Introduction	The model	Results	Applications

Energy (and other Markets): Strategic Issues for the Tax System

Anna Cretì¹ Bertrand Villeneuve²

May 6, 2009

¹Università Bocconi ²CREST and Université de Tours

Anna Creti & Bertrand Villeneuve

Strategic taxes

Introduction	т	he model	Results	Applications
	_			

Motivation: Energy in the economy

- Energy products make up a large part of the tax revenue in European member states
- Complex of subsidies and taxes (Wind, coal, gas, nuclear, oil)
- Dependence question ⊕ environmental concerns (Green Paper): Does Europe have the means to change the international market and to respond to environmental issues?
- How to combine policies efficiently?
 - Competition policy in energy markets (Directives)
 - Environmental and climatic concerns (Kyoto)
 - Energetic independence

Introduction	The model	Results	Applications
Ingredients			

- Possibly non-competitive suppliers
 - monopolistic producers of fossil fuels can be foreign, domestic, or in between (i.e. partially owned by nationals) (in general low cost, high markup)
 - other fuels (e.g. renewables) are produced by competitive suppliers (cost may be high, markups are small a priori);
- Taxes
 - raise funds for public activities
 - serve to correct externalities due to pollution
 - have a strategic dimension as they take into account non-competitive supply

In short

- A Government, or the Community in the European context, may influence import prices by properly setting taxes and subsidies
- Competition between various forms of energies can be exploited by fiscal authorities (windmills and nuclear plants for "energy independence")

- Literature
 - Optimal taxation (Ramsey, Samuelson, Mirrlees, Sandmo, Guesnerie)
 - General equilibrium with non-competitive markets (Gabszewicz-Vial 1972)
 - Both (Myles 1987, 1989, JPubEcon, Auerbach and Hines 2003, Handbook PubEcon, Reinhorn 2005, AdvEcoAn&Pol)
 - Also
 - Seade (1985) on effects of cost shifts—or taxes—
 - Newbery (2002) for overview on energy taxes
- Our contribution: Quasi-linear preferences, linear technologies
 - Neutralizes income effects (focus on leverage effects due to subst. or and comp. between commodities)
 - Considerably improves calculability of models and clarifies insights
 - Numéraire is "natural"

Introduction	The model	Results	Applications
Main results			

- Direct *and* indirect effects of taxation matter, strong argument against treating energy as a homogeneous commodity
- Consistent and comprehensive discouragement index (simple intuition for strategic effects)
- "Frontier effects": foreign and domestic firms should be treated differently
- Financing cost reductions (R&D) in domestically produced substitutes might also constitute "strategic" European energy policy

(sometimes not desirable however)

- Calculable applications (algorithm)
 - An isoelastic model (non-intuitive results)
 - A fully quadratic linear version allows theoretical experiments

Notation

x_i	a fuel (vector \mathbf{x})
$U[\mathbf{x}] + m$	quasi-linear consumer's utility function
p_i	price of commodity i (vector \mathbf{p})
t_i	specific tax on commodity i (vector ${f t}$)
$q_i = p_i + t_i$	consumer's price (vector ${f q})$
η_i	intensity of externality due to x_i (vector η)
λ	marginal cost of public funds

Introduction	

Game

- ${\small \textbf{0}} \ \ {\small \textbf{Government sets taxes } t \ \ to \ \ maximize \ \ domestic \ surplus}$
- Firms plan production (taking taxes as given) to maximize profits (e.g. Cournot game): p[t]
- ${\small \textcircled{o}} \ \ \mbox{Consumers consume in function of after-tax prices: $\mathbf{x}[\mathbf{p}+t]$}$

We solve for subgame perfect equilibria

Social Welfare Function

$$SW[\mathbf{x}, \mathbf{p}, \mathbf{t}] \equiv U[\mathbf{x}] - \sum_{i} x_{i} \cdot q_{i}$$
$$-\sum_{i} x_{i} \cdot \eta_{i} + (1+\lambda) \sum_{i} x_{i} \cdot t_{i} + \sum_{i} \sigma_{i} \cdot \pi_{i}$$

