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Introduction

Dynamic programming problem:

Yi = E [gi (Yi+1, . . . ,YN ,Xi , . . . ,XN) | Xi ] , i = N − 1, . . . , 0,

YN = gN(XN),

We want to estimate the function yi such that Yi = yi (Xi ).



Examples

Optimal Stoppting: Vi = ess supτ∈Ti,N E [fτ (Xτ )]

Yi = E [Vi+1|Xi ]

Yi = E [max(Yi+1, fi+1(Xi+1)) | Xi ]

YN−1 = E [fN(XN)|XN−1]

BSDE:

Yt = g(W1) +

∫ 1

t
f (s,Ys ,Ws)ds −

∫ 1

t
ZsdWs

Yt = E
[
g(W1) +

∫ 1

t
f (s,Ys ,Ws)ds |Wt

]

Yi = E

g(XN) +
1

N

N∑
j=i+1

fj(Yj ,Xj)|Xi





Numerical resolution

Usual approach:

I given (ŷj)j=i+1,··· ,N , we want to find ŷi estimating yi
I use a large number of simulation(or resimulation) of Xi :n

I ŷi is an estimator for the conditional expectation

E [gi (ŷi+1(Xi+1), . . . , ŷN(XN),Xi , . . . ,XN) | Xi ]

using a global statistical regression with a large function
dictionnary

Q: What if model paramters for X are (partially) unknown and
only a small set of historical data is available?
A: path reconstruction(resampling) + stratification



Stratified resampling method: stratification

We divide the whole space into K strata (Hk)1≤k≤K such that

Hk ∩Hl = ∅ for k 6= l ,
K⋃

k=1

Hk = Rd .

Given a probability measure ν on Rd , denote its restriction on Hk

by

νk(dx) :=
1

ν(Hk)
1Hk

(x)ν(dx).

We shall use νk to sample initial points on Hk and perform local
regression on Hk to get estimation of yi (x)1x∈Hk



Stratified resampling method: resampling

We are given M independent observation of X , with M small

Data: (Xm
i : 0 ≤ i ≤ N)1≤m≤M

Noise extraction and resampling

I We assume X i ,x
j = θi ,j(x ,U), θi ,j are known such that we can

extract out the value of U

I to simulate a trajectory of Xi :N starting at x ′, we compute
θi ,j(x

′,U)

Remark: to apply this procedure demands much less information
than the full detail of the underlying model



Stratified resampling method: resampling

I Xt = x0 +
∫ t
0 µsds +

∫ t
0 σsdWs

U = (Xi+1 − Xi )0≤i≤N−1 θij(x ,U) = x +
∑

i≤k<j

Uk

I Xt = x0 exp
(∫ t

0 µsds +
∫ t
0 σsdWs

)
U =

(
log(

Xi+1

Xi
)

)
0≤i≤N−1

θij(x ,U) := x
∏

i≤k<j

exp(Uk)

I Xt = x0 −
∫ t
0 a(Xs − X̄s)ds + σsWt

Ui ,j = Xj − e−a(tj−ti )Xi θij(x ,U) := e−a(tj−ti )x + Ui ,j

µs , σs , X̄s are unknown deterministic function of s, Xi stands for Xti



Stratified resampling method: resampling

Using given data to generate paths starting from a given point, in
an additive model(e.g. Lévy process)



Ordinary Least Sqaure regression

Definition of OLS(Ordinary Least Square operator): for a given
function f , a function dictionary Lk and M points (Ym)1≤m≤M

OLS(f ,Lk , (Ym)1≤m≤M) := arg inf
ϕ∈Lk

1

M

M∑
m=1

|f (Ym)− ϕ(Ym)|2.

OLS is linear and contracting w.r.t L2 norm, and it interchanges
with conditional expectation(in a sense to be precised).



Stratified resampling method

Yi = E [gi (Yi+1, . . . ,YN ,Xi , . . . ,XN) | Xi ] , i = N − 1, . . . , 0,

YN = gN(XN),

Suppose we already have an estimation y
(M)
i+1 for yi+1. For each

Hk , we will do the following:

I sample M i.i.d. copy of (Xm
i )1≤m≤M according to the law νk

I constructing M paths starting from these points, denoted
X 1:M
i :N , using the resampling formula

I compute ψ
(M),k
i = OLS(S (M),Lk ,X 1:M

i :N ) with

S (M)(xi :N) := gi (y
(M)
i+1 (xi+1), . . . , y

(M)
N (xN), xi :N)

I set y
(M),k
i = T|yi |∞

(
ψ
(M),k
i

)
Finally we get an estimation y

(M)
i for yi : y

(M)
i =

∑K
k=1 y

(M),k
i 1Hk



Error analysis: gi = gi(Yi+1,Xi :N)

All the paths used in our method are reconstructed from the
initially given root sample, which complicates the error analysis.

