Non-intrusive stratified resampling and regression method for dynamic programming problem

> Gang Liu gang.liu@polytechnique.edu

joint work with Emmanuel Gobet and Jorge P. Zubelli

CMAP, Ecole Polytechnique

March 25, 2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Stratified Resampling method

Error analysis

Numerical examples

Introduction

Dynamic programming problem:

$$Y_i = \mathbb{E}[g_i(Y_{i+1},...,Y_N,X_i,...,X_N) | X_i], \quad i = N - 1,...,0,$$

 $Y_N = g_N(X_N),$

(ロ)、(型)、(E)、(E)、 E) の(の)

We want to estimate the function y_i such that $Y_i = y_i(X_i)$.

Examples

Optimal Stoppting:
$$V_i = \operatorname{ess} \sup_{\tau \in \mathcal{T}_{i,N}} \mathbb{E} [f_{\tau}(X_{\tau})]$$

 $Y_i = \mathbb{E} [V_{i+1}|X_i]$
 $Y_i = \mathbb{E} [\max(Y_{i+1}, f_{i+1}(X_{i+1})) \mid X_i]$
 $Y_{N-1} = \mathbb{E} [f_N(X_N)|X_{N-1}]$

BSDE:

$$\begin{aligned} \mathcal{Y}_t &= g(W_1) + \int_t^1 f(s, \mathcal{Y}_s, W_s) \mathrm{d}s - \int_t^1 \mathcal{Z}_s \mathrm{d}W_s \\ \mathcal{Y}_t &= \mathbb{E}\left[g(W_1) + \int_t^1 f(s, \mathcal{Y}_s, W_s) \mathrm{d}s \mid W_t\right] \\ Y_i &= \mathbb{E}\left[g(X_N) + \frac{1}{N} \sum_{j=i+1}^N f_j(Y_j, X_j) | X_i\right] \end{aligned}$$

Numerical resolution

Usual approach:

- given $(\hat{y}_j)_{j=i+1,\cdots,N}$, we want to find \hat{y}_i estimating y_i
- use a large number of simulation(or resimulation) of X_{i:n}
- \hat{y}_i is an estimator for the conditional expectation

$$\mathbb{E}\left[g_i(\hat{y}_{i+1}(X_{i+1}),\ldots,\hat{y}_N(X_N),X_i,\ldots,X_N)\mid X_i\right]$$

using a global statistical regression with a large function dictionnary

Q: What if model paramters for X are (partially) unknown and only a small set of historical data is available? A: path reconstruction(resampling) + stratification

Stratified resampling method: stratification

We divide the whole space into K strata $(\mathcal{H}_k)_{1 \leq k \leq K}$ such that

$$\mathcal{H}_k \cap \mathcal{H}_l = \emptyset$$
 for $k \neq l$, $\bigcup_{k=1}^K \mathcal{H}_k = \mathbb{R}^d$.

Given a probability measure ν on \mathbb{R}^d , denote its restriction on \mathcal{H}_k by

$$u_k(\mathrm{d} x) := \frac{1}{\nu(\mathcal{H}_k)} \mathbb{1}_{\mathcal{H}_k}(x) \nu(\mathrm{d} x).$$

We shall use ν_k to sample initial points on \mathcal{H}_k and perform local regression on \mathcal{H}_k to get estimation of $y_i(x)\mathbf{1}_{x\in\mathcal{H}_k}$

Stratified resampling method: resampling

We are given M independent observation of X, with M small

Data:
$$(X_i^m : 0 \le i \le N)_{1 \le m \le M}$$

Noise extraction and resampling

- We assume X^{i,x}_j = θ_{i,j}(x, U), θ_{i,j} are known such that we can extract out the value of U
- to simulate a trajectory of $X_{i:N}$ starting at x', we compute $\theta_{i,j}(x', U)$

Remark: to apply this procedure demands much less information than the full detail of the underlying model

Stratified resampling method: resampling

$$X_t = x_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s$$

$$U = (X_{i+1} - X_i)_{0 \le i \le N-1} \qquad \theta_{ij}(x, U) = x + \sum_{i \le k < j} U_k$$

$$X_t = x_0 \exp\left(\int_0^t \mu_s ds + \int_0^t \sigma_s dW_s\right)$$

$$U = \left(\log\left(\frac{X_{i+1}}{X_i}\right)\right)_{0 \le i \le N-1} \qquad \theta_{ij}(x, U) := x \prod_{i \le k < j} \exp(U_k)$$

$$X_t = x_0 - \int_0^t a(X_s - \bar{X}_s) ds + \sigma_s W_t$$

$$U_{i,j} = X_j - e^{-a(t_j - t_i)} X_i \qquad \theta_{ij}(x, U) := e^{-a(t_j - t_i)} x + U_{i,j}$$