= net consumer's utility \oplus three terms:

- **(**) $\sum_i x_i \cdot \eta_i$: sum of external effects caused by various commodities
- 2 Value of fiscal revenue depends on (exogenous or endogenous) marginal cost of public funds λ
- π_i profit earned by firm (or sector) i and σ_i is the share of this firm (or sector) that is owned by nationals of the country considered.
 (σ_i = 1 for purely domestic firms and σ_i = 0 for purely foreign firms)

Introduction	The model	Results	Applications
Optimal tax policy	y		

• Government maximizes SW subject to reaction functions of follower firms and follower consumers:

$$p_{ij} = rac{\partial p_j}{\partial t_i}$$
 and $q_{ij} = rac{\partial q_j}{\partial t_i}$

with $q_{ii} = 1 + p_{ii}$ and $q_{ij} = p_{ij}$ $(i \neq j)$.

- Measure tax incidence on prices, i.e. the extent to which producers shift forward tax burden to consumers (No specific assumptions on game played between firms)
 - Undershifting: $p_{ii} < \mathbf{0} \Leftrightarrow q_{ii} < 1$
 - Overshifting: $p_{ii} > 0 \Leftrightarrow q_{ii} > 1$
 - No name for cross effects

First Order Condition

$$\frac{1}{1+\lambda} \cdot \left(\mathbf{P} - \lambda \mathbf{I}\right) \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \left(\mathbf{P} + \mathbf{I}\right) \cdot \mathbf{S} \cdot \begin{bmatrix} t_1 - \frac{\eta_1}{1+\lambda} \\ \vdots \\ t_N - \frac{\eta_N}{1+\lambda} \end{bmatrix} + \Pi \cdot \Sigma$$

$$\begin{split} \mathbf{S} &= \text{consumer's Slutsky matrix} \\ \mathbf{P} &= [p_{ij}] \\ \mathbf{P} + \mathbf{I} &= \text{tax incidence matrix } [q_{ij}] \\ \boldsymbol{\Sigma} &= [\sigma_i] \\ \boldsymbol{\Pi} &= [\pi_{ij}] = [\frac{\partial \pi_j}{\partial t_i}] \\ \text{Various situations, depending on specific hypotheses on } \mathbf{P} \text{ and } \mathbf{S} \\ \text{(Last term null when non-competitive firms are foreign)} \end{split}$$

Results

Applications

Index of discouragement (Mirrlees 1976)

 $d_i \simeq \frac{\Delta x_i}{x_i}$: change in compensated demand due to taxes (undistorted reference means taxes equal to $\frac{\eta}{1+\lambda}$)

$$\begin{bmatrix} d_1 \cdot x_1 \\ \vdots \\ d_N \cdot x_N \end{bmatrix} = \mathbf{S} \cdot \begin{bmatrix} t_1 - \frac{\eta_1}{1+\lambda} \\ \vdots \\ t_N - \frac{\eta_N}{1+\lambda} \end{bmatrix}$$

Impact of taxes on *prices* not considered (as if of second-order), which is not acceptable here

We approximate full impact adding

$$\mathbf{S} \cdot \mathbf{^TP} \cdot \left(\mathbf{t} - \frac{\eta}{1+\lambda} \right)$$

Comprehensive discouragement d^C where

$$\begin{bmatrix} d_1^C \cdot x_1 \\ \vdots \\ d_N^C \cdot x_N \end{bmatrix} \stackrel{=}{=} \mathbf{S} \cdot (\mathbf{^TP} + \mathbf{I}) \cdot \begin{bmatrix} t_1 - \frac{\eta_1}{1+\lambda} \\ \vdots \\ t_N - \frac{\eta_N}{1+\lambda} \end{bmatrix}$$

 $d \approx d^C$ for small strategic impacts (small **P**)

- Pure competition $\mathbf{P} = 0$ and $d_i = d_i^C = -\frac{\lambda}{1+\lambda}$.
- Independent demands ${\bf S}$ diagonal $\Rightarrow {\bf P}$ diagonal : no cross strategic effects

$$d_i^C = -\frac{\lambda}{1+\lambda} + \frac{p_{ii}}{1+\lambda}$$

If a firm reacts to tax increases by strongly decreasing its price, then discouragement effect should be large

