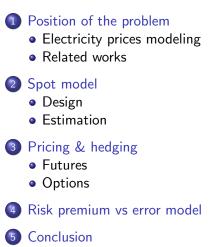
Position of the problem Spot model Pricing & hedging Risk premium vs error model Conclusion


A structural risk-neutral model for pricing and hedging power derivatives FiME Research Centre Monthly Seminar - Paris

René Aïd, Luciano Campi, Nicolas Langrené Paris-Dauphine University - Paris Diderot University EDF R&D - FiME Research Centre

Position of the problem Spot model Pricing & hedging Risk premium vs error model Conclusion

Agenda

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

Model requirements

- realistic
- robust:
- tractable

∃ ► < ∃ ►</p>

< 4[™] >

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)

hedging

energy market risk management

- realistic
- robust
- tractable
- consistent

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- o robust
- tractable
- consistent

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

Looking for a power spot price model

Applications

- pricing of derivatives on the spot
- asset valuation (strip of hourly fuel spread options)
- hedging
- energy market risk management

- realistic
- robust
- tractable
- consistent

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

(日) (日) (日) (日) (日)

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

O Equilibrium

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

(日) (日) (日) (日) (日)

Modeling strategies

Modeling futures prices

pros modeling the real available instruments

cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Description Exception State

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

(日) (四) (三) (三)

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

⊖ Equilibrium

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< 111 ▶

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices Exogeneous prostractability come dependencies Equilibrium Equilibrium Equilibrium Equilibrium

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< 111 ▶

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

Equilibrium

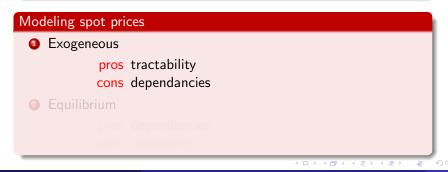
Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices


Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

equilibrium

<mark>pros</mark> dependancies

cons complexity

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

equilibrium

pros dependancies

ons complexity

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Modeling strategies

Modeling futures prices

pros modeling the real available instruments cons introduction of many parameters to reconstruct hourly futures prices

Modeling spot prices

Exogeneous

pros tractability cons dependancies

equilibrium

pros dependancies

cons complexity

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model

Pirrong & Jermakyan (00) Barlow (02) Kanamura & Ohashi (07)

Coulon & Howison (09)

ot Futures Options

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 5 / 43

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model

Pirrong & Jermakyan (00) Barlow (02) Kanamura & Ohashi (07) Cartea & Villaplana (08) Coulon & Howison (09) ×

5 / 43

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

	Spot	Futures	Options
Pirrong & Jermakyan (00)			
Lyle & Elliot (09)	×	\times	×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)			
			×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)			
			×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

5 / 43

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)			
Lyle & Elliot (09)	×	×	×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model

	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)	×	×	
Coulon & Howison (09)			
			×

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 5 / 43

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

Equilibrium model

-quintant interact			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)	×	×	
Coulon & Howison (09)	×	×	
Lyle & Elliot (09)			×

René Aïd, Luciano Campi, Nicolas Langrené 💦 A structural risk-neutral model for pricing and hedging power derivatives

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

Related works

Electricity prices exogeneous dynamics

Deng (00), Benth et al. (03, 07, 09), Burger et al. (04), Kolodnyi (04), Cartea & Figueroa (05), Geman & Roncoroni (06)

•			
	Spot	Futures	Options
Pirrong & Jermakyan (00)	×	×	
Barlow (02)	×		
Kanamura & Ohashi (07)	×		
Cartea & Villaplana (08)	×	×	
Coulon & Howison (09)	×	×	
Lyle & Elliot (09)	×	×	×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

This talk

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

This talk

Objectives

pricing and hedging power derivatives...

... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model

Spot Futures Options A., Campi, Nguyen & Touzi (09) × ×

improved SRN model

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

This talk

Objectives pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures A., Campi, Nguyen & Touzi (09) A., Campi, Nguyen & Touzi (09) mproved SRN model ×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

This talk

Objectives pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures A., Campi, Nguyen & Touzi (09) × improved SRN model ×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

< □ > < □ > < □ > < □ > < □ > < □ >

This talk

Objectives pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures A., Campi, Nguyen & Touzi (09) × × improved SRN model ×

Spot model Pricing & hedging Risk premium vs error model Conclusion

Electricity prices modeling Related works

(日)