We shall need several assumptions:

I gi is bounded and is Lipschitz w.r.t. yi+1

I ∃Cν s.t.
∫
Rd E

[
ϕ2(X i ,x

i+1)
]
ν(dx) ≤ Cν

∫
Rd ϕ

2(x)ν(dx).

I assumptions on covering number of the function dictionary Lk

Remarks on assumptions

I If gi is not bounded, we may use truncation number → +∞
I Under mild conditions on the model of X , we can find

appropriate ν

I Assumption on covering number is mainly used to link error
under empirical measure to error under exact sampling
measure.



Error analysis: gi = gi(Yi+1,Xi :N)

Define Ti ,k := infϕ∈Lk |yi − ϕ|2νk and take dim(Lk) = dim(L)

With previous assumptions we can prove that

Theorem

E
[
|y (M)

i − yi |2ν
]

≤4(1 + ε)L2giCνE
[
|y (M)

i+1 − yi+1|2ν
]

+ 2
K∑

k=1

ν(Hk)Ti ,k + C
dim(L) log(M)

M



Error analysis: multi-step scheme for BSDE

Assumptions:

I fti is bounded and is Lipschitz w.r.t. y , g is bounded

I ∃Cν s.t.
∫
Rd E

[
ϕ2(X i ,x

j )
]
ν(dx) ≤ Cν

∫
Rd ϕ

2(x)ν(dx).

I assumptions on covering number of the function dictionary Lk

E
[
|y (M)

i − yi |2ν
]
≤ C

log(M) dim(L)

M
+

2
K∑

k=1

ν(Hk)Ti ,k + 8
1

N

N−1∑
j=i+1

L2fj

(
CνE

[
|y (M)

j − yj |2ν
])



Travel agency problem

A travel agency wants to lanch a promotion, its profit is affected
by the temperature and the exchange rate. We want to compute
v(X 1

0 ,X
2
0 ) defined by

ess sup
τ∈T

E
[
q((τ − 0.25)2 × 240 + X 1

τ )e−|τ−1/6|
(
c − c(e

X 2
τ+1/12)

)]
=ess sup

τ∈T
E
[
q((τ − 0.25)2 × 240 + X 1

τ )e−|τ−1/6|
(
c − E

[
c(e

X 2
τ+1/12) | X 2

τ

])]
where T = { k

48 , k = 0, 1, · · · , 24}

dX 1
t = −aX 1

t dt + σ1dWt ,X
1
0 = 0,

X 2
t = −σ

2
2

2
t + σ2Bt .



Travel agency problem

Figure: Pictorial description of the cost function c (left) and of the
campaign effectiveness q (right).

Parameters: a = 2, σ1 = 10, σ2 = 0.2, c = 3, x2min = e−0.5, x2max =
e0.5, cmin = 1, cmax = cmin + x2max − x2min, tmin = 0, tmax =
15, qmin = 1, qmax = 4.

µ(dx) = k
2 (1 + |x |)−k−1, k = 6 to resample points for X 1

ν(dx) = 1
2e
−|x |dx to resample points for X 2.



Figure: Piecewise constant estimation with M = 320, K = 200



Travel agency problem

The squared L2(µ⊗ ν) norm of our reference estimation is 32.0844

simple regression K = 10 K = 20 K = 50 K = 100

M = 20 0.1827 0.0512 0.0349 0.0269
M = 40 0.1982 0.0361 0.0249 0.0114
M = 80 0.2063 0.0325 0.0051 0.0047
M = 160 0.1928 0.0264 0.0058 0.0067

Average squared L2 errors with 20 macro runs.

nested regression K = 10 K = 20 K = 50 K = 100

M = 20 0.1711 0.0458 0.0436 0.0252
M = 40 0.1648 0.0361 0.0130 0.0169
M = 80 0.1534 0.0273 0.0109 0.0085
M = 160 0.1510 0.0296 0.0048 0.0058

Average squared L2 errors with 20 macro runs.