In Europe (roughly) two types of fuels:

- Domestic competitive
- Prove the second sec

If moreover $\mathbf{P} \cdot \mathbf{S} = \mathbf{S} \cdot \mathbf{^TP}$ (quadratic-linear case)

$$d_i^C = -\frac{\lambda}{1+\lambda} + \frac{1}{1+\lambda} \cdot \sum_j \frac{x_j}{x_i} \cdot p_{ij}$$

Intuitive rule

Encourage consumption of commodities for which subsidies decrease prices of other commodities *on average*, effects being weighted by magnitude of consumption

Introduction	The model	Results	Applications
Windmills			

Good 1 produced non-competitively (fossil fuels) Good 2 produced competitively (windmills) \oplus CRS

$$\mathbf{P} = \left[\begin{array}{cc} p_{11} & p_{12} \\ \mathbf{0} & \mathbf{0} \end{array} \right]$$

Tax rates $(\lambda = 0)$

$$t_1 - \eta_1 = \frac{x_1}{(1 + p_{11})|\mathbf{S}|} (p_{11}S_{22} - p_{12}S_{12})$$

$$t_2 - \eta_2 = \frac{x_1}{(1 + p_{11})|\mathbf{S}|} (p_{12}S_{11} - p_{11}S_{12})$$

Assume that $1 + p_{11} > 0$ and $p_{11} < 0$ (undershifting) Assume that p_{12} and S_{12} have opposite signs (e.g. if 1 and 2 are substitutes, then taxing 2 increases p_1) Commodity 1 will be taxed and commodity 2 will subsidized (taxed) if and only if 1 and 2 are substitutes (complements)

Benefits of cost reduction policy

- Natural gas: production cost comprises extraction, transport, and distribution
- Does cost reduction (more competition downstream) benefit consumers?
- No if gains are recaptured by monopolists...
- Perhaps if avoids double marginalization...

Benefits of cost reduction policy (cont'd)

Social welfare in reduced form $SW = SW[\mathbf{t}, \mathbf{c}]$ $\mathbf{c} =$ vector of parameters c_i affecting firm *i*'s production cost. We find

$$\frac{\partial SW^*}{\partial c_i} = \sum_j \frac{\partial SW}{\partial p_i} \cdot \frac{\partial p_j}{\partial c_i} + \frac{\partial SW}{\partial c_i}$$

- Sufficient condition: all $\frac{\partial p_j}{\partial c_i} \ge 0$
- Decreasing (increasing) production costs in competitive sectors is welfare improving (degrading) ("As If" argument)

But

• May be false with non-competitive economies. . .

• . . . or if t is not reoptimized

Benefits of cost reduction policy (cont'd)

Social welfare in reduced form $SW = SW[\mathbf{t}, \mathbf{c}]$ $\mathbf{c} =$ vector of parameters c_i affecting firm *i*'s production cost. We find

$$\frac{\partial SW^*}{\partial c_i} = \sum_j \frac{\partial SW}{\partial p_i} \cdot \frac{\partial p_j}{\partial c_i} + \frac{\partial SW}{\partial c_i}$$

- Sufficient condition: all $\frac{\partial p_j}{\partial c_i} \ge 0$
- Decreasing (increasing) production costs in competitive sectors is welfare improving (degrading) ("As If" argument)

But

- May be false with non-competitive economies. . .
- ullet ... or if ${f t}$ is not reoptimized

QL model	Introduction	The model	Results	Applications
	QL model			

• Still calculable with large dimension

Demand:
$$\mathbf{x} = \mathbf{a} + \mathbf{S} \cdot (\mathbf{p} + \mathbf{t})$$

- $\bullet\,$ Producers face constant marginal costs c
- Oligopoly size n_i for x_i (Cournot-Nash)