This talk

Objectives pricing and hedging power derivatives... ... using an improved version of A., Campi Nguyen & Touzi (09) Structural Risk-Neutral model Spot Futures Options A., Campi, Nguyen & Touzi (09) × × improved SRN model × × × ×

Design Estimation

Initial SRN Model

Variables

- fuels, $1 \le i \le n$
- D_t demand (MW)
 - capacities (en MW)
 - fuel prices
 - *heat rates* ($h_i S_t^i$ en €/MWh, \nearrow en i

Electricity price (€/MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables

п	fuels, $1 \leq i \leq n$
	demand (MW)
h_i	<i>heat rates</i> $(h_i S_t^i$ en \in /MWh, \nearrow en i)

Electricity price (€/MWh)

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables

 $\begin{array}{ll} n & \text{fuels, } 1 \leq i \leq n \\ D_t & \text{demand (MW)} \\ C_t^i & \text{capacities (en MW)} \\ S_t^i & \text{fuel prices} \\ h_i & heat rates (h_i S_t^i \text{ en } \in /\text{MWh}, \nearrow \text{ en } i \end{array}$

Electricity price (€/MWh)

René Aïd, Luciano Campi, Nicolas Langrené

$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k ight\}}$

Design Estimation

Initial SRN Model

Variables

 $\begin{array}{ll}n & \text{fuels, } 1 \leq i \leq n\\ D_t & \text{demand (MW)}\\ C_t^i & \text{capacities (en MW)}\\ S_t^i & \text{fuel prices}\\ h_i & \text{heat rates } (h_i S_t^i \text{ en } \in /\text{MWh}, \end{array}$

Electricity price (€/MWh)

$\widehat{P}_{t} = \sum_{i=1}^{n} h_{i} S_{t}^{i} \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_{t}^{k} \le D_{t} \le \sum_{k=1}^{i} C_{t}^{k}\right\}}$

Position of the problem Spot model

Design

Initial SRN Model

Variables

- fuels, $1 \le i \le n$ n
- D_t demand (MW)
- C_t^i capacities (en MW) S_t^i
 - fuel prices

7 / 43

Spot model

Design

Initial SRN Model

Variables

- n fuels, 1 < i < n
- demand (MW) D_t
- C_t^i S_t^i capacities (en MW)
 - fuel prices
- heat rates $(h_i S_t^i \text{ en } \in /MWh, \nearrow \text{ en } i)$ h;

$$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$$

Spot model

Design

Initial SRN Model

Variables

- fuels, 1 < i < nn
- demand (MW) D_t
- C_t^i capacities (en MW) S_t^i
 - fuel prices
- heat rates $(h_i S_t^i \text{ en } \in /MWh, \nearrow \text{ en } i)$ h;

Electricity price (\in /MWh)

$$\widehat{P}_t = \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\right\}}$$

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

• Consistency between electricity prices and demand

Design Estimation

Initial SRN model

Pros

• Consistency between electricity prices and fuel prices

• Consistency between electricity prices and demand

Cons

Marginal fuel cost is not the spot price.

Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Cons

Marginal fuel cost is not the spot price.

Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Cons

Marginal fuel cost is not the spot price

Non-convex technical constraints (may lead to negative price Strategic behaviour (Hortaçsu & Puller, RAND J. of Economics 2008)

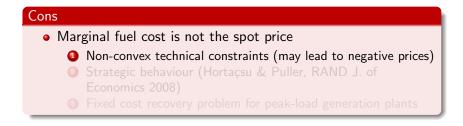
Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Cons

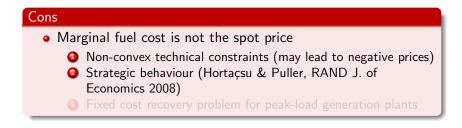

- Marginal fuel cost is not the spot price
 - In Non-convex technical constraints (may lead to negative prices)
 - Strategic behaviour (Hortaçsu & Puller, RAND J. of Economics 2008)
 - Fixed cost recovery problem for peak-load generation plants

Design Estimation

Initial SRN model

Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand



Design Estimation

Initial SRN model

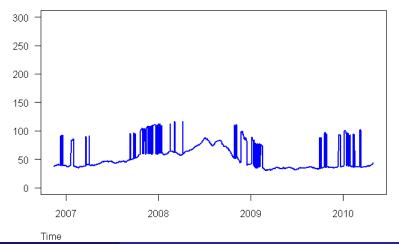
Pros

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Design Estimation

Initial SRN model

Pros

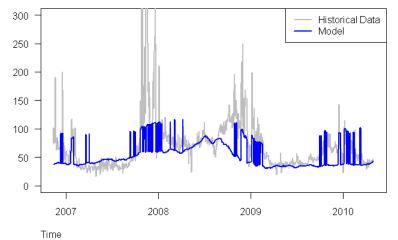

- Consistency between electricity prices and fuel prices
- Consistency between electricity prices and demand