 $\mu_s, \sigma_s, \bar{X}_s$ are unknown deterministic function of s, X_i stands for X_{t_i}

Stratified resampling method: resampling

Using given data to generate paths starting from a given point, in an additive model(e.g. Lévy process)

Definition of OLS(Ordinary Least Square operator): for a given function f, a function dictionary \mathcal{L}_k and M points $(Y_m)_{1 \le m \le M}$

$$\operatorname{OLS}(f, \mathcal{L}_k, (Y_m)_{1 \le m \le M}) := \arg \inf_{\varphi \in \mathcal{L}_k} \frac{1}{M} \sum_{m=1}^M |f(Y_m) - \varphi(Y_m)|^2.$$

OLS is linear and contracting w.r.t L^2 norm, and it interchanges with conditional expectation(in a sense to be precised).

Stratified resampling method

$$Y_i = \mathbb{E}\left[g_i(Y_{i+1},\ldots,Y_N,X_i,\ldots,X_N) \mid X_i\right], \quad i = N-1,\ldots,0,$$

$$Y_N = g_N(X_N),$$

Suppose we already have an estimation $y_{i+1}^{(M)}$ for y_{i+1} . For each \mathcal{H}_k , we will do the following:

- ▶ sample *M* i.i.d. copy of $(X_i^m)_{1 \le m \le M}$ according to the law ν_k
- constructing *M* paths starting from these points, denoted X^{1:M}_{i:N}, using the resampling formula

Finally we get an estimation $y_i^{(M)}$ for y_i : $y_i^{(M)} = \sum_{k=1}^{K} y_i^{(M),k} \mathbf{1}_{\mathcal{H}_k}$

Error analysis: $g_i = g_i(Y_{i+1}, X_{i:N})$

All the paths used in our method are reconstructed from the initially given root sample, which complicates the error analysis.

We shall need several assumptions:

- g_i is bounded and is Lipschitz w.r.t. y_{i+1}
- $\blacktriangleright \exists C_{\nu} \text{ s.t. } \int_{\mathbb{R}^d} \mathbb{E}\left[\varphi^2(X_{i+1}^{i,x})\right] \nu(\mathrm{d} x) \leq C_{\nu} \int_{\mathbb{R}^d} \varphi^2(x) \nu(\mathrm{d} x).$
- assumptions on covering number of the function dictionary \mathcal{L}_k

Remarks on assumptions

- ▶ If g_i is not bounded, we may use truncation number $\rightarrow +\infty$
- ► Under mild conditions on the model of X, we can find appropriate v
- Assumption on covering number is mainly used to link error under empirical measure to error under exact sampling measure.

Error analysis: $g_i = g_i(Y_{i+1}, X_{i:N})$

Define $T_{i,k} := \inf_{\varphi \in \mathcal{L}_k} |y_i - \varphi|^2_{\nu_k}$ and take $\dim(\mathcal{L}_k) = \dim(\mathcal{L})$

With previous assumptions we can prove that Theorem

$$\mathbb{E}\left[|y_i^{(M)} - y_i|_{\nu}^2\right]$$

$$\leq 4(1+\varepsilon)L_{g_i}^2 C_{\nu} \mathbb{E}\left[|y_{i+1}^{(M)} - y_{i+1}|_{\nu}^2\right] + 2\sum_{k=1}^{K} \nu(H_k) T_{i,k} + C \frac{\dim(\mathcal{L})\log(M)}{M}$$

Error analysis: multi-step scheme for BSDE

Assumptions:

• f_{t_i} is bounded and is Lipschitz w.r.t. y, g is bounded

$$\blacktriangleright \exists C_{\nu} \text{ s.t. } \int_{\mathbb{R}^d} \mathbb{E}\left[\varphi^2(X_j^{i,x})\right] \nu(\mathrm{d} x) \leq C_{\nu} \int_{\mathbb{R}^d} \varphi^2(x) \nu(\mathrm{d} x).$$

