate

• Let q be a (possibly random) importance probability density
dominating q∗

Var(m̂q
M) = E

[
Var [m̂q

M | Fq]
]

+ Var
[
E[m̂q

M | Fq]
]︸ ︷︷ ︸

=0

,

where Fq denotes the sigma-algebra generated by q

• The variance of the IS estimate depends on the Chi-square
distance between q and q∗

Var(m̂q
M) =

m2

M
E
[ ∫

[(q∗ − q)
q∗

q
](x)dx

]
.

• Idea: use a first set of N-simulations to approximate q∗ by qN to
achieve variance reduction for N and M = M(N) sufficiently large

Var(m̂qN

M ) ≤ C

MNα
≤ Var(m̂q

M+N) =
C ′

M + N
with 0 < α < 2/(d+4)
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Some approaches to approximate importance distributions

• Large deviation approximation for rare events simulation
[Bucklew04]

• Approximation of ϕ to obtain a simple expression for q∗ ex :
[Glasserman&al00] for computing VaR, ∆-Γ approximation of the
portfolio value ϕ
• Cross-entropy [Homem-de-Mello&Rubinstein02] qθ is chosen in
a parametric family such as to minimize the entropy K (qθ, q∗)

• Mixture of kernels to approximate posterior distributions
[West93] and [Raftery93]

• Progressive correction [Oudjane00]

• Review of different approaches [Evans&Schawrz95] and
[Raftery93]
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Particle approximation of the
optimal importance distribution
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Progressive correction [Musso&al01]

• We introduce a sequence of non negative functions (Gk)0≤k≤n
G0 = 1
G0 · · ·Gn = ϕ
Gk(x) = 0 implies Gk+1(x) = 0 for any x ∈ Rd .

• For VaR computation ϕ(x) = I∆V (x)≤s then we choose

Gk(x) = I∆V (x)≤sk , with s = sn ≤ · · · ≤ s0 = +∞ .

• Sequence of probability measures (νk)0≤k≤n ν0 = p dx

νk =
Gkνk−1∫

Rd Gk(x)νk−1(x) dx
= Gk · νk−1 , for all 1 ≤ k ≤ n

⇒ νn = q∗ dx
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Space exploration

• We introduce a sequence of Markov kernels (Qk)0≤k≤n s. t.

νk ≈ νkQk i.e. νk(dx) ≈
∫

Rd

νk(du)Qk(u, dx) , for all x ∈ Rd

• In our case where Gk(x) = I∆V (x)≤sk , if p is Gaussian then
Qk is easily obtained from a Gaussian kernel Q reversible for p,

Qk(x , dx ′) = Q(x , dx ′)I∆V (x)≤sk (x ′)+
[
1−Q(x ,∆V−((−∞, sk ]))

]
δx(dx ′)

• Sequence of probability measures (νk)0≤k≤n{
ν0 = p dx
νk = Gk · (νk−1Qk−1) , for all 1 ≤ k ≤ n

⇒ νn = q∗ dx
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Approximation of the dynamical system

Notation: empirical measure associated with µ

SN(µ) =
1

N

N∑
i=1

δX i with (X 1, · · · ,XN) i.i.d. ∼ µ .

• The idea is to replace at each iteration k , νk−1Qk−1 by its
N-empirical measure SN(νk−1Qk−1) such that

SN(νk−1Qk−1) =
1

N

N∑
i=1

δX i
k

with (X 1
k , · · · ,XN

k ) i.i.d. ∼ νk−1Qk−1

• Sequence of dicrete probability measures (νN
k )0≤k≤n{

νN
0 = SN(ν0)
νN
k = Gk · SN(νN

k−1Qk−1) , for all 1 ≤ k ≤ n

⇒ One can show [DelMoral04] that νN
n aproximates q∗ dx in

the weak sense (when applied to tests functions).
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Algorithm