Marginal fuel cost is not the spot price Non-convex technical constraints (may lead to negative prices) Strategic behaviour (Hortaçsu & Puller, RAND J. of Economics 2008) Fixed cost recovery problem for peak-load generation plants

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

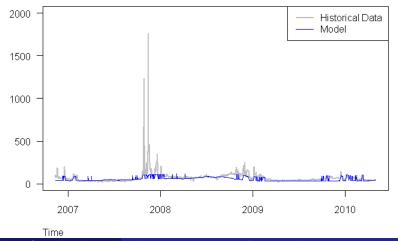


René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 9 / 43

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)



René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 10 / 43

Design Estimation

Initial SRN Model - illustration

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 11 / 43

Design Estimation

Improved SRN model

• Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small

Design Estimation

Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small
- Corresponds to peak-load fixed cost problem recovery...

Design Estimation


Improved SRN model

- Marginal fuel cost $\widehat{P}_t := \sum_{i=1}^n h_i S_t^i \mathbf{1}_{\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^{i} C_t^k\}}$
- Available capacity $\overline{C}_t := \sum_{k=1}^n C_t^k$
- Price spikes occur when the electric system is under stress, i.e. $\overline{C}_t D_t$ is small
- Corresponds to peak-load fixed cost problem recovery...

$$y_t := \frac{P_t}{\widehat{P}_t}$$
 as a (nonlinear) function of $x_t := \overline{C}_t - D_t$

Design Estimation

Improved SRN model - Estimation

< 47 ▶

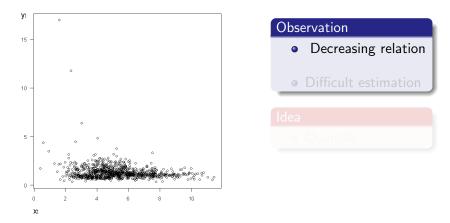

-

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🛛 13 / 43

Design Estimation

Improved SRN model - Estimation

< □ > < 同 >

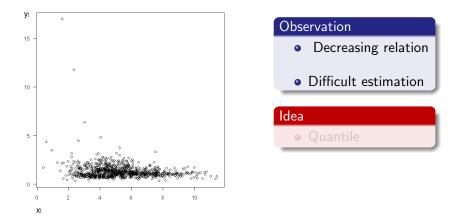

∃ ► < ∃</p>

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🛛 13 / 43

Design Estimation

Improved SRN model - Estimation

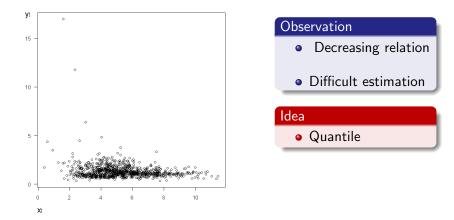

13 / 43

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

René Aïd, Luciano Campi, Nicolas Langrené 👘 A structural risk-neutral model for pricing and hedging power derivatives

Design Estimation

Improved SRN model - Estimation

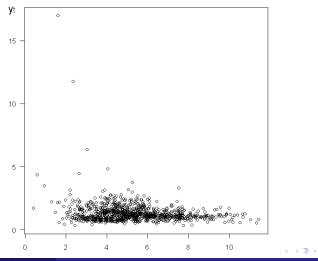
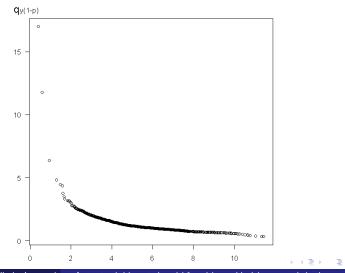

13 / 43

Figure: PowerNext - 19th hours Nov, 13th 06 to April 30th 10

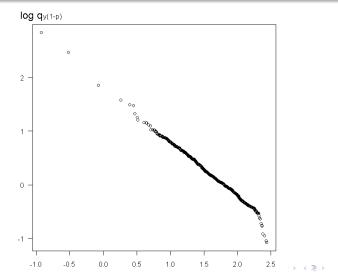
René Aïd, Luciano Campi, Nicolas Langrené 👘 A structural risk-neutral model for pricing and hedging power derivatives

