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Introduction

Dynamic programming problem:

W:E[gi(\/i-‘rlv"'vYN7XI'7-"’XN)|Xi]> i:N_]-?"'aOv
Y = gn(Xn),

We want to estimate the function y; such that Y; = y;(X;).



Examples
Optimal Stoppting: V; = esssup,c7 , E[f(X7)]

Yi = E[Viq1|Xi]
Yi = E [max(Yit1, fir1(Xit1)) | Xi]
Yn-1 = E[fn(Xn)| Xn-1]

BSDE:
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Yi=E [g(Xn)+ 5 D (Y X)IX;
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Numerical resolution

Usual approach:
> given (¥j)j=it1,-,n , we want to find y; estimating y;
» use a large number of simulation(or resimulation) of Xi.,

> y; is an estimator for the conditional expectation

E [gi(Jit1(Xix1)s - yn(Xn), Xiy .o, Xn) | Xi]

using a global statistical regression with a large function
dictionnary

Q: What if model paramters for X are (partially) unknown and
only a small set of historical data is available?
path reconstruction(resampling) + stratification



Stratified resampling method: stratification

We divide the whole space into K strata (Hx)1<k<k such that

K
HeNHy =0 fork#1 | JHi=R
k=1

Given a probability measure v on RY, denote its restriction on
by

vi(dx) == ﬁlﬂk (x)v(dx).

We shall use v, to sample initial points on H, and perform local
regression on 7 to get estimation of y;(x)1lxe,



Stratified resampling method: resampling

We are given M independent observation of X, with M small

Data: (X" :0<i < N)i<m<m

» We assume Xj"X =0;j(x, U), 0; are known such that we can
extract out the value of U

» to simulate a trajectory of X;.y starting at x’, we compute
9;;(x', U)

Remark: to apply this procedure demands much less information
than the full detail of the underlying model



Stratified resampling method: resampling

> X; = xo + fot psds + fot osd Wi

U= (Xit1 — Xi)o<icn_1 0i(x, U) = x + Z Uk

i<k<j

> X; = xgexp (fot pusds + fot osd W5>
_ Xi+1 _
U= Iog(T) 0ii(x, U) == x H exp(Uk)
i/ o0<i<N-1 i<k
> Xy =xp — fot a(Xs — )_(s)ds + os Wt
U,"j = XJ — e_a(tj_t")X,' (9,'J'(X7 U) = e_a(tj_ti)X + U,'J

lts, 0s, Xs are unknown deterministic function of s, X; stands for X,



Stratified resampling method: resampling

Using given data to generate paths starting from a given point, in
an additive model(e.g. Lévy process)

X




Ordinary Least Sqaure regression

Definition of OLS(Ordinary Least Square operator): for a given
function f, a function dictionary £, and M points (Ym)i<m<m

M

1
LS(f Y, = inf — f(Ym) — o(Ym)|?.
OLS(f. Lo (Ymhrsmem) =15 f. 37 3 IF(Y) = Yo
OLS is linear and contracting w.r.t L2 norm, and it interchanges
with conditional expectation(in a sense to be precised).



Stratified resampling method

Y E[gl( I+1""7YN7XI'7"'5XN)|Xi]> i:N_]-?"'aOv
Yn = gn(Xn),

Suppose we already have an estimation yi(f’l) for yjy1. For each
Hy, we will do the following:
» sample M i.i.d. copy of (X/™)1<m<m according to the law v
» constructing M paths starting from these points, denoted
X,-}}VM, using the resampling formula
» compute wa)’k = OLS(S(M),E;(,X}:;VM) with

SM (xin) = gily D (xisa)s -y ), xin)

> set y K = T, (M)

Finally we get an estimation y( ) for yit y, Ek lyl 1Hk



Error analysis: gi = gi(Yi+1, Xin)

All the paths used in our method are reconstructed from the
initially given root sample, which complicates the error analysis.