▶ assumptions on covering number of the function dictionary \mathcal{L}_k

$$\mathbb{E}\left[|y_i^{(M)} - y_i|_{\nu}^2\right] \le C \frac{\log(M)\dim(\mathcal{L})}{M} + 2\sum_{k=1}^{K} \nu(H_k)T_{i,k} + 8\frac{1}{N}\sum_{j=i+1}^{N-1} L_{f_j}^2 \left(C_{\nu}\mathbb{E}\left[|y_j^{(M)} - y_j|_{\nu}^2\right]\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Travel agency problem

A travel agency wants to lanch a promotion, its profit is affected by the temperature and the exchange rate. We want to compute $v(X_0^1, X_0^2)$ defined by

$$\underset{\tau \in \mathcal{T}}{\operatorname{ess sup}} \mathbb{E} \left[q((\tau - 0.25)^2 \times 240 + X_{\tau}^1) e^{-|\tau - 1/6|} \left(\underline{c} - c(e^{X_{\tau+1/12}^2}) \right) \right]$$

=
$$\underset{\tau \in \mathcal{T}}{\operatorname{ess sup}} \mathbb{E} \left[q((\tau - 0.25)^2 \times 240 + X_{\tau}^1) e^{-|\tau - 1/6|} \left(\underline{c} - \mathbb{E} \left[c(e^{X_{\tau+1/12}^2}) \mid X_{\tau}^2 \right] \right) \right]$$

where $T = \{\frac{k}{48}, k = 0, 1, \cdots, 24\}$

$$\begin{split} \mathrm{d}X_t^1 &= -aX_t^1\mathrm{d}t + \sigma_1\mathrm{d}W_t, X_0^1 = 0, \\ X_t^2 &= -\frac{\sigma_2^2}{2}t + \sigma_2B_t. \end{split}$$

Travel agency problem

Figure: Pictorial description of the cost function c (left) and of the campaign effectiveness q (right).

Parameters: $a = 2, \sigma_1 = 10, \sigma_2 = 0.2, \underline{c} = 3, x_{min}^2 = e^{-0.5}, x_{max}^2 = e^{0.5}, c_{min} = 1, c_{max} = c_{min} + x_{max}^2 - x_{min}^2, t_{min} = 0, t_{max} = 15, q_{min} = 1, q_{max} = 4.$

 $\mu(\mathrm{d}x) = \frac{k}{2}(1+|x|)^{-k-1}, k = 6 \text{ to resample points for } X^1$ $\nu(dx) = \frac{1}{2}e^{-|x|}dx \text{ to resample points for } X^2.$

Figure: Piecewise constant estimation with M = 320, K = 200

Travel agency problem

The squared $L^2(\mu \otimes \nu)$ norm of our reference estimation is 32.0844

simple regression	K = 10	<i>K</i> = 20	<i>K</i> = 50	K = 100
<i>M</i> = 20	0.1827	0.0512	0.0349	0.0269
<i>M</i> = 40	0.1982	0.0361	0.0249	0.0114
M = 80	0.2063	0.0325	0.0051	0.0047
M = 160	0.1928	0.0264	0.0058	0.0067
	-			

Average squared L^2 errors with 20 macro runs.

nested regression	K = 10	<i>K</i> = 20	K = 50	K = 100
<i>M</i> = 20	0.1711	0.0458	0.0436	0.0252
<i>M</i> = 40	0.1648	0.0361	0.0130	0.0169
M = 80	0.1534	0.0273	0.0109	0.0085
M = 160	0.1510	0.0296	0.0048	0.0058

Average squared L^2 errors with 20 macro runs.

Population distribution: FKPP equation

$$\partial_t u + \partial_{xx}^2 u + au(1-u) = 0$$
, $u(T,x) = h(x), x \in \mathbb{R}, t \le T$,

A travelling wave solution:

$$h(x) := \frac{1}{\left(1 + C \exp\left(\pm \frac{\sqrt{6a}}{6}x\right)\right)^2}$$

then

$$u(t,x) = \frac{1}{\left(1 + C \exp\left(\frac{5a}{6}(t-T) \pm \frac{\sqrt{6a}}{6}x\right)\right)^2}$$

The probabilistic formulation:

$$dP_s = \sqrt{2}dW_s ,$$

$$dY_s = -f(Y_s)ds + Z_sdW_s, \text{ where } f(x) = ax(1-x)$$

$$Y_T = u(T, P_T) = h(P_T) .$$

Then, the process $Y_t = \mathbb{E}\left[Y_T + \int_t^T f(Y_s)ds|P_t\right]$ satisfies

 $Y_t = u(t, P_t).$

Results in dimension 1

T = 1, time discretization $t_i = \frac{i}{N}T$, $0 \le i \le N$ with N = 10. We divide the real line \mathbb{R} into K subintervals $(I_i)_{1 \le i \le K}$, piecewise constant estimation on each interval. We approximate the squared $L^2(\nu)$ error of our estimation by

$$\sum_{1\leq k\leq K}|u(0,y_k)-\hat{u}(0,y_k)|^2\nu(I_k)$$

We take $\nu(dx) = \frac{1}{2}e^{-|x|}dx$. The squared $L^2(\nu)$ norm of u(0, y) is around 0.25.