Design Estimation


Improved SRN model - Estimation

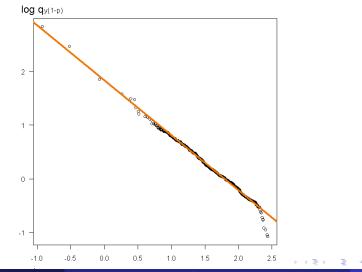
René Aïd, Luciano Campi, Nicolas Langrené 👘 A structur

Design Estimation


Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 15 / 43

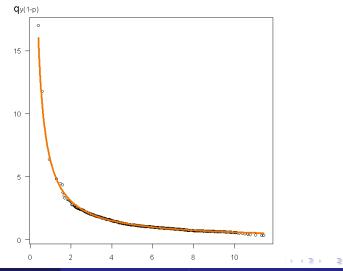
Design Estimation


Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené 💦 A structural risk-

Design Estimation

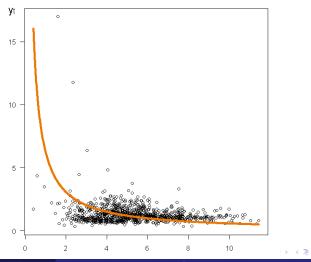
Improved SRN model - Estimation



René Aïd, Luciano Campi, Nicolas Langrené 💦 A structural risk-neutral m

A structural risk-neutral model for pricing and hedging power derivatives 17 / 43

Design Estimation


Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené

Design Estimation

Improved SRN model - Estimation

René Aïd, Luciano Campi, Nicolas Langrené 🛛 A s

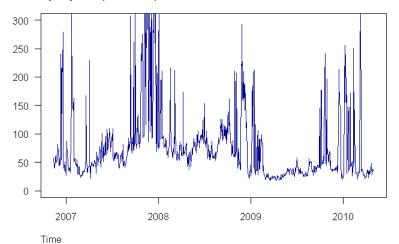
Design Estimation

Improved SRN model - Estimation

Estimated relation :
$$y_t = \frac{\gamma}{x_t^{\nu}}$$

Improved SRN model

$$P_t = g\left(\sum_{k=1}^n C_t^k - D_t\right) \times \left(\sum_{i=1}^n h_i S_t^i \mathbf{1}_{\left\{\sum_{k=1}^{i-1} C_t^k \le D_t \le \sum_{k=1}^i C_t^k\right\}}\right)$$

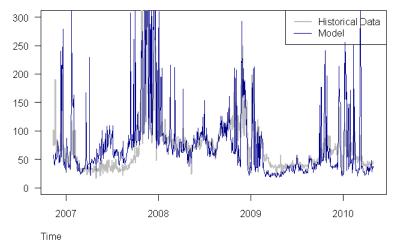

with scarcity function

$$g(x) := \min\left(\frac{\gamma}{x^{\nu}}, M\right) \mathbf{1}_{\{x \ge 0\}} + M \mathbf{1}_{\{x \le 0\}}$$

Design Estimation

Improved SRN model - Back-testing

Spot price (in €/MWh)

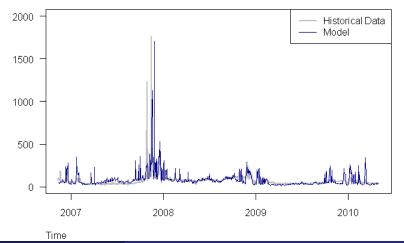


René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🛛 21 / 43

Design Estimation

Improved SRN model - Back-testing

Spot price (in €/MWh)



René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 22 / 43

Design Estimation

Improved SRN model - Backtesting

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 23 / 43

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

.ocal Risk Minimization (Pham (00), Schweizer (01))

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- valuation : expected discounted payoff under Q
- allows to decompose contingent claim between hedgeable part: (fuels) and non-hedgeable part (demand, capacities)

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

 \circ valuation : expected discounted payoff under \mathbb{Q}

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- valuation : expected discounted payoff under Q
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- \bullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

• valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$

• allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)

allows explicit formulas

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)

24 / 43

allows explicit formulas

Futures Options

Pricing & hedging

Pricing

- incomplete market
- need for a hedging criterion
- Super-replication, utility indifference or mean-variance
- our choice : Local Risk Minimization

Local Risk Minimization (Pham (00), Schweizer (01))

- \bullet valuation : expected discounted payoff under $\widehat{\mathbb{Q}}$
- allows to decompose contingent claim between hedgeable part (fuels) and non-hedgeable part (demand, capacities)
- allows explicit formulas