Population distribution: FKPP equation

∂tu + ∂2xxu + au(1− u) = 0 , u(T , x) = h(x), x ∈ R, t ≤ T ,

A travelling wave solution:

h(x) :=
1(

1 + C exp (±
√
6a
6 x)

)2
then

u(t, x) =
1(

1 + C exp (5a6 (t − T )±
√
6a
6 x)

)2
The probabilistic formulation:

dPs =
√

2dWs ,

dYs = −f (Ys)ds + ZsdWs , wheref (x) = ax(1− x)

YT = u(T ,PT ) = h(PT ) .

Then, the process Yt = E
[
YT +

∫ T
t f (Ys)ds|Pt

]
satisfies

Yt = u(t,Pt).



Results in dimension 1

T = 1, time discretization ti = i
NT , 0 ≤ i ≤ N with N = 10. We

divide the real line R into K subintervals (Ii )1≤i≤K , piecewise
constant estimation on each interval. We approximate the squared
L2(ν) error of our estimation by∑

1≤k≤K
|u(0, yk)− û(0, yk)|2ν(Ik)

We take ν(dx) = 1
2e
−|x |dx . The squared L2(ν) norm of u(0, y) is

around 0.25.



Figure: Piecewise constant and linear estimation, M = 50 and K = 200



Results in dimension 1

one-step K = 10 K = 20 K = 50 K = 100 K = 200 K = 400

M = 20 0.0993 0.0253 0.0038 0.0014 0.0014 0.0019
M = 40 0.0997 0.0252 0.0034 9.01e-04 5.16e-04 6.17e-04
M = 80 0.0993 0.0249 0.0029 6.15e-04 3.92e-04 3.91e-04
M = 160 0.0990 0.0248 0.0029 3.15e-04 1.57e-04 1.71e-04
M = 320 0.0990 0.0248 0.0028 2.47e-04 1.02e-04 1.19e-04
M = 640 0.0990 0.0246 0.0028 2.26e-04 5.46e-05 4.94e-05

Average squared L2 errors with 50 macro runs.

multi-step K = 10 K = 20 K = 50 K = 100 K = 200 K = 400

M = 20 0.0484 0.0066 0.0017 0.0015 0.0011 0.0013
M = 40 0.0488 0.0058 8.45e-04 5.81e-04 6.35e-04 5.68e-04
M = 80 0.0478 0.0053 4.33e-04 2.96e-04 3.45e-04 4.06e-04
M = 160 0.0481 0.0051 2.98e-04 2.23e-04 1.71e-04 1.08e-04
M = 320 0.0479 0.0051 1.79e-04 6.48e-05 8.38e-05 1.04e-04
M = 640 0.0478 0.0050 1.50e-04 6.49e-05 6.66e-05 5.70e-05

Average squared L2 errors with 50 macro runs.



Two dimensional case

∂tW +
∑

1≤i ,j≤d
Aij∂yi∂yjW +aW (1−W ) = 0 , t ≤ T ,and y ∈ Rd .

A is positive-definite constant d × d matrix. With the final
condition

W (T , y) = h(y ′Σ−1θ) ,

where Σ = Σ′ =
√
A and θ is arbitrary unit vector., the solution is

W (t, y) := u(t, y ′Σ−1θ)



Two dimensional case

T = 1 and ti = i
NT , 0 ≤ i ≤ N with N = 10. The real line R is

divided into K subintervals. We take Σ = [1, β;β, 1] with β = 0.25

and θ = [1;1]√
2

. We implement piecewise constant estimation on

each rectangle Ii × Ij . Then finally we get an estimator Ŵ (0, y).
Then we approximate the squared L2(ν ⊗ ν) error by∑

1≤k1≤K ,1≤k2≤K
|W (0, yk1 , yk2)− Ŵ (0, yk1 , yk2)|2ν ⊗ ν(Ik1 × Ik2)

one-step K = 10 K = 20 K = 50 K = 100 K = 200

M = 20 0.0592 0.0167 0.0027 0.0018 0.0010
M = 40 0.0588 0.0163 0.0022 5.34e-04 5.00e-04
M = 80 0.0588 0.0160 0.0019 3.74e-04 2.98e-04
M = 160 0.0586 0.0160 0.0018 3.08e-04 9.16e-05
M = 320 0.0586 0.0159 0.0017 1.1e-04 9.24e-05

Average squared L2 errors with 50 macro runs.
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