We shall need several assumptions:
» g; is bounded and is Lipschitz w.r.t. yji1
» 3G st [ B {¢2(Xiif1)} v(dx) < G, [ga 92 (x)v(dx).

» assumptions on covering number of the function dictionary L

Remarks on assumptions
» If g; is not bounded, we may use truncation number — +oo

» Under mild conditions on the model of X, we can find
appropriate v

» Assumption on covering number is mainly used to link error
under empirical measure to error under exact sampling
measure.



Error analysis: gi = gi(Yi+1, Xin)

Define Ty = infuez, [yi — @[3, and take dim(Ly) = dim(£)

With previous assumptions we can prove that

Theorem

M
E {\y,-( - )/i’ﬂ
K
<4(1+ E)L; GE |:‘y,'(.£/j,[) - )/i+1|12/} + 22 v(H) Tix + C
k=1

dim(L) log(M)
M



Error analysis: multi-step scheme for BSDE

Assumptions:

> f;, is bounded and is Lipschitz w.r.t. y, g is bounded
> 3G, st. [ E [902()9."“)} V(dx) < Gy [ 2(x)1(dx).

> assumptions on covering number of the function dictionary Ly

Iog(M)dim(£)+

M
N-1

K
2> WH) T+ 85 S 13 (GE[I™ - yl2])
k=1 Jj=i+l

E [!y,-(M) - yf\ﬁ] <C



Travel agency problem

A travel agency wants to lanch a promotion, its profit is affected
by the temperature and the exchange rate. We want to compute
v(X3, X2) defined by

esssup E {q((T —0.25)% x 240 + X})e~IT—1/6l (g - c(eX72+1/12)>]
T€T

=ess flejs)_E [q((T —0.25)% x 240 + X})e~IT—1/6l (g -E [c(exfﬂ/u) | XTZ} )]

whereT:{%,kzo,l,--~ ,24}

dX}! = —ax}dt + oydW;, X§ =0,
2

th = —%t + U2Bt.



Travel agency problem

2 x2

3 t t
min " max min  max

Figure: Pictorial description of the cost function ¢ (left) and of the
campaign effectiveness g (right).

Parameters: a = 2,01 = 10, 02 =02,c=3,x2, =e %% x2
0.5 2 _
€7, Cmin = 1> Cmax = Cmin + Xmax = Xmin tmin = 07 tmax =

15, @min = 1, gmax = 4.

1(dx) = £(1 4 |x|)7*=1, k = 6 to resample points for X1
v(dx) = 2e~*ldx to resample points for X2.



Figure: Piecewise constant estimation with M = 320, K = 200



Travel agency problem

The squared L?(x ® v) norm of our reference estimation is 32.0844
simple regression | K =10 | K =20 | K =50 | K =100

M =20 0.1827 | 0.0512 | 0.0349 | 0.0269
M =40 0.1982 | 0.0361 | 0.0249 | 0.0114
M = 80 0.2063 | 0.0325 | 0.0051 | 0.0047
M =160 0.1928 | 0.0264 | 0.0058 | 0.0067

Average squared L2 errors with 20 macro runs.

nested regression | K =10 | K =20 | K =50 | K =100

M =20 0.1711 | 0.0458 | 0.0436 | 0.0252
M =40 0.1648 | 0.0361 | 0.0130 | 0.0169
M =80 0.1534 | 0.0273 | 0.0109 | 0.0085
M =160 0.1510 | 0.0296 | 0.0048 | 0.0058

Average squared L? errors with 20 macro runs.



Population distribution: FKPP equation

oru4 P u+au(l—u)=0, u(T,x)=h(x), xR t<T,

A travelling wave solution:

1
h(x) := 5
(1 + Cexp (£ ‘/g:x))
then .
u(t,x) =

2
(1 + Cexp(2(t—T)+ @x))

The probabilistic formulation:

dPs = V2dW,,
dYs = —f(Ys)ds + ZsdWs, wheref(x) = ax(1 — x)
YT = U(T, PT) = h(PT) .