Pricing & hedging Risk premium vs error model

Futures

Futures

Futures prices
$$F_t^e(T) = \mathbb{E}_t^{\mathbb{Q}} \left[e^{-r(T-t)} P_T \right]$$

$$F_t^e(T) = \sum_{i=1}^n h_i G_i^T(t, C_t, D_t) F_t^i(T)$$
with :

with

$$G_i^{\mathsf{T}}(t,C_t,D_t) = \mathbb{E}_t \left[g \left(\sum_{k=1}^n C_{\mathsf{T}}^k - D_{\mathsf{T}} \right) \mathbf{1}_{\left\{ \sum_{k=1}^{i-1} C_{\mathsf{T}}^k \le D_{\mathsf{T}} \le \sum_{k=1}^i C_{\mathsf{T}}^k \right\}} \right]$$

< □ > < □ > < □ > < □ > < □ >

æ

Futures Options

Futures prices - hedging

Demand & capacities

$$dD_{t} = a(t, D_{t}) dt + b(t, D_{t}) dW_{t}^{D}$$
$$dC_{t}^{i} = \alpha_{i} (t, C_{t}^{i}) dt + \beta_{i} (t, C_{t}^{i}) dW_{t}^{C,i}$$

Futures price dynamics

$$dF_t^e(T) = \sum_{i=1}^n h_i \left[G_i^T(t, C_t, D_t) dF_t^i(T) + F_t^i(T) dG_i^T(t, C_t, D_t) \right]$$

$$dG_{i}^{T}(t, C_{t}, D_{t}) = \sum_{k=1}^{n} \frac{\partial G_{i}^{T}}{\partial c_{k}}(t, C_{t}, D_{t})\beta_{k}(t, C_{t}^{k})dW_{t}^{C, k}$$
$$+ \frac{\partial G_{i}^{T}}{\partial z}(t, C_{t}, D_{t})b(t, D_{t})dW_{t}^{D}$$

Futures Options

Futures prices - hedging

• To go further, need to choose dynamics for demand and capacities

< □ > < □ > < □ > < □ > < □ > < □ >

Futures Options

Futures prices - hedging

- To go further, need to choose dynamics for demand and capacities
- deterministic part for seasonality + Ornstein-Uhlenbeck

<<p>Image: 1

(4) (5) (4) (5)

Futures Options

Futures prices - hedging

- To go further, need to choose dynamics for demand and capacities
- deterministic part for seasonality + Ornstein-Uhlenbeck
- G_i^T explicite as function of *extended incomplete Goodwin-Staton integral* :

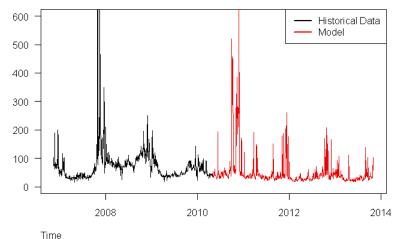
$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{\left(y+z\right)^{\nu}} e^{-z^{2}} dz$$

Futures Options

Futures prices - hedging

- To go further, need to choose dynamics for demand and capacities
- deterministic part for seasonality + Ornstein-Uhlenbeck
- G_i^T explicite as function of *extended incomplete Goodwin-Staton integral* :

$$\widetilde{\mathcal{G}}(x,y;\nu) = \int_{x}^{\infty} \frac{1}{\left(y+z\right)^{\nu}} e^{-z^{2}} dz$$

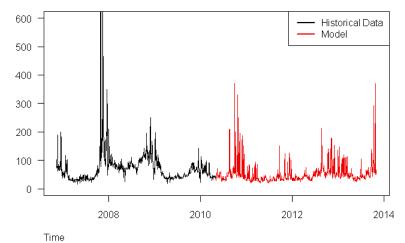

イヨト イモト イモ

• ... for which efficient numerical algorithms are provided in A., Campi & Langrené (10).

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

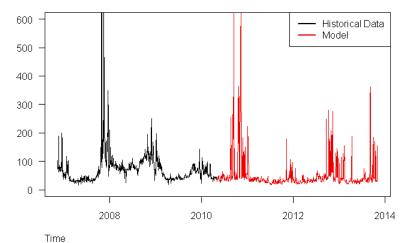


René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 28 / 43

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

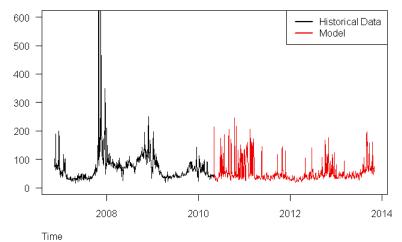


René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 29 / 43

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

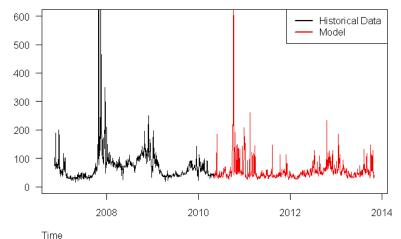


René Aïd, Luciano Campi, Nicolas Langrené 💦 A structural risk-neutral model for pricing and hedging power derivatives 🛛 30 / 43