• Initialization : Generate independently

(X 1
0 , · · · ,XN

0 ) i.i.d. ∼ p then set νN
0 =

1

N

N∑
i=1

δX i
0

• Selection : Generate independently

(X̃ 1
k , · · · , X̃N

k ) i.i.d. ∼ νN
k =

N∑
i=1

ωi
k δX i

k

• Mutation : Generate independently for each i ∈ {1, · · · ,N},

X i
k+1 ∼ Qk(X̃ i

k , ·)

• Weighting : For each particle i ∈ {1, · · · ,N}, compute

ωi
k+1 =

Gk+1(X i
k+1)∑N

j=1 Gk+1(X j
k+1)

then set νN
k+1 =

N∑
i=1

ωi
k+1 δX i

k+1

⇒ νN
n =

∑N
i=1 ωiX

i
n
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Smooth approximation of the
optimal importance density
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Weighted Density estimation

• Kernel K radially symetric density, with infinite support.

• Kernel of ordre 2

∫
‖x‖2 K (x)dx <∞.

• Rescaled kernel Kh Kh(x) = 1
hd K (x

h )

• Weighted Kernel (X1, · · · ,XN) iid , ωi ≥ 0 and
∑
ωi = 1

ν̂ =
∑

ωi δX i
Weihted Density estimation−−−−−−−−−−−−−−−−−→

Kh∗ ·
q̂ =

∑
ωi Kh(· − X i )

• For ”non weighted” density estimation one proves that

E‖q̂ − q‖1 ≤
C

N
2

d+4

.

• No theoritical result on relative errors available
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Theoritical result: variance bounds

• Let us consider qN,h
n the weighted density estimate obtained by

convolution of νN
n =

∑N
i=1 ωiX

i
n by Kh

qN,h
n (x) = Kh ∗ νN

n =
N∑

i=1

ωiKh(x − X i
n) .

• Assume that the target density q∗ satisfies the following
assumptions:
Assumption Q1: q∗ ∝ Hp has a bounded support C in Rd .
Assumption Q2: q∗ ∝ Hp has second derivatives in L2(Rd).
Assumption K2: The kernel K has ”sufficiently heavy” tails.
• If the smoothing factor h is chosen s. t. h ∝ 1/N1/(d+4), then

Var(m̂qN,h
n

M ) ≤ C

MN1/(d+4)
.
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Simulations results
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Adaptive choice of the sequence (Gk)0≤k≤n

[Musso&al01], [Hommem-de-Mello&Rubinstein02], [Cérou&al06]
• The performance of Interacting particle systems is known to

deteriorate when the ratio
N max Gk∑N
i=1 Gk(X k

i )
degenerate to infinity

The idea is to chose Gk such that
1

N

N∑
i=1

Gk(X i
k) is not too small

• In our case where Gk(x) = I∆V (x)≤sk , the threshold sk is
chosen as a r.v. depending on the current particle system and on a
parameter ρ ∈ (0, 1) :

sk = inf

{
s such that

N∑
i=1

I∆V (X i )≤s ≥ ρN

}

• This choice of sk is not prooved to guarantee that the algorithms
ends in a finite number of iterations but this point does not seem
to be a problem in our simulations
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Some simulation results : Variance ratio

• Several test cases depending on the form of function
x 7→ ∆V (x) have been studied: results are all comparable
• X is a d dimensional Gaussian variable and m = Ep[I∆V (X )≤s ]
• Particles N = 500; Iterations n ≈ 10 to 60; Simulations
M = 10 000
• The performance of our approach has been compared to
Interacting Particle Systems whithout I S [DelMoral&Garnier05]

d = 1 d = 2 d = 3 d = 4 d = 5

m = 10−2 150
10−1 50 50 30 25

m = 10−3 1000
2

300 300 200 140

m = 10−6 2.105

200
105

400
105

300
5.104

460
2.104

480

d = 6 d = 7 d = 8 d = 9 · · · d = 30

m = 10−2 22 14 11 8 · · · 5.10−3

m = 10−3 100 70 55 40 · · · 10−3

m = 10−6 104

250
2.103

480
2.103

300
4.103

300
· · · 1

360
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