Then, the process Y; = [YT + ft ds|Pt} satisfies

Yt = U(t, Pt)



Results in dimension 1

T =1, time discretization t; = ﬁ'T,O < i< N with N =10. We
divide the real line R into K subintervals (/;)1<j<k, piecewise
constant estimation on each interval. We approximate the squared

L2(v) error of our estimation by

> 1u(0, i) — (0, yi) P (k)

1<k<K

We take v(dx) = Je~ldx. The squared L?(v) norm of u(0,y) is
around 0.25.
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Figure: Piecewise constant and linear estimation, M =50 and K = 200



Results in dimension 1

one-step | K=10 | K=20| K=50 | K=100 | K= 200 | K =400
M =20 | 0.0993 | 0.0253 | 0.0038 | 0.0014 0.0014 0.0019
M =40 | 0.0997 | 0.0252 | 0.0034 | 9.01e-04 | 5.16e-04 | 6.17e-04
M =80 | 0.0993 | 0.0249 | 0.0029 | 6.15e-04 | 3.92e-04 | 3.91e-04
M =160 | 0.0990 | 0.0248 | 0.0029 | 3.15e-04 | 1.57e-04 | 1.71e-04
M =320 | 0.0990 | 0.0248 | 0.0028 | 2.47e-04 | 1.02e-04 | 1.19e-04
M =640 | 0.0990 | 0.0246 | 0.0028 | 2.26e-04 | 5.46e-05 | 4.94e-05
Average squared L2 errors with 50 macro runs.
multi-step | K=10 | K=20 | K=50 | K=100 | K =200 | K = 400
M =20 | 0.0484 | 0.0066 | 0.0017 0.0015 0.0011 0.0013
M =40 | 0.0488 | 0.0058 | 8.45e-04 | 5.81e-04 | 6.35e-04 | 5.68e-04
M =80 | 0.0478 | 0.0053 | 4.33e-04 | 2.96e-04 | 3.45e-04 | 4.06e-04
M =160 | 0.0481 | 0.0051 | 2.98e-04 | 2.23e-04 | 1.71e-04 | 1.08e-04
M =320 | 0.0479 | 0.0051 | 1.79e-04 | 6.48e-05 | 8.38e-05 | 1.04e-04
M =640 | 0.0478 | 0.0050 | 1.50e-04 | 6.49e-05 | 6.66e-05 | 5.70e-05

Average squared L2 errors with 50 macro runs.




Two dimensional case

AW+ > Ao, 0,W+aW(1—-W)=0,t<T andycR’.
1<ij<d

A is positive-definite constant d x d matrix. With the final
condition
W(T,y) = h(y'=710) ,

where £ = ¥’ = \/A and 6 is arbitrary unit vector., the solution is

W(t,y) = u(t,y’=7'0)



Two dimensional case

T=1and t; = i,\',T,O < i< N with N =10. The real line R is
divided into K subintervals. We take ¥ = [1, 3; 3, 1] with 5 = 0.25
and 6 = % We implement piecewise constant estimation on

each rectangle /; x I;. Then finally we get an estimator W(O,y).
Then we approximate the squared L?(v ® v) error by

Z ‘W(07yk1ayk2) - W(Ovyklaykz)‘zy(@l/(lkl X Ikz)
1<k <K, 1<k <K

onestep | K=10 | K=20| K=50 | K=100 | K =200
M =20 | 0.0592 | 0.0167 | 0.0027 | 0.0018 0.0010
M =40 | 0.0588 | 0.0163 | 0.0022 | 5.34e-04 | 5.00e-04
M =80 | 0.0588 | 0.0160 | 0.0019 | 3.74e-04 | 2.98e-04
M =160 | 0.0586 | 0.0160 | 0.0018 | 3.08e-04 | 9.16e-05
M =320 | 0.0586 | 0.0159 | 0.0017 | 1.1e-04 | 9.24e-05
Average squared L? errors with 50 macro runs.
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