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)



René Aïd, Luciano Campi, Nicolas Langrené 🛛 A structural risk-neutral model for pricing and hedging power derivatives 🛛 31 / 43

Futures Options

Futures prices - hedging : spot simulations

Spot price (in €/MWh)

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 32 / 43

Futures Options

Futures prices - hedging

Numerical test

- Hedging an electricity futures with a delivery period of 1 hour
- with a daily rebalanced basket of futures contracts on fuels

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 1 k

Futures Options

Futures prices - hedging

Numerical test

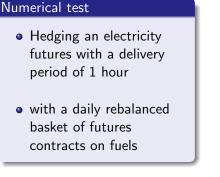
- Hedging an electricity futures with a delivery period of 1 hour
- with a daily rebalanced basket of futures contracts on fuels

3 🖒 🖌 3

▲
 ▲
 ▲

Futures Options

Futures prices - hedging


Numerical test

- Hedging an electricity futures with a delivery period of 1 hour
- with a daily rebalanced basket of futures contracts on fuels

N 4 T

Futures Options

Futures prices - hedging

Sample paths (in €)

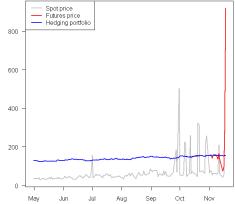
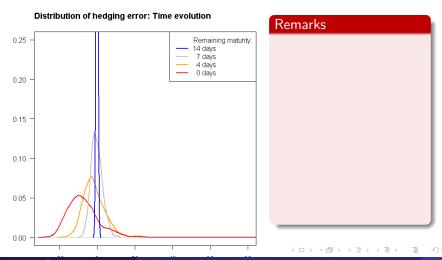
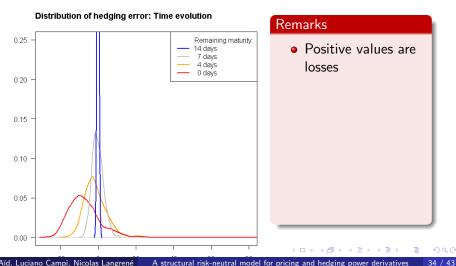



Image: A matrix

Futures Options

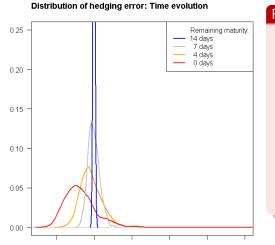
Futures prices - hedging



René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives 34 / 43

Pricing & hedging

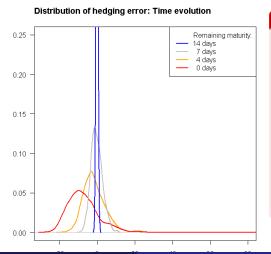
Futures


Futures prices - hedging

René Aïd, Luciano Campi, Nicolas Langrené A structural risk-neutral model for pricing and hedging power derivatives Position of the problem Pricing & hedging

Futures

Futures prices - hedging


Remarks

- Positive values are losses
- Far from maturity : perfect hedge; electricity futures is equivalent to a basket of fuels

René Aïd, Luciano Campi, Nicolas Langrené

Futures Options

Futures prices - hedging

Remarks

- Positive values are losses
- Far from maturity : perfect hedge; electricity futures is equivalent to a basket of fuels
- Close to maturity : inefficient hedge

• • • • • • • • • • • • •

René Aïd, Luciano Campi, Nicolas Langrené 👘 A structu

A structural risk-neutral model for pricing and hedging power derivatives 34 / 43

Futures Options

Spread options (do not panic)

Spread option with a 2 fuel model

The price π_0 at time t = 0 of a call spread option with pay-off $H = (P_T - h_1 S_T^1 - K)^+$ is given by :