Producers' FOC:
$$x_i/n_i + (p_i - c_i)/A_{ii} = 0$$

(SOC $(1+1/n_i)/A_{ii} < 0$ always true) with $\mathbf{A} = \mathbf{S}^{-1}$

Change of variable (physical units are arbitrary) to have only

 1s on the diagonal of A
 (we keep x, p, t, c, a to denote consumption, prices, taxes, costs, and constants in the new base)

Introduction	The model	Results	Applications

• The two equations of interest are now

$$\mathbf{p} + \mathbf{t} = \mathbf{A} \cdot (\mathbf{x} - \mathbf{a}),$$

 $\mathbf{x} = \mathbf{p} - \mathbf{c}.$

• Gives the NE of subgame played by producers, parameterized by taxes chosen by Government

$$\mathbf{p}[\mathbf{t}] = (\mathbf{A} - \mathbf{I})^{-1} \cdot (\mathbf{A} \cdot (\mathbf{a} + \mathbf{c}) + \mathbf{t}).$$

• The reaction matrix is therefore

$$\mathbf{P} = (\mathbf{A} - \mathbf{I})^{-1}.$$

 ${\bf A}$ being negative definite, so is ${\bf A}-{\bf I}:$ NE exists and unique

In	 'n	а	0		0	n
	 v	u		LI	U	

• Gvt FOC

$$(\mathbf{P} - \lambda \mathbf{I}) \cdot \mathbf{x} = (1 + \lambda)(\mathbf{P} + \mathbf{I}) \cdot \mathbf{S} \cdot \mathbf{t}$$

• We find immediately

$$\mathbf{\Gamma} \cdot \mathbf{t} = \mathbf{\Gamma}_a \cdot \mathbf{a} + \mathbf{\Gamma}_{\mathbf{c}} \cdot \mathbf{c} + \mathbf{\Gamma}_{\eta} \cdot \eta$$

where Γ , Γ_a , Γ_c and Γ_η are rational fractions of A and λ only

• Γ definite negative \Leftrightarrow Solution t maximizes welfare

Proposition

Matrix Γ is definite negative if $\lambda > -\frac{1}{2}$ where λ is the marginal cost of public funds.

Introduction	The model	Results	Applications
Effects of costs on	wolfaro		

Effects of costs on welfare

We find, for
$$\lambda = 0$$

$$\frac{dSW}{d\mathbf{c}} = -\mathbf{x}$$

So to find economies in which decreasing certain costs has adverse welfare effects, we need either:

- $\lambda \neq 0$
- there are domestic sectors
- taxes are not reoptimized

For example, for $\lambda = 0$

$$\frac{dSW}{d\mathbf{c}}\Big|_{\mathbf{t}} = (\mathbf{A} - \mathbf{2I})^{-1}(\mathbf{A} - \mathbf{I})\mathbf{A}^{-1}(\mathbf{I} - \mathbf{A})(\mathbf{A} - \mathbf{2I})^{-1}(\mathbf{A} \cdot \mathbf{a} + \mathbf{c})$$

Introduction	The model	Results	Applications
Effects of costs on	wolfore		

Effects of costs on welfare

We find, for
$$\lambda = 0$$

$$\frac{dSW}{d\mathbf{c}} = -\mathbf{x}$$

So to find economies in which decreasing certain costs has adverse welfare effects, we need either:

- $\lambda \neq 0$
- there are domestic sectors
- taxes are not reoptimized

For example, for $\lambda = 0$

$$\frac{dSW}{d\mathbf{c}}\Big|_{\mathbf{t}} = (\mathbf{A} - 2\mathbf{I})^{-1}(\mathbf{A} - \mathbf{I})\mathbf{A}^{-1}(\mathbf{I} - \mathbf{A})(\mathbf{A} - 2\mathbf{I})^{-1}(\mathbf{A} \cdot \mathbf{a} + \mathbf{c})$$

Conclusion

- Tax policy useful against market power
- Different fiscal treatment of domestically produced energy and foreign monopolistic supplies
- Taxing/subsidizing one source of energy requires consideration of complementarity/substitutability
- Whether two fuels are substitutes or complements is not always obvious
- Applied QL versions rich enough to provide a variety of calculable scenarios