Figure: Piecewise constant and linear estimation, M = 50 and K = 200

Results in dimension 1

one-step	K = 10	<i>K</i> = 20	K = 50	K = 100	K = 200	K = 400
<i>M</i> = 20	0.0993	0.0253	0.0038	0.0014	0.0014	0.0019
<i>M</i> = 40	0.0997	0.0252	0.0034	9.01e-04	5.16e-04	6.17e-04
<i>M</i> = 80	0.0993	0.0249	0.0029	6.15e-04	3.92e-04	3.91e-04
M = 160	0.0990	0.0248	0.0029	3.15e-04	1.57e-04	1.71e-04
<i>M</i> = 320	0.0990	0.0248	0.0028	2.47e-04	1.02e-04	1.19e-04
<i>M</i> = 640	0.0990	0.0246	0.0028	2.26e-04	5.46e-05	4.94e-05

Average squared L^2 errors with 50 macro runs.

multi-step	K = 10	K = 20	K = 50	K = 100	K = 200	K = 400
M = 20	0.0484	0.0066	0.0017	0.0015	0.0011	0.0013
<i>M</i> = 40	0.0488	0.0058	8.45e-04	5.81e-04	6.35e-04	5.68e-04
M = 80	0.0478	0.0053	4.33e-04	2.96e-04	3.45e-04	4.06e-04
M = 160	0.0481	0.0051	2.98e-04	2.23e-04	1.71e-04	1.08e-04
<i>M</i> = 320	0.0479	0.0051	1.79e-04	6.48e-05	8.38e-05	1.04e-04
<i>M</i> = 640	0.0478	0.0050	1.50e-04	6.49e-05	6.66e-05	5.70e-05

Average squared L^2 errors with 50 macro runs.

Two dimensional case

$$\partial_t W + \sum_{1 \leq i,j \leq d} A_{ij} \partial_{y_i} \partial_{y_j} W + a W (1 - W) = 0$$
 , $t \leq T$,and $y \in \mathbb{R}^d$

A is *positive-definite* constant $d \times d$ matrix. With the final condition

$$W(T,y) = h(y' \mathbf{\Sigma}^{-1} heta)$$
 ,

where $\mathbf{\Sigma} = \mathbf{\Sigma}' = \sqrt{A}$ and θ is arbitrary unit vector., the solution is

$$W(t,y) := u(t,y'\mathbf{\Sigma}^{-1}\theta)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Two dimensional case

T = 1 and $t_i = \frac{i}{N}T$, $0 \le i \le N$ with N = 10. The real line \mathbb{R} is divided into K subintervals. We take $\Sigma = [1, \beta; \beta, 1]$ with $\beta = 0.25$ and $\theta = \frac{[1;1]}{\sqrt{2}}$. We implement piecewise constant estimation on each rectangle $I_i \times I_j$. Then finally we get an estimator $\hat{W}(0, y)$. Then we approximate the squared $L^2(\nu \otimes \nu)$ error by

 $\sum_{1 \leq k_1 \leq K, 1 \leq k_2 \leq K} |W(0, y_{k_1}, y_{k_2}) - \hat{W}(0, y_{k_1}, y_{k_2})|^2 \nu \otimes \nu(I_{k_1} \times I_{k_2})$

one-step	K = 10	<i>K</i> = 20	<i>K</i> = 50	K = 100	K = 200
<i>M</i> = 20	0.0592	0.0167	0.0027	0.0018	0.0010
<i>M</i> = 40	0.0588	0.0163	0.0022	5.34e-04	5.00e-04
<i>M</i> = 80	0.0588	0.0160	0.0019	3.74e-04	2.98e-04
M = 160	0.0586	0.0160	0.0018	3.08e-04	9.16e-05
<i>M</i> = 320	0.0586	0.0159	0.0017	1.1e-04	9.24e-05

Average squared L^2 errors with 50 macro runs.

Thank you