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z > 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \le 0\}} \right\} dcdz$$

$$\phi_1 = (g-1)BS_0(\sigma_1, K)\mathbf{1}_{\{g>1\}}$$

$$\phi_2 = g \int_0^\infty \hat{f}_{Y_T^1}(y) BS_0\left(\sigma_2, \frac{K + (1 - g)y}{g}\right) \left(\mathbf{1}_{\{g \le 1\}} + \mathbf{1}_{\{g > 1\}} \mathbf{1}_{\{y < \frac{K}{g - 1}\}}\right) dy$$

$$+ \left(gY_0^2 \mathcal{N}\left(\frac{\left(r - \frac{\sigma_1^2}{2}\right) \mathcal{T} - \ln\left(\frac{\kappa}{(g-1)Y_0^1}\right)}{\sigma_1 \sqrt{\mathcal{T}}}\right) + (g-1) BS_0\left(\sigma_1, \frac{\kappa}{g-1}\right)\right) \mathbf{1}_{\{g>1\}}$$

with
$$g := g(c + z)$$
.

Futures Options

Spread options (do not panic)

Spread option with a 2 fuel model

The price π_0 at time t = 0 of a call spread option with pay-off $H = (P_T - h_1 S_T^1 - K)^+$ is given by :

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z > 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \le 0\}} \right\} dcdz$$

$$\phi_1 = (g-1)BS_0(\sigma_1, K)\mathbf{1}_{\{g>1\}}$$

$$\phi_{2} = g \int_{0}^{\infty} \hat{f}_{Y_{T}^{1}}(y) BS_{0}\left(\sigma_{2}, \frac{K + (1 - g)y}{g}\right) \left(\mathbf{1}_{\{g \le 1\}} + \mathbf{1}_{\{g > 1\}}\mathbf{1}_{\{y < \frac{K}{g-1}\}}\right) dy$$

$$+ \left(gY_0^2 \mathcal{N}\left(\frac{\left(r - \frac{\sigma_1^2}{2}\right) \mathcal{T} - \ln\left(\frac{\kappa}{(g-1)Y_0^1}\right)}{\sigma_1 \sqrt{\mathcal{T}}}\right) + (g-1) BS_0\left(\sigma_1, \frac{\kappa}{g-1}\right)\right) \mathbf{1}_{\{g>1\}}$$

with
$$g := g(c+z)$$
.

Futures Options

Spread options (do not panic)

Spread option with a 2 fuel model

The price π_0 at time t = 0 of a call spread option with pay-off $H = (P_T - h_1 S_T^1 - K)^+$ is given by :

$$\pi_{0} = \int_{\mathbb{R}^{2}} f_{C_{T}^{1} - D_{T}}(z) f_{C_{T}^{2}}(c) \left\{ \phi_{1}(c, z) \mathbf{1}_{\{z > 0\}} + \phi_{2}(c, z) \mathbf{1}_{\{z \le 0\}} \right\} dcdz$$

$$\phi_1 = (g-1)BS_0(\sigma_1, K)\mathbf{1}_{\{g>1\}}$$

$$\phi_{2} = g \int_{0}^{\infty} \hat{f}_{Y_{T}^{1}}(y) BS_{0}\left(\sigma_{2}, \frac{K + (1 - g)y}{g}\right) \left(\mathbf{1}_{\{g \le 1\}} + \mathbf{1}_{\{g > 1\}}\mathbf{1}_{\{y < \frac{K}{g-1}\}}\right) dy$$

$$+ \left(gY_0^2 \mathcal{N}\left(\frac{\left(r - \frac{\sigma_1^2}{2}\right) \mathcal{T} - \ln\left(\frac{\kappa}{(g-1)Y_0^1}\right)}{\sigma_1 \sqrt{\mathcal{T}}}\right) + (g-1) BS_0\left(\sigma_1, \frac{\kappa}{g-1}\right)\right) \mathbf{1}_{\{g>1\}}$$

with g := g(c + z).

Futures Options

Spread options

• semi-explicit formula : numerical integration

- partial hedging with futures on fuels and electricity
- applied on European dark spread call option with a period of delivery of 1 hour

< □ > < □ > < □ > < □ > < □ > < □ >

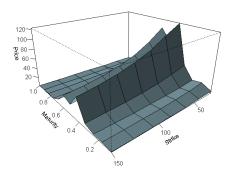
Futures Options

Spread options

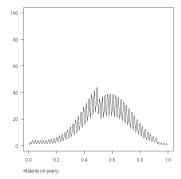
- semi-explicit formula : numerical integration
- partial hedging with futures on fuels and electricity
- applied on European dark spread call option with a period of delivery of 1 hour

< □ > < □ > < □ > < □ > < □ > < □ >

Futures Options


Spread options

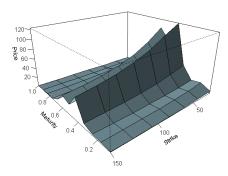
- semi-explicit formula : numerical integration
- partial hedging with futures on fuels and electricity
- applied on European dark spread call option with a period of delivery of 1 hour


(4月) とうてい うち

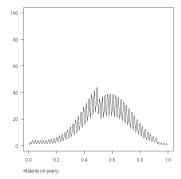
Futures Options

Spread options

Marginal oil probability (%)



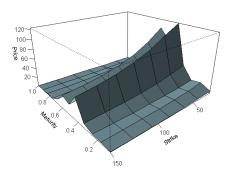
э


э.

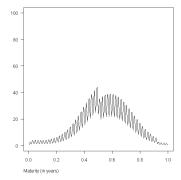
Futures Options

Spread options

Marginal oil probability (%)



< 47 ▶


• seasonality pattern

Futures Options

Spread options

Marginal oil probability (%)

- seasonality pattern
- information on planned outages

Risk premium vs error model

Comparison between real quoted electricity futures and estimated price using the spot model

Risk premium

$$F_t^e(T, \theta) - \widehat{F}_t^e(T, \theta)$$

with estimated electricity futures price

$$\widehat{F}_{t}^{e}(T,\theta) = \int_{0}^{\theta} F_{t}^{e}(T+\theta) \, d\theta$$

with :

$$F_{t}^{e}(T) = \sum_{i=1}^{n} h_{i}G_{i}^{T}(t, C_{t}, D_{t}) F_{t}^{i}(T)$$

Risk premium vs error model

Estimation done on August, 28th, 2010 for baseload month electricity futures on PowerNext.

,	SEPT10	OCT10	NOV10	DEC10	JAN11
Quoted	49.5	55.69	62.	60.45	61.36
Estimation	52.2	53.1	55.2	55.5	53.4
Premium	-2.7	2.59	6.8	4.95	7.96
Relative error (%)	-5.5	4.7	11	8.2	13
Implied excess demand (GW)	-0.4	0.3	0.63	0.46	0.79

Is there a way to make a distinction between risk premium and error model?

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

- 4 回 ト 4 ヨ ト 4 ヨ ト

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

(日本)

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

- comparison with 'real' quoted futures dynamics
- comparison with calibration procedure
- American options for investment problem

▲
 ▲

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

comparison with 'real' quoted futures dynamics.

(日)

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives comparison with "real" quoted futures dynamics comparison with calibration procedure Amorican options, for investment problem

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

- comparison with "real" quoted futures dynamics
- comparison with calibration procedure
- American options for investment problem

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

- comparison with "real" quoted futures dynamics
- comparison with calibration procedure
- American options for investment problem

▲
 ▲
 ▲

- 4 E b

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

- comparison with "real" quoted futures dynamics
- comparison with calibration procedure
- American options for investment problem

Conclusion

Conclusions

- SRN electricity spot price model with a scarcity function
- allows futures and derivatives pricing and hedging
- nevertheless, only fuels dependancies can he hedged...
- ... and present work only treated hourly futures

Perspectives

- comparison with "real" quoted futures dynamics
- comparison with calibration procedure
- American options for investment problem

References

- A., Campi, Nguyen Huu & Touzi, *Int. J. Theoretical & Applied Finance*, 2010
- Barlow, Math. Finance, 2002
- Benth & Koekebakker, J. of Energy Economics, 2007
- Benth & Vos, Tech. Rep., Math. Dept. Oslo, 2009
- Benth, Ekeland, Hauge & Nielsen, *Applied Math. Finance*, 2003
- Burger, Klar, Müller & Schlindlmayr, *Quantitative Finance*, 2004

(I) < (II) < (II) < (II) < (II) < (II) < (III) </p>

References

- Cartea & Figueroa, Applied Math. Finance, 2005
- Cartea & Villaplana, J. of Banking & Finance, 2008
- Coulon & Howison, J. of Energy Markets, 2009
- Deng, Tech. Rept., California Energy Institute, 2000
- Geman & Roncoroni, J. of Business, 2006
- Kanamura & Ohashi, Energy Economics, 2007
- Kolodnyi, J. of Engineering Mathematics, 2004

- Lyle & Elliott, Energy Economics, 2009
- Pham, Math. Meth. of Operations Research, 2000
- Pirrong & Jermakyan, J. of Banking & Finance, 2008¹
- Schweizer, Handbook Math. Finance, Cambridge Univ. Press, 2001

1. Olin Business School Tech. Rep. 2000